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Abstract
This paper investigates adding transactions with nested parallelism
and nested transactions to a dynamically multithreaded parallel
programming language that generates only series-parallelpro-
grams. We describe XConflict, a data structure that facilitates con-
flict detection for a software transactional memory system which
supports transactions with nested parallelism and unbounded nest-
ing depth. For languages that use a Cilk-like work-stealingsched-
uler, XConflict answers concurrent conflict queries inO(1) time
and can be maintained efficiently. In particular, for a program with
T1 work and a span (or critical-path length) ofT∞, the running time
on p processors of the program augmented with XConflict is only
O(T1/p+ pT∞).

Using XConflict, we describe CWSTM, a runtime-system de-
sign for software transactional memory which supports transac-
tions with nested parallelism and unbounded nesting depth of trans-
actions. The CWSTM design provides transactional memory with
eager updates, eager conflict detection, strong atomicity,and lazy
cleanup on aborts. In the restricted case when no transactions abort
and there are no concurrent readers, CWSTM executes a transac-
tional computation onpprocessors also in timeO(T1/p+ pT∞). Al-
though this bound holds only under rather optimistic assumptions,
to our knowledge, this result is the first theoretical performance
bound on a TM system that supports transactions with nested par-
allelism which is independent of the maximum nesting depth of
transactions.

Categories and Subject DescriptorsD.1.3 [Programming Tech-
niques]: Concurrent Programming —Parallel programming; E.1
[Data Structures]: Distributed data structures

General Terms Algorithms, Theory
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1. INTRODUCTION
Transactional memory (TM) (Herlihy and Moss 2003) represents
a collection of hardware and software mechanisms that help pro-
vide a transactional interface for accessing memory to program-
mers writing parallel code. Recently, TM has been an active area
of study; for example, researchers have proposed many designs
for transactional memory systems, with support for TM in hard-
ware (e.g. (Hammond et al. 2004; Ananian et al. 2006; Moore etal.
2006)), in software (e.g., (Herlihy et al. 2003; Marathe et al. 2006;
Adl-Tabatabai et al. 2006)), or hybrids of hardware and software
(e.g., (Damron et al. 2006; Kumar et al. 2006)). A typical TM
runtime system executes transactions optimistically, aborting and
rolling back transactions that “conflict” to guarantee thattransac-
tions appear to execute atomically.

Most work on transactional memory focuses exclusively on sup-
porting transactions in programs that use persistent threads (e.g.,
pthreads). TM systems for such an environment are designed as-
suming that transactions execute serially, since the overhead of cre-
ating or destroying a pthread naturally discourages programmers
from having nested parallelism inside a transaction. Furthermore,
the special case of serial transactions greatly simplifies conflict de-
tection for TM; typically, the TM runtime detects aconflict be-
tween two distinct active transactions if they both access the same
objectℓ, at least one transaction tries to write toℓ, and both transac-
tions are executed on different threads. This last condition is rele-
vant for TM that supportsnested transactions. Conceptually, when
transactions execute serially, two active transactions executing on
the same thread are allowed to access the same object becauseone
must be nested inside the other.

Another way to write parallel programs, however, is to use dy-
namic multithreaded languages such as Cilk (Blumofe et al. 1996;
Supercomputing) or NESL (Blelloch and Greiner 1996) or multi-
threaded libraries like Hood (Blumofe and Papadopoulos 1999). In
such languages, a programmer specifies dynamic parallelismus-
ing linguistic constructs such as “fork” and “join,” “spawn” and
“sync,” or “parallel” blocks. Dynamic multithreaded languages al-
low the programmer to specify a program’s parallel structure ab-
stractly, that is, permitting (but not requiring) parallelism in specific
locations of the program. A runtime system (e.g., for Cilk) dynam-
ically schedules the program on the number of processors,p, spec-
ified at execution time. If the language also permits only “properly
nested” parallelism, i.e., any program execution can be represented
as a “series-parallel dag” or “series-parallel parse tree”(Feng and
Leiserson 1997), then a Cilk-like work-stealing schedulerexecutes
the program in a provably efficient manner (Blumofe et al. 1996). A
natural question arises: how can transactions be added to a dynamic
multithreaded language such as Cilk?

To pose the problem more concretely, consider the series-
parallel program shown in Figure 1, which performs parallelin-



PARALLEL INCREMENT()

1 x← 0
2 parallel
3 { x← x+1 }
4 { x← x+10
5 parallel
6 { x← x+100 }
7 { x← x+1000 } }
8 print x

Figure 1. A simple fork-join program that does several parallel
increment of a shared variable. Theparallel statement, similar to
Dijkstra’s “cobegin,” allows the two following code blocks(each
contained in{.}) to run in parallel. The subsequent line (line 8)
executes afterbothparallel blocks complete. This program contains
several races—assuming sequential consistency, valid outputs are
x∈ {1,11,101,110,111,1001,1010,1011,1101,1110,1111}.

Figure 2. The series-parallel dag for the sample program given in
Figure 1. Edges correspond to instructions in the program. Dia-
monds and squares correspond to the start and end, respectively, of
parallel constructs.

crements to a shared variable. Figure 2 gives the corresponding
series-parallel dag for the program. One natural way to add trans-
actions to a series-parallel program is by wrapping segments of the
program in atomic blocks, as illustrated by Figure 3. As shown, it
is easy to generate transactions (e.g.,X3) with nested parallelism
and nested transactions (e.g.,X4). How does a TM system execute
the program in Figure 3?

This paper investigates adding transactions to a dynamic multi-
threaded language that generates only series-parallel programs. We
focus on a provably efficient TM system that supports unbounded
nesting and parallelism. That is, we want a TM system with a bound
on a program’s completion time that is independent of the maxi-
mum nesting depth of transactions. It turns out that TMs thatper-
form work on every transaction commit proportional to the size
of the transaction’s “readset” or “writeset” cannot support an un-
bounded nesting depth efficiently. Generally, TM with lazy conflict
detection requires work proportional to the size of the transactions
readset, and TM with lazy updates require work proportionalto the
size of the transaction’s writeset. Thus, we focus on TM withea-
ger conflict detection and eager updates, since both requireonly a
constant amount of work on every commit.

A key component of a TM system with nested parallelism is
the conflict-detection scheme. We describe the semantics for TM
with eager conflict detection for series-parallel computations with
transactions. We present XConflict, a data structure that a software
TM system can use to query for conflicts when implementing these
semantics. For Cilk-like work-stealing schedulers, the XConflict
answers concurrent queries inO(1) time and can be maintained
efficiently. In particular, consider a program withT1 work and a

XPARALLEL INCREMENT()

1 atomic { � TransactionX1
2 x← 0
3 parallel
4 { atomic {x← x+1} } � X2
5 { atomic { � X3
6 x← x+10
7 parallel
8 { x← x+100 }
9 { atomic {x← x+1000} } � X4

10 } }
11 }
12 printx

Figure 3. The program from Figure 1 with the addition of some
transactions, denoted byatomic{.} blocks. The triangle denotes
a comment. Since atomic blocks are not placed aroundall incre-
ments, this program still permits multiple outputs—valid outputs
are 111 and 1111. The (symmetric) 1011 is excluded due to strong
atomicity.

span(or critical-path length) ofT∞, (In terms of the series-parallel
dag, work is the number of edges, i.e., 7 for Figure 2. Span is the
longest path through the dag, i.e., 5 for Figure 2.) Then the running
time on p processors of the program augmented with XConflict is
only O(T1/p+ pT∞). In comparison, with high probability, Cilk ex-
ecutes the program without XConflict in the asymptotically optimal
time O(T1/p+ T∞). These two bounds imply that maintaining the
XConflict data structure does not asymptotically increase the run-
ning time of the program, compared to Cilk, when

p

T1/T∞≫ P.
We describe CWSTM, a design for a software TM system with

eager updates that uses the XConflict data structure. CWSTM pro-
vides strong atomicity and supports lazy cleanup on aborts (i.e.,
when a transactionX aborts, other transactions can help roll back
the objects modified byX). The XConflict bounds translate to CW-
STM in a restricted case when there are no concurrent readers(all
memory accesses are treated as writes) and there are no transac-
tion abort. If the underlying transaction-free program hasT1 work
andT∞ span, then the CWSTM executes the transactional program
in time O(T1/p+ pT∞) when run onp processors. At first glance,
these bounds might seem uninteresting due to the restrictions. It
is difficult, however, for any TM system to provide any nontrivial
bounds on completion time in the presence of aborts, since the sys-
tem might redo an arbitrary amount of work. Moreover, TM with
eager conflict detection that allows more than a constant number
of shared readers to an object can potentially lead to memorycon-
tention; thus, even if there are no conflicts on that object, it seems
difficult to provide efficient worst-case theoretical bounds.

