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Abstract

This paper investigates adding transactions with nestedlglism
and nested transactions to a dynamically multithreadedllpar
programming language that generates only series-panaitel
grams. We describe XConflict, a data structure that fatélt@on-
flict detection for a software transactional memory systehictv
supports transactions with nested parallelism and unkemindst-
ing depth. For languages that use a Cilk-like work-steadiciged-
uler, XConflict answers concurrent conflict queriesQfil) time
and can be maintained efficiently. In particular, for a pesgwith
T, work and a span (or critical-path length) Bf, the running time
on p processors of the program augmented with XConflict is only
Using XConflict, we describe CWSTM, a runtime-system de-
sign for software transactional memory which supports saan
tions with nested parallelism and unbounded nesting defjithres-
actions. The CWSTM design provides transactional memotky wi
eager updates, eager conflict detection, strong atomaity,lazy
cleanup on aborts. In the restricted case when no transadimort
and there are no concurrent readers, CWSTM executes adransa
tional computation o processors also in tin@(T;/p+ pTw). Al-
though this bound holds only under rather optimistic asgiong,
to our knowledge, this result is the first theoretical parfance
bound on a TM system that supports transactions with nested p
allelism which is independent of the maximum nesting degth o
transactions.

Categories and Subject DescriptorsD.1.3 [Programming Tech-
nique§: Concurrent Programming —Parallel programming; E.1
[Data Structurek Distributed data structures

General Terms Algorithms, Theory

Keywords Cilk, data structure, fork-join, multithreading, nested
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1. INTRODUCTION

Transactional memory (TM) (Herlihy and Moss 2003) représen
a collection of hardware and software mechanisms that help p
vide a transactional interface for accessing memory to rarag
mers writing parallel code. Recently, TM has been an actiea a
of study; for example, researchers have proposed manyrdesig
for transactional memory systems, with support for TM indhar
ware (e.g. (Hammond et al. 2004; Ananian et al. 2006; Mooat et
2006)), in software (e.g., (Herlihy et al. 2003; Marathele2@06;
Adl-Tabatabai et al. 2006)), or hybrids of hardware andveafe
(e.g., (Damron et al. 2006; Kumar et al. 2006)). A typical TM
runtime system executes transactions optimisticallyytaimp and
rolling back transactions that “conflict” to guarantee ttranhsac-
tions appear to execute atomically.

Most work on transactional memory focuses exclusively qn su
porting transactions in programs that use persistent disréa.g.,
pthreads). TM systems for such an environment are desigsed a
suming that transactions execute serially, since the eaetbf cre-
ating or destroying a pthread naturally discourages progrers
from having nested parallelism inside a transaction. Furtfore,
the special case of serial transactions greatly simplifiedlict de-
tection for TM; typically, the TM runtime detects @onflict be-
tween two distinct active transactions if they both acchessame
object/, at least one transaction tries to write/t@nd both transac-
tions are executed on different threads. This last condigaele-
vant for TM that supportaested transactionsConceptually, when
transactions execute serially, two active transactioes@ing on
the same thread are allowed to access the same object beceuse
must be nested inside the other.

Another way to write parallel programs, however, is to use dy
namic multithreaded languages such as Cilk (Blumofe et#61
Supercomputing) or NESL (Blelloch and Greiner 1996) or mult
threaded libraries like Hood (Blumofe and Papadopoulo®)196
such languages, a programmer specifies dynamic parallelésm
ing linguistic constructs such as “fork” and “join,” “spaivand
“sync,” or “parallel” blocks. Dynamic multithreaded larages al-
low the programmer to specify a program’s parallel struetaip-
stractly, that is, permitting (but not requiring) parabeh in specific
locations of the program. A runtime system (e.g., for Ciliipadm-
ically schedules the program on the number of procesgospec-
ified at execution time. If the language also permits onlyofyarly
nested” parallelism, i.e., any program execution can beesgmted
as a “series-parallel dag” or “series-parallel parse t{éehg and
Leiserson 1997), then a Cilk-like work-stealing schedebarcutes
the program in a provably efficient manner (Blumofe et al.6)98
natural question arises: how can transactions be added,reanic
multithreaded language such as Cilk?

