Let \(u \in \text{ran}(T) \) a such that \(u^2 = 2m \). Then, we have

\[
\begin{align*}
\bar{p} & = \left\{ \text{such that } u^2 = 2m \right\} \\
\bar{p} & = \left\{ \text{ran}(T) \right\}
\end{align*}
\]

Proof:

Direct Part:

\[
\begin{align*}
\left\{ \text{ran}(T) \right\} & \subset \left\{ \text{such that } u^2 = 2m \right\} \\
\left\{ \text{ran}(T) \right\} & \subset \bar{p}
\end{align*}
\]
\[n^2 = 2(2m^2 + m) + 1 \]

\[n^2 = (2m+1)^2 = 4m^2 + 4m + 1 \]

\[\text{Case where } n = 2m+1 \]

For \(n \) even and \(n \) odd,

\[(n \text{ even } \rightarrow \text{ n odd}) \]

\[(n \text{ odd } \rightarrow \text{ n even}) \]

Let's start by contradiction, \(n^2 \equiv 1 \pmod{4} \),

\[\exists p \in \mathbb{Z} \text{ s.t. } n \equiv \pm 1 \pmod{4} \]

\[n^2 \equiv 1 \pmod{4} \]

\[\exists p \in \mathbb{Z} \text{ s.t. } n \equiv \pm 1 \pmod{4} \]
\[q = \frac{m}{p} \quad (g,c \in \mathbb{N}_m, n = 1) \]

For \(n \), we choose such that \(m^2 \) and \(m \) are not in the same numerator if and only if \(g \) is a real-root number \(\sqrt{\text{det} \mathbf{A}} \) if and only if \(m \) is even and \(n \) is odd.

\[n - 2 \leq 0 \]

\[n \in \mathbb{Z} \]

\[\text{even} = n \quad \text{even} \]

\[\text{odd} = n \quad \text{odd} \]
\[n_2 = m_2 = n_2 \]
\[m_3 = n \quad (m, n) = n_2 \]
\[m_3 = n \quad (m, n) = \text{gcd}(n) = 1 \]

Assume \(n \) is a perfect square.

\[n = p^2 \quad \text{for some integer } p \]

Therefore, \(n \) is an integer number.
\[
\text{Common denominator of } \gcd(n, m) = 1
\]
\[
\Rightarrow 2 \text{ is a factor of } n \text{ and in }
\]
\[
m \equiv 2 \text{ in } m_2 = 2k
\]
\[
\Rightarrow \text{and } k \text{ (where } k \text{ is even)}
\]

By the previous result, \(n \) is even

\[
\Rightarrow n_2 = 4k
\]
\[
\Rightarrow \text{and } k \text{ (where } k \text{ is even)}
Prop: There are two irrational numbers x, y such that (x^y) is rational.

Sol: Let $s = \sqrt{2}$, $x = \sqrt{2}$
Case 1: \(r = \frac{r_2}{r_1} \) is exactly 1.

Case 2: \(r = \frac{r_2}{r_1} \) is not exactly 1.

Consolidate \(r = \frac{r_2}{r_1} \).
\[(\exists y \in E \forall x \in A) \Leftrightarrow (\exists y \in E \forall x \in A) \Leftrightarrow (\exists y \in E \forall x \in A)
\]

\[(\exists y \in E \forall x \in A) \Leftrightarrow (\exists y \in E \forall x \in A) \]

\[(\exists y \in E \forall x \in A) \Leftrightarrow (\exists y \in E \forall x \in A) \]

\[\left[x \right] \uparrow \delta \eta \leq \delta \eta \leq \delta \eta \leq \delta \eta \leq \delta \eta \]

\[(\exists y \in E \forall x \in A) \Leftrightarrow (\exists y \in E \forall x \in A) \]
Set $S = \{1, \text{pen}, \text{computer}, \text{mouse}\}$

(1) A set is a collection of objects.

(2) Chap. 2 (Set S)