The remainder of this paper is organized as follows. We use
a computation tree to model a computation with nested parallel
transactions; Section 2 describes the computation tree andhow the
CWSTM runtime system maintains this computation tree online.
Section 3 defines our CWSTM semantics. We show in Section 4
that a naive conflict-detection algorithm has poor worst-case per-
formance. Section 5 describes the high-level design of CWSTM
and its use of XConflict for conflict-detection. Section 6 gives an
overview of the XConflict algorithm. Sections 7–10 provide details
on data structures used by XConflict. Finally, Section 11 claims
that XConflict, and hence CWSTM, is efficient for programs that
experience no conflicts or contention.



2. CWSTM FRAMEWORK
This section presents the computation-tree framework we use to
model CWSTM program executions. A program execution is mod-
eled as an ordered tree, called the computation tree (as in (Agrawal
et al. 2006)). The computation tree is not givena priori (i.e., from
a static analysis of the program); rather, it unfolds dynamically as
the program executes. Moreover, nondeterminism in the program
may result in different computation trees. Constructing the compu-
tation tree on the fly as the program executes is not difficult and
thus not described in full in this paper. A partial program execution
corresponds to partial traversal of the computation tree.

A computation tree has two types of nodes: leaf nodes corre-
spond to single memory operations, while internal nodes model the
nested parallel control structure of the program as well as the struc-
ture of nested transactions. As in the “series-parallel parse tree”
of (Feng and Leiserson 1997), an internal node is either anS-node
or aP-node. An S-node denotes series composition of the subtrees
(i.e., the subtrees must execute in left-to-right order), whereas a P-
node denotes parallel composition. Transactions are specified in a
computation tree by marking a subset of S-nodes as transactions. A
computation-tree nodeB is a descendant of a particular transaction
nodeX if and only if B is contained inX’s transaction. Conse-
quently, a transactionY is nestedinside a transactionX if X is an
ancestor ofY in the computation tree. We consider only computa-
tions that have closed-nested transactions.

In our canonical computation tree, all P-nodes have exactly
2 nontransactional S-nodes as children, while S-nodes can have
an arbitrary number of children. In addition, we require that no
nontransactional S-node has a child nontransactional S-node. Thus,
it follows that all nontransactional S-nodes are children of P-nodes
(or the root of the tree). For convenience, we treat the root of the
computation tree as both a transactional and a nontransactional S-
node.

We define several notations for the computation treeC . Let
root(C ) denote the tree’s root node. For any nodeB 6= root(C ),
parent[B] denotesB’s parent inC . If B is an internal node ofC ,
thenchildren(B) is the ordered set ofB’s children,ances(B) is
the set ofB’s ancestors anddesc(B) is B’s descendants. In this
paper, whenever we refer to the set of ancestors or descendants of
a nodeB, we includeB in this set.

For any nodeB 6= root(C ), we define the transactional parent
xparent[B] asZ = parent[B] if Z is a transaction orroot(C ), and
asxparent[Z] otherwise. Similarly, we define nontransactional S-
node parentnsParent[B] asZ = parent[B] if Z is a nontransac-
tional S-node orroot(C ), or nsParent[Z] otherwise.

At any point during the computation-tree traversal, each nodeB
in the computation tree has astatus, denoted bystatus[B]. The
status can be one ofPENDING, PENDING ABORT, COMMITTED, or
ABORTED. A leaf is completeif the corresponding operation has
been executed. An internal node can complete only if all nodes
in its subtree are complete. Thus, a complete node corresponds to
the root of a subtree that will not unfold further, and hence anode
is complete if and only if its status isCOMMITTED or ABORTED. A
node isactive(having statusPENDING or PENDING ABORT) if it has
any unexecuted descendants. Once a node is complete, it can never
become active again.

Any execution of the computation tree has the invariant thatat
any time, the set of active nodes in the computation tree alsoforms
a tree, with the leaves of this active tree being the set ofready
nodes. Only a node that is ready can be traversed to “discover”
a new child node. (Discovering a new child node corresponds to
executing an instruction in the program: a read or write creates new
leaf below the current S-node, a transactional begin creates a new
transactional S-node, and a fork statement creates a new P-node
along with its two S-node children.) When a ready transactional S-

Figure 4. A legend for computation-tree figures.

Figure 5. A computation tree for an execution of the program
given by Figure 1, in which transactionX2 aborted once and was
retried as the transactionX′2. The rootX0 does not correspond to
any transaction in the program—it is just the S-node root of the
tree. Each increment tox on line j of the program decomposes into
two atomic memory operations: aread u j , and awrite v j . The
corresponding code is shown in a gray oval under the accesses.

node completes, its parent becomes ready. When a ready nontrans-
actional S-nodeZ completes, ifZ’s sibling nontransactional S-node
is already complete, thenZ’s parent (which is a P-node) completes,
andZ’s grandparent becomes ready.

Figure 5 shows the structure of the computation tree after an
execution of the code from Figure 1 in which transactionX2 aborts
once. If other aborts (and retries) occur, the computation tree would
have additional subtrees.

3. CWSTM SEMANTICS
This section describes CWSTM semantics, a semantics for a
generic transactional memory system with nested parallel trans-
actions and eager conflict detection. We describe these semantics
operationally, in terms of a “readset” and “writeset” for each trans-
action. In particular, we define conflicts and describe transaction
commits and aborts abstractly using readsets and writesets. Later,
in Section 4, we give a simple design for a TM that provides these
semantics. In Section 5, we improve the simple TM and presentthe
the CWSTM design.



At any point during the program execution, thereadsetof a
transactionX is the set of objectsℓ thatX has “accessed”. Similarly,
thewritesetis a set of objectsℓ thatX has written to. Operationally,
readsets and writesets change as follows. A transaction begins with
an empty readset and empty writeset. Whenever a successfulread
of ℓ1 occurs in a memory-operation (leaf) nodeu, ℓ1 is added to
xparent[u]’s readset. Similarly, whenever a successfulwrite of ℓ2
occurs in a memory-operation nodeu, ℓ2 is added toxparent[u]’s
readset and writeset. Aread or a write to ℓ by an operationu
“observes” the value associated with the write stored in thewriteset
of Z, whereZ is the nearest transactional ancestor ofu that contains
ℓ in its writeset. For consistency, the writeset of the computation-
tree’s root contains all objects. When a transactionX commits,
its readset and writeset are merged intoxparent[X]’s readset and
writeset, respectively.