To pose the problem more concretely, consider the series-
parallel program shown in Figure 1, which performs parahel



PARALLEL INCREMENT()

1 x<0

2 paralle

3 { xe=x+1 }
4 { x+—x+10

5 parallel

6 { x<=x+100 }

7 { x—x+1000} }
8 printx

Figure 1. A simple fork-join program that does several parallel
increment of a shared variable. Therallel statement, similar to
Dijkstra’s “cobegin,” allows the two following code blocKsach
contained in{.}) to run in parallel. The subsequent line (line 8)
executes aftdsothparallel blocks complete. This program contains
several races—assuming sequential consistency, valjlitsuare
x€{1,11,101,110111,1001,10101011,1101, 1110 1111}.

x<—0 x<—x+1 print x

x<x+10 (no instruction)

x<—x+1000

Figure 2. The series-parallel dag for the sample program given in
Figure 1. Edges correspond to instructions in the prograra: D
monds and squares correspond to the start and end, regpeaifv
parallel constructs.

crements to a shared variable. Figure 2 gives the corresmpnd
series-parallel dag for the program. One natural way to eaftbt
actions to a series-parallel program is by wrapping segsnarthe
program in atomic blocks, as illustrated by Figure 3. As shoiv
is easy to generate transactions (ex@), with nested parallelism
and nested transactions (e Xj). How does a TM system execute
the program in Figure 3?

This paper investigates adding transactions to a dynamit-mu
threaded language that generates only series-paraligigms. We
focus on a provably efficient TM system that supports unbednd
nesting and parallelism. That is, we want a TM system withumnbo
on a program’s completion time that is independent of theimax
mum nesting depth of transactions. It turns out that TMs pleat
form work on every transaction commit proportional to theesi
of the transaction’s “readset” or “writeset” cannot sugpem un-
bounded nesting depth efficiently. Generally, TM with lapyfiict
detection requires work proportional to the size of thegeations
readset, and TM with lazy updates require work proportioo#he
size of the transaction’s writeset. Thus, we focus on TM eith
ger conflict detection and eager updates, since both regoiyea
constant amount of work on every commit.

A key component of a TM system with nested parallelism is
the conflict-detection scheme. We describe the semanticENb
with eager conflict detection for series-parallel compatet with
transactions. We present XConflict, a data structure thaftevare
TM system can use to query for conflicts when implementingehe
semantics. For Cilk-like work-stealing schedulers, theoXflict
answers concurrent queries @(1) time and can be maintained
efficiently. In particular, consider a program with work and a

XPARALLEL INCREMENT()

1 atomic { > TransactiorXy
2 x<—0
3 parallel
4 { atomic {x < x+1} P X
5 { atomic { > X3
6 X« X+ 10
7 parallel
8 { x+x+100 }
9 { atomic {x < x+ 1000} } > Xa
10 } }
1 }
12  printx

Figure 3. The program from Figure 1 with the addition of some
transactions, denoted tomic{.} blocks. The triangle denotes
a comment. Since atomic blocks are not placed aralhthcre-
ments, this program still permits multiple outputs—valigtuts
are 111 and 1111. The (symmetric) 1011 is excluded due togtro
atomicity.

span(or critical-path length) of, (In terms of the series-parallel
dag, work is the number of edges, i.e., 7 for Figure 2. Spaheis t
longest path through the dag, i.e., 5 for Figure 2.) Thentheing
time on p processors of the program augmented with XConflict is
only O(T1/p+ pTw). In comparison, with high probability, Cilk ex-
ecutes the program without XConflict in the asymptoticafiyimal
time O(T1/p+ Tw). These two bounds imply that maintaining the
XConflict data structure does not asymptotically incre&sertin-
ning time of the program, compared to Cilk, whg/ﬁTl/Too > P.

We describe CWSTM, a design for a software TM system with
eager updates that uses the XConflict data structure. CWS®M p
vides strong atomicity and supports lazy cleanup on abags (
when a transactiolX aborts, other transactions can help roll back
the objects modified b). The XConflict bounds translate to CW-
STM in a restricted case when there are no concurrent reéalers
memory accesses are treated as writes) and there are nactrans
tion abort. If the underlying transaction-free program Masvork
andT. span, then the CWSTM executes the transactional program
in time O(Ty1/p+ pTw) When run onp processors. At first glance,
these bounds might seem uninteresting due to the resirictio
is difficult, however, for any TM system to provide any novii
bounds on completion time in the presence of aborts, siresytb-
tem might redo an arbitrary amount of work. Moreover, TM with
eager conflict detection that allows more than a constantieum
of shared readers to an object can potentially lead to mecwmry
tention; thus, even if there are no conflicts on that objeceéms
difficult to provide efficient worst-case theoretical boand

The remainder of this paper is organized as follows. We use
a computation tree to model a computation with nested prall
transactions; Section 2 describes the computation treb@andhe
CWSTM runtime system maintains this computation tree @nlin
Section 3 defines our CWSTM semantics. We show in Section 4
that a naive conflict-detection algorithm has poor worstecper-
formance. Section 5 describes the high-level design of CWST
and its use of XConflict for conflict-detection. Section 6egivan
overview of the XConflict algorithm. Sections 7-10 providgails
on data structures used by XConflict. Finally, Section 1intda
that XConflict, and hence CWSTM, is efficient for programst tha
experience no conflicts or contention.



