
cosc-071 Project 4: Design and Implementation

of a Class for Artificial Neurons

Marcus A. Maloof

Department of Computer Science

Georgetown University

Washington, DC 20057

maloof@cs.georgetown.edu

November 3, 2003

Neuroscience is the study of the brain. Naturally, neuroscientists have
limited ability to study live brains, which consist of billions of cells called
neurons. However, computers have given such scientists an invaluable tool,
for we can write programs that simulate neurons based on our knowledge
of the brain. Scientists can then study and manipulate artificial neurons in
ways that are impossible for real ones. Project 4 involves writing a class for
a simple, artificial neuron.

A simple neuron is a cell with dendrites and an axon, as shown in Fig-
ure 1. The neuron receives signals from all of its dendrites. Some signals are
strong, some are weak. Some are inhibitory, some are excitatory. In the cell
body, the accumulated effect of the strong and weak, inhibitory and excita-
tory signals results in a state of activation. If the cell’s state of activation
surpasses some threshold, then the neuron fires by sending an excitatory

Axon

Dendrites

Cell Body (Soma)

Nucleus

Figure 1: A simple neuron.

1



T

i1

in

i2
...

w1

wn

w2 Σ o

Inputs
Weights

Summation
Threshold

Output

Figure 2: Diagram of an artificial neuron.

oT = −0.75

0.5

0.5

Output
Threshold

Summation
Weights

Inputs

Σ

2i

1i

Figure 3: Artificial neuron for the two-input or function.

signal down its axon to a synapse and to the dendrites of other neurons.
One way to model a simple biological neuron is to use −1 and +1 as

incoming inhibitory and excitatory signals, respectively. We can use weights
for each signal to increase or decrease their strength. The state of activation,
in this case, would be simply the weighted sum of the neuron’s inputs. Then,
if the weighted sum surpasses some threshold, then the output of the neuron
would be +1; otherwise, the output would be −1. A diagram of this model
appears in Figure 2.

Mathematically, we can represent the set of inputs as the vector ~i. In
general, there will be n such inputs. For n inputs, we will need n weights—
one for each input—which we will store in the vector ~w. The threshold, T ,
is simply some real number. Given a set of inputs, ~i, a set of weights, ~w,
and a threshold, T , the output, o, of a neuron is given by

o =

{

+1 if
∑n

j=1
ijwj > T ;

−1 otherwise,

where

n
∑

j=1

ijwj = i1w1 + i2w2 + · · · + inwn.

Of interest to computer scientists is how we might use artificial neurons
to realize simple Boolean functions, such as or and and. Figure 3 shows
an artificial neuron realizing the two-input or function. To propagate the

2



Table 1: Inputs, sums, and outputs for the two-input or neuron.

i1 i2
∑ ∑

> T o

−1 −1 −1 false −1
−1 +1 0 true +1
+1 −1 0 true +1
+1 +1 +1 true +1

input ~i = [+1 − 1] through the neuron, we multiply each input with the
appropriate weight: (+1)(0.5)+(−1)(0.5) = 0. Since 0 > −0.75, the output
of the neuron is +1. Table 1 shows the inputs, sums, and outputs for the
two-input or neuron.

For Project 4, you are to implement a class for an artificial neuron. Neu-
roscientists will want to store configurations (i.e., a threshold and weights)
in a file and load the file during object construction or during the program’s
execution. They will also want to save such configurations. There should be
accessor and observer methods for changing and inspecting both the thresh-
old and weights. There should be methods for propagating an input through
the neuron. A method should print the neuron’s configuration to the console
in an understandable format.

The senior software engineers on this project have already completed the
high-level design for the Neuron class, which they have graciously provided
to you before heading out to the golf course. The high-level design (aka class
definition) appears in Figure 4. Descriptions of the class methods follow.

To demonstrate your implementation of the Neuron class, write a simple
driver program in main. The driver program should create neurons for the
two-input and function and for the three-input or function. Do not use the
method Neuron::load to accomplish this. The construction of these neu-
rons should be hard coded in the main function using Neuron::setThres-

hold and Neuron::setWeights. Print to the screen the configurations of
these neurons. Write code to propagate all possible inputs through each
neuron, and print the truth table to the console (i.e., the outputs for the
given inputs). Note that cout.setf(ios::showpos) will force the display
of the plus sign for positive numbers. cout.unsetf(ios::showpos) returns
cout to the default. Finally, write the configurations to files named and.out

and or.out, respectively. The program should then terminate.

3



class Neuron

{

public:

Neuron();

Neuron(const double t, const vector<double> &w);

Neuron(const string &filename);

int size();

void setThreshold(const double t);

double getThreshold();

void setWeights(const vector<double> &w);

vector<double> getWeights();

void print();

bool read(const string &filename);

bool write(const string &filename);

int propagate(const vector<int> &input);

private:

double threshold;

vector<double> weights;

}; // Neuron class

Figure 4: Class definition for the Neuron class.

4



Method Descriptions

Neuron() — Default constructor.

Neuron(const double t, const vector<double> &w) — Constructor. Con-
structs a Neuron by assigning t to threshold and w to weights.

Neuron(const string &filename) — Constructor. Constructs a Neuron

by loading a configuration from the file filename.

int size() — Returns the number of inputs of the neuron.

void setThreshold(const double t) — Accessor. Sets threshold to t.

double getThreshold() — Observer. Returns threshold.

void setWeights(const vector<double> &w) — Accessor. Sets weights
to w.

vector<double> getWeights() — Observer. Returns weights.

void print() — Prints information about the neuron in an understandable
format.

bool read(const string &filename) — Reads a neuron configuration from
the file filename. Returns true if the operation is successful; returns
false otherwise.

bool write(const string &filename) — Writes a neuron configuration
to the file filename. Returns true if the operation is successful; re-
turns false otherwise.

int propagate(const vector<int> &input) — Propagates input through
the neuron, returning -1 or +1. Returns 0 if operation fails.

5