A transactional memory with eager conflict detection must test
for conflict before performing eachread or write. An access is
unsuccessful if it generates a transactional conflict. TM systems
with serial, closed-nested transactions report conflicts when two
active transactions on different threads are accessing thesame
objectℓ, and one of those accesses is a write. Thus, only a single
active transaction is allowed to containℓ in its writeset at one time.
For CWSTM semantics, we generalize this definition of conflict in
a straightforward manner. At any point in time, letreaders(ℓ) and
writers(ℓ) be the sets ofactivetransactions that have objectℓ in
their readsets or writesets, respectively. Then, we define conflicts
as follows:

DEFINITION 1. At any point in time, a memory operation v gener-
ates aconflict if

1. v reads objectℓ, and ∃X ∈ writers(ℓ) such that X6∈
ances(v), or

2. v writes to objectℓ, and∃X ∈ readers(ℓ) such that X6∈
ances(v).

If there is such a transaction X, then we say that v conflicts with
X. If v belongs to the transaction X′, then we say that X and X′

conflict with each other.

If a memory operationv would cause a conflict betweenX =
xparent[v] and another transactionX′, thenv triggers an abort of
eitherX or X′ (or both). SayX is aborted. An abort of a transac-
tion X changesstatus[X] from PENDING to PENDING ABORT, and
also changes the status of anyPENDING (nested) transactionY in
the subtree ofX to PENDING ABORT. In general, aPENDING ABORT
transactionX that is also ready can only complete by changing its
status toABORTED. Conceptually, when a transactionX is ABORTED,
CWSTM semantics discardsX’s writeset and readset. SinceX is
no longer active after this action occurs, the action also conceptu-
ally removesX from readers(ℓ) andwriters(ℓ) for all objects
ℓ. Note that in CWSTM, ifv causes a conflict, and the runtime
chooses to abortX′ 6= xparent[v], then the conflict is not fully re-
solved untilstatus[X′] has changed toABORTED.

Consider a computation subtree rooted at a transactionX with
status[X] = PENDING. Since we allow only closed-nested transac-
tions, if every child ofX has completed, CWSTM can commitX,
i.e., changeX’s status fromPENDING to COMMITTED, and mergeX’s
readset and writeset into those ofxparent[X].

Code Example

We can now describe how the CWSTM semantics constrain the
possible outputs of the program in Figure 3. Since parallelism is
allowed in transactions, we must consider the scoping of atomicity.
In particular, thex← x+1 in line 4 and the code block in lines 6–9
must appear as though one executes entirely before the other. If the
atomic statements in lines 4 and 5 were removed, then these two
blocks could interleave arbitrarily, even though the entire procedure

is protected by anatomic statement in line 1. Basically, the atom-
icity applies only when comparing two blocks of code belonging
to different transactions (protected by different atomic statements),
not parallel blocks within the same transaction (protectedby the
same atomic statement).

Conflict as stated in Definition 1 naturally enforces strong atom-
icity (Blundell et al. 2006). Strong atomicity implies thatalthough
line 8 is not atomic, it cannot perform its write between line9’s
read and write. In terms of the computation tree in Figure 5, after
u9 performs aread of x, it addsx to the readset ofX4; thus, afteru9
occurs but beforeX4 commits, ifv8 tries to write tox, it will cause
a conflict withX4. We can, however, have line 8 readx, line 9 read
and writex and commit, and then line 8 writex. This interleaving
can occur because whenu8 happens, it addsx to the readset ofX3,
andu9 andv9 can subsequently happen because they are both de-
scendants ofX3 in the computation tree. This behavior means that
the increment of 1000 can be “lost” (by being overwritten) but the
increment of 100 cannot. Another way of describing strong atom-
icity is that each memory operation is viewed as a transaction.

Semantic Guarantees

The CWSTM semantics maintains the invariant that a program
execution is always conflict-free, according to Definition 1. One
can show that when transactions have nested parallel transactions,
TM with eager conflict detection according to Definition 1 satisfies
the transactional-memory model ofprefix race-freedomdefined in
(Agrawal et al. 2006).1 As shown in (Agrawal et al. 2006), prefix
race-freedom and serializability are equivalent if one cansafely
“ignore” the effects aborted transactions. Note that this equivalence
may not hold in TM systems with explicitretry constructs that are
visible to the programmer.

Definition 1 directly implies the following lemma about a
conflict-free execution.

LEMMA 1. For a conflict-free execution, the following invariants
hold for any objectℓ:

1. All transactions X∈ writers(ℓ) fall along a single root-to-leaf
path inC . Letlowest(writers(ℓ)) denote the unique transac-
tion Y∈ writers(ℓ) such thatwriters(ℓ)⊆ ances(Y).

2. All transactions X∈ readers(ℓ) are either along the root-
to-leaf path induced by the writers or are descendants of the
lowest(writers(ℓ)).

We use Lemma 1 to argue that one can check for conflicts
for a memory operationu by looking at one writer and only
a small number of readers. Since all the transactions fall ona
single root-to-leaf path, by Lemma 1, Invariant 1, the transac-
tion lowest(writers(ℓ)) belongs towriters(ℓ) and is a de-
scendant of all transactions inwriters(ℓ). Similarly, let Q =
lastReaders(ℓ) ⊆ desc(lowest(writers(ℓ))) denote the set
of readers implied by Invariant 2. If a memory operationu tries
to read ℓ, abstractly, there is no conflict exactly if and only
if lowest(writers(ℓ)) is an ancestor ofu. Similarly, whenu
tries to write toℓ, by Invariant 2, there is no conflict if for all
Z ∈ lastReaders(ℓ), Z is an ancestor ofu.

4. A NAIVE TM
The CWSTM semantics described in Section 3 suggest a design for
a TM system that supports transactions with nested parallelism. In
particular, Lemma 1 suggests that for each objectℓ, the TM can
maintain an active writing transactionlowest(writers(ℓ)) and
some active reading transactionslastReaders(ℓ). This scheme

1 The proof is a special case of the proof for the operational model described
in (Agrawal et al. 2006), without any open-nested transactions.



allows transactions accessingℓ to test for conflicts against these
transactions. This section focuses on a straightforward data struc-
ture, called an “access stack,” used to maintain these values. We
show that an access stack yields a TM with poor worst-case perfor-
mance, even assuming the rest of the TM system incurs no over-
head. The CWSTM design uses a lazy variant of the access stack,
described in Section 5, that has much better performance.

Theaccess stackfor an objectℓ is a stack containing the active
transactions that have written toℓ and sets of active transactions
that have read fromℓ. The order of transactions on the stack is
consistent with the ancestry of transactions in the computation tree.
The writing transactionlowest(writers(ℓ)) is either on top (first
item to pop) of the stack, or is the next element on the stack. If the
writer is not on the top of the stack, thenlastReaders(ℓ) is. No
two consecutive elements are sets of readers.

The access stack is maintained as follows, locking the relevant
stack on all memory access to guarantee atomicity. Consider(a
memory operation whose transactional parent is) a transaction X
that successfully readsℓ. If the top of the stack contains a set of
readers, thenX is added to that set, assuming it is not already there.
If the top of the stack is a writer other thanX, then{X} is added to
the top of the stack. Similarly, ifX successfully writesℓ, thenX is
pushed onto the top of the stack if it not already there.

Whenever a transactionX commits, for eachℓ in X’s readset,
X is removed from the top ofℓ’s access stack and replaced with
xparent[X] (in a fashion that ensures there are no duplicated trans-
actions). This action mimics the commit semantics from Section 3:
when a transactionX commits, the objects in its readset and write-
set are moved toxparent[X]’s readset and writeset, respectively. If
insteadX aborts, thenX is popped from each relevant object’s ac-
cess stack. To facilitate rollback on aborts, every access-stack entry
corresponding to a write stores the old value before the write.2

Maintaining the access stack has poor worst-case performance
because the work required on the commit of transactionX is pro-
portional to the sizeX’s readset. If the original program (without
transactions) had workT1, then this implementation might require
work Ω(dT1), whered is the maximum nesting depth of transac-
tions. In particular, consider the following code snippet:

void f(int i) {
if (i >= 1) { atomic { x[i]++; f(i-1); } }

}

A call of f(d) generates a serial chain of nested transactions, each
incrementing a different place in the arrayx. When the transaction
at nesting depthj commits, it updatesd− j access stacks for a total
of Θ(d2) access-stack updates. The work of the original program
(without transactions), however, is onlyΘ(d).