2. CWSTM FRAMEWORK

This section presents the computation-tree framework veetois
model CWSTM program executions. A program execution is mod-
eled as an ordered tree, called the computation tree (agjira/al

et al. 2006)). The computation tree is not giepriori (i.e., from

a static analysis of the program); rather, it unfolds dyratbhy as

the program executes. Moreover, nondeterminism in therpmg
may result in different computation trees. Constructirggabmpu-
tation tree on the fly as the program executes is not difficutt a
thus not described in full in this paper. A partial prograre@xion
corresponds to partial traversal of the computation tree.

A computation tree has two types of nodes: leaf nodes corre-
spond to single memory operations, while internal nodesattbe
nested parallel control structure of the program as welhastruc-
ture of nested transactions. As in the “series-paralles@aree”
of (Feng and Leiserson 1997), an internal node is eithe3-ande
or aP-node An S-node denotes series composition of the subtrees
(i.e., the subtrees must execute in left-to-right ordehemeas a P-
node denotes parallel composition. Transactions are figeban a
computation tree by marking a subset of S-nodes as traosact
computation-tree nodB is a descendant of a particular transaction
node X if and only if B is contained inX's transaction. Conse-
quently, a transactioi is nestedinside a transactioX if X is an
ancestor ofY in the computation tree. We consider only computa-
tions that have closed-nested transactions.

In our canonical computation tree, all P-nodes have exactly
2 nontransactional S-nodes as children, while S-nodes age h
an arbitrary number of children. In addition, we requirettha
nontransactional S-node has a child nontransactionald®-fidus,
it follows that all nontransactional S-nodes are childréeR-modes
(or the root of the tree). For convenience, we treat the rothe
computation tree as both a transactional and a nontraoeats-
node.

We define several notations for the computation treelet
root(C) denote the tree’s root node. For any nd&le root(C),
parent[B] denotesB’s parent inC. If B is an internal node of’,
thenchildren(B) is the ordered set d@'s children,ances(B) is
the set ofB’s ancestors andesc(B) is B's descendants. In this
paper, whenever we refer to the set of ancestors or desdsnafan
a nodeB, we includeB in this set.

For any nodeB # root((), we define the transactional parent
xparent|B] asZ = parent B] if Z is a transaction aroot (), and
asxparent[Z] otherwise. Similarly, we define nontransactional S-
node parenhsParent|B] asZ = parent|B] if Z is a nontransac-
tional S-node otoot(C), ornsParent [Z] otherwise.

At any point during the computation-tree traversal, eadateri®
in the computation tree hasstatus denoted bystatus[B]. The
status can be one dfENDI NG, PENDI NG_ABORT, COW TTED, or
ABORTED. A leaf is completeif the corresponding operation has
been executed. An internal node can complete only if all sode
in its subtree are complete. Thus, a complete node corrdsgon
the root of a subtree that will not unfold further, and henc®de
is complete if and only if its status OV TTED or ABORTED. A
node isactive (having statu®ENDI NG or PENDI NG_ABORT) if it has
any unexecuted descendants. Once a node is complete, iezan n
become active again.

Any execution of the computation tree has the invariant #at
any time, the set of active nodes in the computation treefafseas
a tree, with the leaves of this active tree being the seateafly
nodes. Only a node that is ready can be traversed to “distover
a new child node. (Discovering a new child node correspoads t
executing an instruction in the program: a read or writetereaew
leaf below the current S-node, a transactional begin cseateew
transactional S-node, and a fork statement creates a nevddé-n
along with its two S-node children.) When a ready transacti®-

Border (status)

[[] Xaction
|:| Active
O Nontransactional S-node
D Complete
O P-node
D Active or complete
O Trace

Waiting

Figure4. A legend for computation-tree figures.
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x<0 x<xt+l x<x+l x<x+10 x<x+100 x<x+1000 printx

Figure 5. A computation tree for an execution of the program
given by Figure 1, in which transactio® aborted once and was
retried as the transactiok,. The rootXy does not correspond to
any transaction in the program—it is just the S-node roothef t
tree. Each increment toon line j of the program decomposes into
two atomic memory operations:raad uj, and awite vj. The
corresponding code is shown in a gray oval under the accesses

node completes, its parent becomes ready. When a readynsntr
actional S-nod& completes, iZ’s sibling nontransactional S-node
is already complete, thefis parent (which is a P-node) completes,
andZ'’s grandparent becomes ready.

Figure 5 shows the structure of the computation tree after an
execution of the code from Figure 1 in which transact@raborts
once. If other aborts (and retries) occur, the computateawould
have additional subtrees.

3. CWSTM SEMANTICS

This section describes CWSTM semantics, a semantics for a
generic transactional memory system with nested parabeist
actions and eager conflict detection. We describe thesersesma
operationally, in terms of a “readset” and “writeset” fochdrans-
action. In particular, we define conflicts and describe tatisn
commits and aborts abstractly using readsets and writdsatey,

in Section 4, we give a simple design for a TM that providesé¢he
semantics. In Section 5, we improve the simple TM and prethent
the CWSTM design.



At any point during the program execution, theadsetof a
transactiorX is the set of objectéthatX has “accessed”. Similarly,
thewritesetis a set of objects thatX has written to. Operationally,
readsets and writesets change as follows. A transactiansegth
an empty readset and empty writeset. Whenever a successfll
of ¢1 occurs in a memory-operation (leaf) node/; is added to
xparent[U]'s readset. Similarly, whenever a succesgfilt e of /»
occurs in a memory-operation nodgl, is added taparent [u]'s
readset and writeset. Aead or awite to ¢ by an operatioru
“observes” the value associated with the write stored imthieeset
of Z, whereZ is the nearest transactional ancestau tifat contains
£ in its writeset. For consistency, the writeset of the corafiai-
tree’s root contains all objects. When a transactiormommits,
its readset and writeset are merged intarent[X]'s readset and
writeset, respectively.

A transactional memory with eager conflict detection must te
for conflict before performing eachead or write. An access is
unsuccessful if it generates a transactional conflict. Tigteys
with serial, closed-nested transactions report conflidigrwtwo
active transactions on different threads are accessingsadhge

is protected by aatomic statement in line 1. Basically, the atom-
icity applies only when comparing two blocks of code belowgi
to different transactions (protected by different atont&tements),
not parallel blocks within the same transaction (protedtgdhe
same atomic statement).

Conflict as stated in Definition 1 naturally enforces strotogra
icity (Blundell et al. 2006). Strong atomicity implies thaithough
line 8 is not atomic, it cannot perform its write between IBie
read and write. In terms of the computation tree in Figureftgra
Ug performs a ead of x, it addsx to the readset o4; thus, aftetug
occurs but befor&X, commits, ifvg tries to write tox, it will cause
a conflict withX4. We can, however, have line 8 regadine 9 read
and writex and commit, and then line 8 write This interleaving
can occur because wheg happens, it adds to the readset oX3,
andug andvg can subsequently happen because they are both de-
scendants oKg in the computation tree. This behavior means that
the increment of 1000 can be “lost” (by being overwritten) the
increment of 100 cannot. Another way of describing strormgrat
icity is that each memory operation is viewed as a transactio

object?, and one of those accesses is a write. Thus, only a single Semantic Guarantees

active transaction is allowed to contdiin its writeset at one time.
For CWSTM semantics, we generalize this definition of coniiic
a straightforward manner. At any point in time, fefaders(¢) and
writers(() be the sets ofictivetransactions that have objetin
their readsets or writesets, respectively. Then, we defindicts
as follows:

DEeFINITION 1. At any point in time, a memory operation v gener-
ates aconflict if

1. v reads object, and 3X € writers(¢) such that X¢
ances(V), or
2. v writes to object, and3X € readers(¢) such that X¢
ances(V).
If there is such a transaction X, then we say that v conflicth wi
X. If v belongs to the transaction’ Xthen we say that X and’X
conflict with each other.