In general, this asymptotic blowup can occur if a TM system
with nested transactions must perform work proportional tothe size
of a transaction’s readset or writeset on every commit. For example,
a TM system that validates every transaction due to lazy conflict
detection for reads exhibits this problem. Similarly, a TM system
that copies data on commit due to lazy object updates also hasthis
issue.

5. CWSTM OVERVIEW
This section describes our CWSTM design for a transactional-
memory system with nested parallel transactions and eager updates
and eager conflict detection. We first describe how CWSTM up-
dates the computation-tree-node statuses on commits and aborts.
We then give an overview of the conflict-detection mechanism, de-
ferring details of the XConflict data structure to later sections. The
conflict-detection mechanism includes a “lazy access stack,” im-

2 This value can either be stored in the stack itself, or in a logper transaction.

proving on the shortcoming of the access stack from Section 4. Fi-
nally, we describe properties of the Cilk-like work-stealing sched-
uler that CWSTM uses. The XConflict data structure requires such
a scheduler for its performance and correctness.

CWSTM explicitly builds the internal nodes of the computa-
tion tree (i.e., leaf nodes for memory operations are omitted). Each
node maintains a status field which in most cases, explicitlyrep-
resents the node’s status (PENDING ABORT, PENDING, COMMITTED,
or ABORTED), and changes in a straightforward fashion. For exam-
ple, when a transactionX commits, CWSTM atomically changes
status[X] from PENDING to COMMITTED.

Since a transaction may signal an abort of a transaction run-
ning on a (possibly different) processor whose descendantshave
not yet completed, aborting transactions is more involved.When
an active transactionX aborts itself (possibly because of a con-
flict) it simply atomically updatesstatus[X] ← ABORTED. We
refer to this type of update as anxabort. Alternatively, sup-
pose a processorpi wishes to abortX even thoughpi is not cur-
rently executingX. First, pi atomically changesstatus[X] from
PENDING to PENDING ABORT. Then pi walks X’s active subtree,
changingstatus[Y]← PENDING ABORT atomically for each active
Y∈ desc(X). Notice thatpi never changes any status toABORTED—
only the processor running a transactionY is allowed to perform
that update. WhenX “discovers” that its status has changed to
PENDING ABORT, it has no active descendants (otherwise,X can-
not be ready, and henceX cannot be executing). Then,X simply
performs anxabort on itself.

For reasons specific to XConflict, the data structure the CW-
STM design uses for conflict detection, during an abort ofX, some
of X’s COMMITTED descendantsY also have their status field
changed toABORTED. Our conflict-detection algorithm uses these
updates to more quickly determine that a memory operation does
not conflict withY, sinceY has anABORTED ancestorX. Section 9
describes when these updates occur.

In CWSTM, the rollback of objects on abort occur lazily, and
thus is decoupled from anxabort operation. Once the status of
a transactionX changes toABORTED, other transactions that try to
access an object modified byX help with cleanup for that object.

Conflict Detection and the Lazy Access Stack

We now discuss conflict detection. The key observation that allows
us to avoid explicit maintenance of active readers and writers (or
transaction readsets and writesets) is the following alternate conflict
definition.

DEFINITION 2. Consider a (possibly inactive) transaction X that
has written toℓ and a new memory operation v that reads from or
writes toℓ. Then v doesnot conflict with X if and only if

1. some transactional ancestor of X has aborted, or
2. X’s nearest active transactional ancestor is an ancestorof v.

The case when X has read fromℓ and v writes toℓ is analogous.

This definition is equivalent to Definition 1 becauseX’s nearest
active transactional ancestor logically belongs towriters(ℓ) if X
doesn’t have an aborted ancestor.

Definition 2 suggests a conflict-detection algorithm that does
not require maintaininglowest(writers(ℓ)) and the normal ac-
cess stack. In particular, letX be the last node that has successfully
written toℓ. Then whenu accessesℓ, test for conflict by findingX’s
nearest active transactional ancestorY and determining whetherY
is an ancestor ofu. Figure 6 gives pseudocode for this test. Note
that CWSTM does not actually implement this query as given—
instead, it uses an equivalent, but more efficient query, described in
Section 6.



XCONFLICT-ORACLE(X,u)

� For any nodeX and active memory operationu
1 if ∃Z ∈ ances(X) such thatstatus[Z] = ABORTED
2 then return “no conflict: X aborted”

3 Y← closest active transactional ancestor ofX
4 if Y ∈ ances(u)
5 then return “no conflict: X committed tou’s ancestor”
6 else pick a transactionB in (ances(Y)−ances(LCA(Y,u)))
7 return “conflict with B”

Figure 6. Pseudocode for a conflict-detection query suggested by
Definition 2. Many subroutine (e.g., line 3) details are omitted (and
in fact do not have efficient implementations). TheLCA function
returns the least common ancestor of two nodes in the computation
tree.

To maintain the most recent successful write (and reads), facil-
itating the necessary conflict queries, CWSTM uses alazy access
stack. The structure of the lazy access stack is somewhat differ-
ent from the simple access stack given in Section 4. An objectℓ’s
lazy stack stores (possibly complete) transactions that have writ-
ten to ℓ and sets of transactions that have read fromℓ, but now
these stack entries are ordered chronologically by access.The top
of the stack holds the last writer or the last readers. We havethe
invariant that if a transactionX on the stack has aborted, then all
transactions located aboveX on the stack (later chronologically)
also have aborted ancestors, and thus represent deprecatedvalues.
The main difference in maintenance is that the lazy access stack is
not updated on transactional commit (thus ignoring the merge of a
transaction’s readset and writeset into its parent’s). On memory op-
erations, new transactions are added to the access stack in the same
way as described in Section 4.

Figure 7 gives pseudocode for an instrumentation of each mem-
ory access, assuming for simplicity that all memory accesses be-
have aswrite instructions.3 Incorporating readers into the access
stacks is more complicated, but conceptually similar. If a memory
accessu does not belong to an aborting transaction, then it is al-
lowed to proceed. First, we test for conflict with the last writer in
lines 4–5. If the last writer has aborted (or has an aborted ances-
tor), handled in lines 6–9, then the access stack should be cleaned
up by calling CLEANUP. (This auxiliary procedure, given in Fig-
ure 8, rolls back the value of the topmost aborted transaction on
ℓ’s access stack.) Since there is no new conflict, after CLEANUP,
the access should be retried. If, on the other hand, there is acon-
flict betweenu and an active transaction (lines 10–16), then ei-
therxparent[u] must abort or the conflicting transaction (B) must
abort. Finally, if there are no conflicts, then the access is success-
ful. The access stack is updated as necessary (lines 18–20),and the
access is performed.

Note that whileu is running the ACCESSmethod, concurrent
transactions (that accessℓ) can continue to commit or abort. The
commit or abort of such a transaction can eliminate a conflictwith
u, but never create a new conflict withu. Thus, concurrent changes
may introduce spurious aborts, but do not affect correctness.

The CWSTM Scheduler

XConflict relies on a Cilk-like work-stealing scheduler foreffi-
ciency and correctness. The main idea of a work stealing is that
when a processor completes its own work, it “steals” work from
a differentvictim processor. Conceptually, the entire (unexpanded)

3 It is possible to reduce locking on the access stack, but we donot describe
that optimization in this paper.

ACCESS(u, ℓ)

1 Z← xparent[u]
2 if status[Z] = PENDING ABORT return XABORT

� OtherwiseZ is active
3 accessStack(ℓ).LOCK()

� SetX to be the last writer.
4 X← accessStack(ℓ).TOP()
5 result← XCONFLICT-ORACLE(X,u)

6 if result is “no conflict:X aborted”
7 then accessStack(ℓ).UNLOCK()
8 CLEANUP(ℓ) � Rollback some values
9 return RETRY � The access should be retried

10 if result indicates a conflict with transactionB
11 then if choose to abort self
12 then accessStack(ℓ).UNLOCK()
13 return XABORT
14 else accessStack(ℓ).UNLOCK()
15 signal an abort ofB
16 return RETRY

� Otherwise, there is no conflict:X is an ancestor ofZ
17 if Z 6= X � Z’s first access toℓ
18 then � Log the access
19 LOGVALUE(Z, ℓ)
20 accessStack(ℓ).PUSH(Z)

� Actually perform the write operation
21 Perform the write
22 accessStack(ℓ).UNLOCK()
23 return SUCCESS

Figure 7. Pseudocode instrumenting an access byu to an objectℓ,
assuming that all accesses are writes. ACCESS(u, ℓ) returnsXABORT
if Z should abort,RETRY if the access should be retried, orSUCCESS
if the memory operation succeeded.

CLEANUP(ℓ)

1 accessStack(ℓ).LOCK()
2 X← accessStack(ℓ).TOP()
3 if ∃Z ∈ ances(X) such thatstatus[Z] = ABORTED
4 then RESTOREVALUE(X, ℓ) � Restoreℓ from X’s log
5 accessStack(ℓ).POP()
6 accessStack(ℓ).UNLOCK()

Figure 8. Code for cleaning up an aborted transaction from the
top of accessStack(ℓ), assuming all accesses are writes. If the
last writer has an aborted ancestor, it should be rolled back.

computation tree is initially “owned” by a single processor. A pro-
cessor traverses the current subtree that it owns, and only that sub-
tree that it owns. As this processor “discovers” P-nodes it executes
one of its nontransactional S-node children, and the other child can
subsequently be stolen by a thief processor. Whenever a processor
pi has no work (does not own a subtree), it steals a subtreeT rooted
at such a nontransactional S-node. Thus,pi now owns and traverses
the subtreeT.

When we say a work-stealing scheduler is ‘Cilk-like,” as re-
quired by XConflict, we mean that it has the following two prop-



erties. First, a processor executes its computation subtree in a left-
to-right fashion. Second, whenever a thief processor steals work
from a victim processor, it steals the right subtree from thehighest
P-node in the victim’s subtree that has work available.

6. CWSTM CONFLICT DETECTION
This section describes the high-levelXConflict scheme for conflict
detection in CWSTM. As the computation tree dynamically unfolds
during an execution, our algorithm dynamically divides thecompu-
tation tree into “traces,” where each trace consists of memory oper-
ations (and internal nodes) that execute on the same processor. Our
algorithm uses several data structures that organize either traces,
or nodes and transactions contained in a single trace. This section
describes traces and gives a high-level algorithm for conflict detec-
tion.

By dividing the computation tree into traces, we reduce the cost
of locking on shared data structures. Updates and queries ona data
structure whose elements belong to a single trace are also per-
formed without locks because these updates are performed bya sin-
gle processor. Data structures whose elements are traces also sup-
port queries in constant time without locks. These data structures
are, however, shared among all processors, and therefore require a
global lock on updates. Since the traces are created only on steals,
however, we can bound the number of traces byO(pT∞)—the num-
ber of steals performed by the Cilk-like work-stealing runtime sys-
tem. Therefore, the number of updates on these data structure can
be bounded similarly.

The technique of splitting the computation into traces and hav-
ing two types of data structures–“global” data structures whose ele-
ments are traces and “local” data structures whose elementsbelong
to a single trace–appears in Bender et al.’s (Bender et al. 2004) SP-
hybrid algorithm for series-parallel maintenance (later improved
in (Fineman 2005)). Our traces differ slightly, and our datastruc-
tures are a little more complicated, but the analysis technique is
similar.

Trace Definition and Properties

XConflict assigns computation-tree nodes totraces in the essen-
tially the same fashion as the SP-hybrid data structure described in
(Bender et al. 2004; Fineman 2005). We briefly describe the struc-
ture of traces here. Since our computation tree has a slightly differ-
ent canonical form from the canonical Cilk parse tree use forSP-
hybrid, XConflict simplifies the trace structure slightly bymerging
some traces together.

Formally, each traceU is a disjoint subset of nodes of the (a
posteriori) computation tree. We letQ denote the set of all traces.
Q partitions the nodes of the computation treeC . Initially, the entire
computation belongs to a single trace. As the program executes,
traces dynamically split into multiple traces whenever steals occur.

A trace itself executes on a single processor in a depth-first
manner. Whenever a steal occurs and a processor steals the right
subtree of a P-nodeP∈U , the traceU splits into three tracesU0,
U1, andU2 (i.e., Q ← Q ∪ {U0,U1,U2}− {U}). Each of the left
and right subtrees ofP become tracesU1 andU2, respectively. The
traceU0 consists of those nodes remaining afterP’s subtrees are
removed fromU . Notice that although the processor performing
the steal begins work ononly the right subtreeof P, both subtrees
become new traces. Figure 9 gives an example of traces resulting
from a steal. The left and right children of thehighest uncompleted
P-nodeP1 (both these nodes are nontransactional S-nodes in our
canonical tree) are the roots of two new traces,U1 andU2.

Traces in CWSTM satisfy the following properties.

Figure 9. Traces of a computation tree (a) before and (b) after a
steal action. Before thesteal, only one processor is executing
the subtree, butS2 and S6 are ready. After the steal, the subtree
rooted at the highest ready S-node (S2) is executed by the thief. The
subtree rooted atS1, on the other hand, is still owned and executed
by the victim processor.

PROPERTY1. Every trace U∈ Q has a well-definedhead non-
transactional S-node S= head[U ] ∈ U such that for all nodes
B∈U, we have S∈ ances(B).

For a traceU ∈ Q , we usexparent[U ] as a shorthand for
xparent[head[U ]]. We similarly definensParent[U ].

PROPERTY2. The computation-tree nodes of a trace U∈ Q form
a tree rooted at S= head[U ].

PROPERTY3. Trace boundaries occur at P-nodes; either both
children of the P-node and the node itself belong to different traces,
or all three nodes belong to the same trace. All children of anS-
node, however, belong to the same trace.

PROPERTY4. Trace boundaries occur at “highest” P-nodes. That
is, suppose a P-node P has a stolen child (i.e., P and its children
belong to different traces). Consider all ancestor P-nodesP′ of P
such that P is in the left subtree of P′. Then P′ must have a stolen
child (i.e., P and ancestor P′ belong to different traces).

The last property follows from the Cilk-like work stealing.
The partitionQ of nodes in the computation treeC induces a

tree of tracesJ(C ) as follows. For any tracesU,U ′ ∈ Q , there is
an edge(U,U ′) ∈ J(C ) if and only if parent[head[U ′]] ∈U .4 The
properties of traces and the fact that traces partitionC into disjoint
subtrees together imply thatJ(C ) is also a tree.

We say that a traceU is activeif and only if head[U ] is active.
The following lemma states that if a descendant traceU ′ is active,
thenU ′ is a descendant ofall active nodes inU . The proof relies on
the fact that traces execute serially in a depth-first (or equivalently,
left-to-right) manner.

4 The functionparent[] refers to the parent in the computation treeC , not
in the trace treeJ(C ).



LEMMA 2. Consider active traces U,U ′ ∈ Q , with U 6= U ′. Let
D ∈U ′ be an active node, and suppose D∈ desc(head[U ]) (i.e.,
U ′ is a descendant trace of U). Then for any active node B∈U, we
have B∈ ances(D).