If a memory operatiorv would cause a conflict betweefi=
xparent [v] and another transactiof, thenv triggers an abort of
eitherX or X’ (or both). SayX is aborted. An abort of a transac-
tion X changesstatus[X] from PENDI NG to PENDI NG_ABORT, and
also changes the status of aP§NDI NG (nested) transactio¥i in
the subtree oK to PENDI NG_ABORT. In general, &ENDI NG_ABORT
transactiorX that is also ready can only complete by changing its
status toABORTED. Conceptually, when a transacti®ns ABORTED,
CWSTM semantics discards’s writeset and readset. Sineeis
no longer active after this action occurs, the action alsweptu-
ally removesX from readers(¢) andwriters(¢) for all objects
/. Note that in CWSTM, ifv causes a conflict, and the runtime
chooses to aboiX’ # xparent|Vv], then the conflict is not fully re-
solved untilstatus[X’'] has changed tABORTED.

Consider a computation subtree rooted at a transagtiwith
status[X] = PENDI NG. Since we allow only closed-nested transac-
tions, if every child ofX has completed, CWSTM can commxt
i.e., changeX’s status fronPENDI NGto COW TTED, and mergeX’s
readset and writeset into thosexgfarent [X].

Code Example

The CWSTM semantics maintains the invariant that a program
execution is always conflict-free, according to DefinitianCne
can show that when transactions have nested parallel tt@oss,
TM with eager conflict detection according to Definition liskés
the transactional-memory model pffefix race-freedondefined in
(Agrawal et al. 2006Y. As shown in (Agrawal et al. 2006), prefix
race-freedom and serializability are equivalent if one safely
“ignore” the effects aborted transactions. Note that thisvalence
may not hold in TM systems with explidiet ry constructs that are
visible to the programmer.

Definition 1 directly implies the following lemma about a
conflict-free execution.

LEMMA 1. For a conflict-free execution, the following invariants
hold for any object:

1. Alltransactions Xc writers(/) fall along a single root-to-leaf
path inC. Letlowest(writers(¢)) denote the unique transac-
tionY € writers(¢) such thatiriters(¢) C ances(Y).

2. All transactions Xe readers(¢) are either along the root-
to-leaf path induced by the writers or are descendants of the
lowest(writers(()).

We use Lemma 1 to argue that one can check for conflicts
for a memory operatioru by looking at one writer and only
a small number of readers. Since all the transactions falaon
single root-to-leaf path, by Lemma 1, Invariant 1, the teans
tion lowest(writers(¢)) belongs towriters(¢) and is a de-
scendant of all transactions imriters(¢). Similarly, let Q =
lastReaders({) C desc(lowest(writers(())) denote the set
of readers implied by Invariant 2. If a memory operatioitries
to read ¢, abstractly, there is no conflict exactly if and only
if lowest(writers(¢)) is an ancestor ofi.. Similarly, whenu
tries to write to/, by Invariant 2, there is no conflict if for all
Z € lastReaders(/), Z is an ancestor af.

4. ANAIVETM
The CWSTM semantics described in Section 3 suggest a design f

We can now describe how the CWSTM semantics constrain the a TM system that supports transactions with nested pasafieln

possible outputs of the program in Figure 3. Since paratfitlis
allowed in transactions, we must consider the scoping ofieity.
In particular, thex — x+ 1 in line 4 and the code block in lines 6-9
must appear as though one executes entirely before the ttiner

particular, Lemma 1 suggests that for each objedhe TM can
maintain an active writing transactiarowest (writers(¢)) and
some active reading transactiobsstReaders(¢). This scheme

atomic statements in lines 4 and 5 were removed, then these two ! The proof is a special case of the proof for the operationalehdescribed

blocks could interleave arbitrarily, even though the enpirocedure

in (Agrawal et al. 2006), without any open-nested transasti



allows transactions accessifigo test for conflicts against these proving on the shortcoming of the access stack from Sectii4
transactions. This section focuses on a straightforwatal stauc- nally, we describe properties of the Cilk-like work-steglisched-
ture, called an “access stack,” used to maintain these salive uler that CWSTM uses. The XConflict data structure requiteh s
show that an access stack yields a TM with poor worst-cagerper ~ a scheduler for its performance and correctness.
mance, even assuming the rest of the TM system incurs no over- CWSTM explicitly builds the internal nodes of the computa-
head. The CWSTM design uses a lazy variant of the access stacktion tree (i.e., leaf nodes for memory operations are onjitteach
described in Section 5, that has much better performance. node maintains a status field which in most cases, explicéy
Theaccess stackor an object/ is a stack containing the active  resents the node’s statuBEQ(DI NG ABORT, PENDI NG, COW TTED,
transactions that have written foand sets of active transactions or ABORTED), and changes in a straightforward fashion. For exam-
that have read fromf. The order of transactions on the stack is ple, when a transactiod commits, CWSTM atomically changes

consistent with the ancestry of transactions in the contimtéree. status[X] from PENDI NG to COW TTED.