PROOF. Since traces execute on a single processor in a depth-first
manner, only a single head-to-leaf path of each trace can be active.
Thus, if a descendant traceU ′ is active, it must be the descendant
of some node along that path. In particular, we claim thatU ′ is a
descendant of the leaf, and hence it is a descendant ofall active
nodes as the lemma states. This claim follows from Property 3,
because both children of theactiveP-node on the trace boundary
must belong to different traces.

XConflict Algorithm

Recall that CWSTM instruments memory accesses, testing forcon-
flicts on each memory access by performing queries of XCon-
flict data structures. In particular, XConflict must test whether a
recorded access by nodeB conflicts with the current access by
nodeu. Suppose thatB does not have an aborted ancestor. Then
recall Definition 2 states that a conflict occurs if only if thenearest
uncommitted transactional ancestor ofB is not an ancestor ofu.

A straightforward algorithm (given in Figure 6) for conflict
detection finds the nearest uncommitted transactional ancestor ofB
and determines whether this node is an ancestor ofu. Maintaining
such a data structure subject to parallel updates is costly (in terms
of locking overheads).

XConflict performs a slightly simpler query that takes advan-
tages of traces. XConflict does not explicitly find the nearest un-
committed transactional ancestor ofB; it does, however, still de-
termine whether that transaction is an ancestor ofu. In particular,
let Z be the nearest uncommitted transactional ancestor ofB, and
let UZ be the trace that containsZ. Then XConflict findsUZ (with-
out necessarily findingZ). Testing whetherUZ is an ancestor ofu
is sufficient to determine whetherZ is an ancestor ofu. Note that
XConflict does not lock on any queries. Many of the subroutines
(described in later sections) need only perform simple ABA tests to
see if anything changed between the start and end of the query.

The XCONFLICT algorithm is given by pseudocode in Fig-
ure 10. lines 1–4 handle the simple base cases. IfB andu belong to
the same trace, they are executed by a single processor, so there is
no conflict. IfB is aborted, there is also no conflict.

SupposeB is not aborted and thatB andu belong to different
traces. XCONFLICT first findsX, the nearest transactional ancestor
of A that belongs to an active trace, in line 5. The possible locations
of X in the computation tree are shown in Figure 12. LetUX =
trace(X). Notice thatUX is active, butX may be active or inactive.
For cases (a) or (b), we findX with a simple lookup ofxparent[B].
Case (c) involves first findingU , the highest completed ancestor
trace oftrace(B), then performing a simple lookup ofxparent[U ].
Section 9 describes how to find the highest completed ancestor
trace.

Line 9 findsY, the highest active transaction inUX . If Y exists
and is an ancestor ofX, as shown in the left of Figure 13, then
XCONFLICT is in the case given by lines 11–13. IfUX is an
ancestor ofu, we conclude thatA has committed to an ancestor
of u. Figure 13 (a) and (b) show the possible scenarios whereUX is
an ancestor ofu: eitherX is an ancestoru, or X has committed to
some transactionZ that is an ancestor ofu.

Suppose instead thatY is not an ancestor ofX (or thatY does not
exist), as shown in the left of Figure 14. Then XCONFLICT follows
the case given in lines 15–17. LetZ be the transactional parent of
UX . SinceX has no active transactional ancestor inUX , it follows
that X has committed toZ. Thus, if trace(Z) is an ancestor ofu,

XCONFLICT(B,u)

� For any computation-tree nodeB and any
active memory-operationu

� Test for simple base cases
1 if trace(B) = trace(u)
2 then return “no conflict”
3 if some ancestor transaction ofB is aborted
4 then return “no conflict:B aborted”

5 LetX be the nearest transactional ancestor ofB
belonging to an active trace.

6 if X = null � committed at top level
7 then return “no conflict:B committed to root”
8 UX ← trace(X)

9 LetY be the highest active transaction inUX

10 if Y 6= null andY is an ancestor ofX
11 then if UX is an ancestor ofu
12 then return “no conflict:B committed

to u’s ancestor”
13 else return “conflict with Y”
14 else Z← xparent[UX ]
15 if Z = null or trace(Z) is an ancestor ofu
16 then return “no conflict:B committed

to u’s ancestor”
17 else return “conflict with Z”

Figure 10. Pseudocode for the XConflict algorithm.

Figure 11. The definition of arrows used to represent paths in
Figures 12, 13 and 14.

we conclude thatA has committed to an ancestor ofu, as shown in
Figure 14.

Section 7 describes how to find the trace containing a particu-
lar computation-tree node (i.e., computingtrace(B)). Section 8 de-
scribes how to maintain the highest active transaction of any trace
(used in line 9). Section 9 describes how to find the highest com-
pleted ancestor trace of a trace (used for line 5), or find an aborted
ancestor trace (line 3). Computing the transactional parent of any
node in the computation tree (xparent[B]) is trivial. Section 10
describes a data structure for performing ancestor querieswithin a
trace (line 10), and a data structure for performing ancestor queries
between traces (lines 11 and 15).

The following theorem states that XConflict is correct.

THEOREM3. Let B be a node in the computation tree, and let u be
a currently executing memory access. Suppose that B does nothave
an aborted ancestor. ThenXCONFLICT(B,u) reports a conflict if
and only if the nearest (deepest) active transactional ancestor of B
is an ancestor of u.



Figure 12. The three possible scenarios in whichX is the nearest
transactional ancestor ofB that belongs to an active trace. Arrows
represent paths between nodes (i.e., many nodes are omitted): see
Figures 4 and 11 for definitions. In both (a) and (b),B belongs to
an active trace. In (a),xparent[B] belongs to the same active trace
asB. In (b), xparent[B] belongs to an ancestor trace oftrace(B).
In (c), B belongs to a complete trace,U is the highest completed
ancestor trace ofB, andX is thexparent[U ].

Figure 13. The possible scenarios in which the highest active
transactionY in UX is an ancestor ofX, andUX is an ancestor
of u (i.e., line 11 of Figure 10 returns true). Arrows represent paths
between nodes (i.e., many nodes are omitted): see Figures 4 and 11
for definitions. The block arrow shows implication from the left
side to either (a) or (b).

PROOF. If B has an aborted ancestor, then XCONFLICT properly
returns no conflict.

Let Z be the nearest active transactional ancestor ofB. Let UZ
be the trace containingZ; sinceZ is active,UZ is active. Lemma 2
states thatUZ is an ancestor ofu if and only if Z is an ancestor ofu.
It remains to show that XConflict findsUZ.

XConflict first findsX, the nearest transactional ancestor ofB
belonging to an active trace (line 5). The nearest active ancestor
of B must beX or an ancestor ofX. Let UX be the trace contain-
ing X, and letY be the highest active transaction inUX . If Y is an
ancestor ofX, then eitherZ = X, or Z is an ancestor ofX and a
descendant ofY (as shown in Figure 13). Thus, XConflict performs
the correct test in lines 11–13.

Suppose instead thatY, thehighestactive transaction inUX , is
not an ancestor ofX. Then no active transaction inUX is an ancestor
of X. Let Z be the transactional ancestor ofUX . SinceUX is active,
Z must be active. Thus,Z is the nearest uncommitted transactional

Figure 14. The scenario in which the highest active transactionY
in UX is not an ancestor ofX, andZ = xparent[UX ] is an ancestor
of u (i.e., line 15 of Figure 10 returns true). The block arrow shows
implication from the left side to the situation on the right.

ancestor ofB, and XConflict performs the correct test in lines 15–
17.

In the above explanation, we assume that no XConflict data-
structural changes occur concurrently with a query. The case of
concurrent updates is a bit more complicated and omitted from this
proof. The main idea for proving correctness subject to concurrent
updates is as follows. Even when trace splits occur, if a conflict
exists, XCONFLICT has pointers to traces that exhibit the conflict.
Similarly, if XCONFLICT acquires pointers to a transaction (Y or
Z) deemed to be active, that transaction was active at the start of
the XCONFLICT execution.

Note that XCONFLICT may return some spurious conflicts if
transactions complete during the course of a query.

7. TRACE MAINTENANCE
This section describes how to maintain trace membership foreach
nodeB in the computation tree, subject to queriestrace(B). The
queries takeO(1) time in the worst case. We give the main idea of
the scheme here for completeness, but we omit details as theyare
similar to the local-tier of SP-hybrid (Bender et al. 2004; Fineman
2005).

To support trace membership queries, XConflict organizes
computation-tree nodes belonging to a single trace as follows.
Nodes are associated with their nearest nontransactional S-node
ancestor. These S-nodes are grouped into sets, called “trace bags.”
Each bagb has a pointer to a trace, denotedtraceField[b], which
must be maintained efficiently. A trace may contain many trace
bags.

Bags are merged dynamically in a way similar to the SP-
bags (Feng and Leiserson 1997) in the local tier of SP-hybrid(Ben-
der et al. 2004; Fineman 2005) using a disjoint-sets data struc-
ture (Cormen et al. 2001, Chapter 21). Since traces execute on
a single processor, we do not lock the data structure on update
(UNION) operations. The difference in our setting is that we use
only one kind of bag (instead of two in SP-bags).

When steals occur, a global lock is acquired, and then a traceis
split into multiple traces, as in the global tier of SP-hybrid (Bender
et al. 2004; Fineman 2005). The difference in our setting is that
traces split into three traces (instead of five in SP-hybrid). It turns
out that trace splits can be done inO(1) worst-case time by simply
moving a constant number of bags. When the trace constant-time
split completes (including the split work in Sections 8 and 10), the
global lock is released.

To query what trace a nodeB belongs to, we perform the op-
erationstraceField[FIND-BAG(nsParent[B])]. These queries
(in particular, FIND-BAG) take O(1) worst-case time as in SP-



hybrid (Bender et al. 2004; Fineman 2005). Merging bags usesan
UNION operation and takesO(1) amortized time, but an optimiza-
tion (Fineman 2005) gives a technique that improves UNIONs to
worst-caseO(1) time whenever the amortization might adversely
increase the program’s critical path.

8. HIGHEST ACTIVE TRANSACTION
This section describes how XConflict finds the highest activetrans-
action in a trace, used in line 9 of Figure 10 inO(1) time.

For each nontransactional S-nodeS, we have a fieldnextx[S]
that stores a pointer to the nearest active descendant transaction
of S. Maintaining this field forall S-nodes is expensive, so instead
we maintain it only for some S-nodes as follows. LetS∈U be an
active nontransactional S-node such that eitherS= head[U ], orSis
the left child of a P-node andS’s nearest S-node ancestor (which is
always a grandparent) is a transaction. Thennextx[S] is defined to
be the nearest, active descendant transaction ofS in U . Otherwise,
nextx[S] = null.

Finding the highest active transaction simply entails a call to
nextx[head[U ]], which takesO(1) time. The complication is main-
taining thenextxvalues, especially subject to dynamic trace splits.

To maintainnextx, we keep a stack of S-nodes inU for which
nextxis defined. Initially pushhead[U ] onto the stack. For each of
the following scenarios, letSbe the S-node on the top of the stack.
Whenever encountering a transactional S-nodeX, checknextx[S].
If nextx[S] = null, then setnextx[S]← X. Otherwise, do nothing.
Whenever completing a transactionX, checknextx[S]. If nextx[S] =
X, then setnextx[S] ← null. Otherwise, do nothing. Whenever
encountering a nontransactional S-nodeS′. If nextx[S] = null, do
nothing. Otherwise, pushS′ onto the stack. Whenever completing
a nontransactional S-nodeS′, popS′ from the stack if it is on top of
the stack.

Finally, XConflict maintains thesenextxvalues even subject to
trace splits. Consider a split of traceU into three tracesU1, U2, and
U3, rooted atS, S1, andS2, respectively. Since CWSTM steals from
the highest P-node in the computation tree,S1 must be the highest,
active, nontransactional S-node descendant ofSthat is the left child
of a P-node. Thus, eitherS1 is the second S-node onU ’s stack, or
S1 is not onU ’s stack.

If S1 is onU ’s stack, thennextx[S] is defined to be an ancestor
of S, and we leave it as such. Moreover, sinceS1 is on the stack,
nextx[S1] is defined appropriately. Simply split the stack into two
just belowS to adjust the data structure to the new traces. Suppose
instead thatS1 is not onU ’s stack. Then thenextx[S] may be a
descendant ofS1 (or it is undefined). Setnextx[S1]← nextx[S] and
nextx[S]← null. Then split the stack belowS, and prependS1 at the
top of its stack. The necessary stack splitting takesO(1) worst-case
time. This splitting occurs while holding the global lock acquired
during the steal (as in Section 7).

9. SUPERTRACES
This section describes XConflict’s data structure to find thehigh-
est completed ancestor trace of a given trace (used as a subproce-
dure for line 5 in Figure 10, illustrated byU in Figure 12 (c)). To
facilitate these queries, XConflict groups traces togetherinto “su-
pertraces.” Grouping traces into supertraces also facilitates faster
aborts—when aborting a transaction in traceU , we need only abort
some of the supertrace children ofU , not the entire subtree inC .
This section also provides some details on performing the abort.

All update operations on supertraces take place while holding
the same global lock acquired during the steal (as in Sections 7, 8,
and 10). Note that unlike the data structures in Sections 7, 8, and
10, the updates to supertraces do not occur when steals occur. To
prove good performance (in Section 11), we use the fact that the

number of supertrace-update operations is asymptoticallyidentical
to the number of steals. This amortization is similar to the “global
tier” of SP-hybrid (Bender et al. 2004).

At any point during program execution, a completed traceU ∈
Q belongs to asupertraceK = strace(U) ⊆ Q . In particular, the
traces inK form a tree rooted at somerepresentative tracerep[K],
which is an ancestor of all traces inK. Our structure of supertraces
is such that eitherrep[strace(U)] is the highest completed ancestor
trace ofU (i.e., as used by line 5 in Figure 10), orU has an aborted
ancestor. We prove this claim in Lemma 4 after describing howto
maintain supertraces.

Supertraces are implemented using a disjoint-sets data struc-
ture (Cormen et al. 2001, Chapter 21). In particular, we use Gabow
and Tarjan’s data structure that supports MAKE -SET, FIND (imple-
mentingstrace(U)), and UNION operations, all inO(1) amortized
time when unions are restricted to a tree structure (as they are in
our case).

When a traceU is created, we create an empty supertrace for
U (so strace(U) = /0). When the trace completes (i.e., at ajoin
operation), we acquire the global lock. We then addU to U ’s
supertrace (givingstrace(U) = {U}). Next, we consider all child
tracesU ′ of U (in the tree of tracesJ(C )).5 If head[U ′] is ABORTED,
then we skipU ′. If head[U ′] is COMMITTED, we merge the two
supertraces with UNION(strace(U),strace(U ′)). Thus, forU ′ (and
all relevant descendants),rep[strace(U ′)] = rep[strace(U)] = U .
Once these updates complete, the global lock is released. Later,
U ’s supertrace may be merged with its parents, thereby updating
rep[strace(U)].

A naive algorithm to abort a transactionX must walk the entire
computation subtree rooted atX, changing all ofX’s COMMITTED
descendants toABORTED. Instead, we only walk the subtree rooted
at X in U , not C . Whenever hitting a trace boundary (i.e.,B∈U ,
D ∈ children(B), D ∈U ′ 6= U), we set that root of the child trace
(D) to be aborted and do not continue into its descendants. Thus,
we enforce all descendants ofB have a supertrace with an aborted
representative.

The following lemma (proof omitted) states that either the rep-
resentative ofU ’s supertrace is the highest completed ancestor trace
of U , orU has an aborted ancestor.

LEMMA 4. For any completed trace U∈Q , let K= strace(U), and
let U′ = rep[K]. Exactly one of the following cases holds.

1. Eitherhead[U ′] is ABORTED, or
2. head[U ′] is COMMITTED, trace(parent[head[U ′]]) is active,

and there is noABORTED transaction betweenhead[U ] and
head[U ′].

10. ANCESTOR QUERIES
This section describes how XConflict performs ancestor queries.
XConflict performs a “local” ancestor query of two nodes belong-
ing to the same trace (line 10 of Figure 10) and a “global” ancestor
query of two different traces (lines 11 and 15 of Figure 10). Both of
these queries can be performed inO(1) worst-case time. The global
lock is acquired only on updates to the global data structure, which
occurs on trace splits (i.e., steals).

Local ancestor queries

CWSTM executes a trace on a single processor, and each trace is
executed in depth-first (e.g.., left-to-right) order. We thus view a
trace execution as a depth-first execution of a computation (sub)tree
(or a depth-first tree walk).

5 Maintaining a list of all child traces is not difficult. We keep a linked list
for each node in the trace tree and add to it whenever a trace splits.



To perform ancestor queries on a depth-first walk of a tree, we
associate with each tree nodeu thediscovery timed[u], indicating
whenu is first visited (i.e., before visiting any ofu’s children), and
the finish time f [u], indicating whenu is last visited (i.e., when
all of u’s descendants have finished). (This same labeling appears
in depth-first search in (Cormen et al. 2001, Section 22.3).)These
timestamps are sufficient to perform ancestor queries in constant
time.

In the context of XConflict, we simply need associate a “time”
counter with each trace. Whenever a trace splits, this counter’s
value is copied to the new traces.

Global ancestor queries

Since the computation tree does not execute in a depth-first manner,
the same discovery/finish time approach does not work for ancestor
queries between traces. Instead, we keep two total orders onthe
traces dynamically using order-maintenance data structures (Dietz
and Sleator 1987; Bender et al. 2002). These two orders give us
enough information to query the ancestor-descendant relationship
between two nodes in the tree of traces. These total orders are
updated while holding the global lock acquired during the steal, as
in Sections 7 and 8. Since our global ancestor-query data structure
resembles the global series-parallel-maintenance data structure in
SP-hybrid (Bender et al. 2004), we omit the details of the data
structure. As in SP-hybrid, each query has a worst-case costof
O(1), and trace splits have an amortized cost ofO(1).

Note that correctness of the global ancestor queries relieson
Property 4—the Cilk-like work-stealing property that a thief pro-
cessor steals a subtree from the highest available P-node owned by
the victim.

11. PERFORMANCE CLAIMS
The section bounds the running time of an CWSTM program in
the absence of conflicts. The bound includes the time to check
for conflictsassuming that all accesses are writesand to maintain
the relevant data structures. Checking for conflicts with multiple
readers, however, increases the runtime. Additionally, aborts add
more work to the computation. Those slowdowns are not included
in the analysis.

The proof technique here is similar to the proof of performance
of SP-hybrid in (Fineman 2005), and we omit the details of the
proof. The key insight in this analysis technique is to amortize the
cost of updates of global-lock-protected data structures against the
number of steals. One important feature of XConflict’s “global”
data structures is that they haveO(# of traces) total update cost.
Another is that whenever a steal attempt occurs, the processor being
stolen from is making progress on the original computation.(That
is, whenever stealable, a processor performs onlyO(1) additional
work for each step of the original computation.) The proof makes
the pessimistic assumption that while the global lock is held, only
the processor holding the lock makes any progress.

The following theorem states the running time of an CWSTM
program under nice conditions. We give bounds for both Cilk’s
normal randomized work-stealing scheduler, and for a round-robin
work-stealing scheduler (as in (Fineman 2005)).

THEOREM 5. Consider an CWSTM program with T1 work and
critical-path length T∞ in which all memory accesses are writes.
Suppose the program, augmented with XConflict, is executed on p
and that no transaction aborts occur.

1. When using a randomized work-stealing scheduler, the program
runs in O(T1/p+ p(T∞ + lg(1/ε))) time with probability at least
1− ε, for anyε > 0,

2. When using a round-robin work-stealing scheduler, the pro-
gram runs in O(T1/p+ pT∞) worst-case time.

One way of viewing these bounds is as the overhead of XConflict
algorithm itself. These bounds nearly match those of a Cilk pro-
gram without XConflict’s conflict detection. The only difference is
that theT∞ term is multiplied by a factor ofp. In most cases, we
expectpT∞≪T1/p, so these bound represents only constant-factor
overheads beyond optimal. We would also expect the first bound
(using the randomized scheduler) to have better constants hidden
in the big-O.

These XConflict bounds translate to bounds on completion time
of an CWSTM program under optimistic conditions. For illustra-
tion, consider a program where all concurrent paths access dis-
joint sets of memory. The overhead of maintaining the XConflict
data structures isO(T1/p+ pT∞). Each memory access queries the
XConflict data structure at most once. Since each query requires
only O(1) time, the entire program runs inO(T1/p+ pT∞) time.

The CWSTM design we describe does not provide any rea-
sonable performance guarantees when we allow multiple readers.
There are two reasons for this problem. First, concurrent reads to
an object may contend on the access stack to that object. Second,
even in the case where concurrent read operations never waitto
acquire an access stack lock, it appears that write operation may
need to check for conflicts against potentially many readersin a
reader list (some of which may have already committed). There-
fore, a write operation is no longer a constant time operation, and
it seems the work of the computation might increase proportional
to the number of parallel readers to an object. It is part of future
work to improve the CWSTM design and analysis in the presence
of multiple readers.

12. CONCLUSIONS
The CWSTM model presented in Section 5 describes one approach
for implementing a software transactional memory system that
supports transactions with nested fork-join parallelism.CWSTM
design was guided by a few major goals.
• Supporting nested transactions of unbounded depth.
• Small overhead when there are no aborts.
• Avoid asymptotically increasing the work or the critical path of

the computation too much.
We believe that we have achieved these goals to some extent, since
the CWSTM guarantees provably good completion time in the case
when there are no aborts, and there are no concurrent readers(or
all accesses are treated as writes).

We believe that supporting unbounded nesting depth in transac-
tions is important for composability of programs. If a function is
called from inside a transaction, the caller should not haveto worry
about how many transactions are nested inside the function call.
However, it may be true that the common case is transactions of
small depth. In this case, a simpler design like the one described
in Section 4 might be sufficient in the common case, at the ex-
pense of a slowdown in the case when the nesting depth is large.
It is difficult, however, to conclude what the common case is,since
there are currently few examples of programs with nested paral-
lel transactions. An important part of future research would be to
write series-parallel programs with nested transactions to under-
stand what the common case is, and what one should optimize for.

CWSTM is a TM system design and has not been implemented
yet. As described in this paper, each memory access may poten-
tially require multiple data structure queries. CWSTM alsomay
have a large memory footprint. Due to lazy cleanup on aborts,
and fast commits, the access stack for an object may grow and
require space proportional to the number of accesses to thatob-
ject. Also, access stacks may contain pointers to transaction logs
that persist long after the transactions are committed or aborted.
Thus, a computation’s memory footprint can become quite large. In



practice, implementing a separate, concurrent thread for “garbage-
collection” of metadata may help. As part of future work, we would
like to implement the system in the Cilk runtime system to evaluate
its practical performance and explore ways to optimize the imple-
mentation.

It would be interesting to see if CWSTM-like mechanisms are
useful for high-performance languages like Fortress (Allen et al.
2007) and X10 (Ebcioglu et al. 2005). Both these languages sup-
port transactions and fork-join parallelism. The languagespecifica-
tion for Fortress also permits nested parallel transactions. These are
richer languages than Cilk, however, and may require more compli-
cated mechanisms to support nested parallel transactions.
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