The writing transactiolowest (writers(?)) is either on top (first Since a transaction may signal an abort of a transaction run-
item to pop) of the stack, or is the next element on the stdckel ning on a (possibly different) processor whose descendznte
writer is not on the top of the stack, the@astReaders(¢) is. No not yet completed, aborting transactions is more invol\&tien

two consecutive elements are sets of readers. an active transactioX aborts itself (possibly because of a con-

The access stack is maintained as follows, locking theaetev  flict) it simply atomically updatestatus[X] « ABORTED. We
stack on all memory access to guarantee atomicity. Congaer refer to this type of update as arabort. Alternatively, sup-
memory operation whose transactional parent is) a traiosakt pose a processqy; wishes to aborX even thoughp; is not cur-
that successfully reads If the top of the stack contains a set of  rently executingX. First, p; atomically changestatus[X] from
readers, theX is added to that set, assuming it is not already there. PENDI NG to PENDI NG.ABORT. Then p; walks X's active subtree,
If the top of the stack is a writer other th&y then{X} is added to changingstatus[Y] « PENDI NG_ABORT atomically for each active

the top of the stack. Similarly, X successfully writeg, thenX is Y € desc(X). Notice thatp; never changes any statusMBORTED—
pushed onto the top of the stack if it not already there. only the processor running a transactiéns allowed to perform
Whenever a transactiod commits, for eaclf in X’s readset, that update. WherX “discovers” that its status has changed to

X is removed from the top of's access stack and replaced with  PENDI NG_ABORT, it has no active descendants (otherwiXegan-
xparent[X] (in a fashion that ensures there are no duplicated trans- not be ready, and hencé cannot be executing). Thek, simply
actions). This action mimics the commit semantics from i8a@: performs arxabort on itself.

when a transactioX commits, the objects in its readset and write- For reasons specific to XConflict, the data structure the CW-
set are moved teparent[X]'s readset and writeset, respectively. If  STM design uses for conflict detection, during an aboX pfome
insteadX aborts, therX is popped from each relevant object’s ac- of X’s COMM TTED descendant¥ also have their status field
cess stack. To facilitate rollback on aborts, every acetmsk entry changed toABORTED. Our conflict-detection algorithm uses these

corresponding to a write stores the old value before thefrit updates to more quickly determine that a memory operati@s do
Maintaining the access stack has poor worst-case perfaenan not conflict withY, sinceY has anABORTED ancestoiX. Section 9

because the work required on the commit of transackids pro- describes when these updates occur.

portional to the sizeX’s readset. If the original program (without In CWSTM, the rollback of objects on abort occur lazily, and

transactions) had worky, then this implementation might require  thus is decoupled from axabort operation. Once the status of
work Q(dTy), whered is the maximum nesting depth of transac- a transactiorX changes tABCRTED, other transactions that try to

tions. In particular, consider the following code snippet: access an object modified Byhelp with cleanup for that object.
void f(int i) { ) )

if (i >=1) { atomic { x[i]+ f(i-1); 1} } Conflict Detection and the Lazy Access Stack
} We now discuss conflict detection. The key observation thava

us to avoid explicit maintenance of active readers and verifer
transaction readsets and writesets) is the followingraétierconflict
definition.

A call of f (d) generates a serial chain of nested transactions, each
incrementing a different place in the arnayWhen the transaction
at nesting depth commits, it updated — j access stacks for a total

of ©(d?) access-stack updates. The work of the original program peginiTion 2. Consider a (possibly inactive) transaction X that

(without transactions), however, is or@(d). , has written to/ and a new memory operation v that reads from or
_In general, this asymptotic blowup can occur if a TM system yrites to¢. Then v doesiot conflict with X if and only if
with nested transactions must perform work proportion#hécsize

of a transaction’s readset or writeset on every commit. kangple, 1. some transactional ancestor of X has aborted, or

a TM system that validates every transaction due to lazyiconfl 2. X’s nearest active transactional ancestor is an ancestar,
detection for reads exhibits this problem. Similarly, a Titem ) )

that copies data on commit due to lazy object updates alsthieas ~ The case when X has read fragnand v writes tc is analogous.

ISSue. This definition is equivalent to Definition 1 becauXé nearest

active transactional ancestor logically belongsitaters(¢) if X
5. CWSTM OVERVIEW doesn’t have an aborted ancest?)r. g ’ ()
This section describes our CWSTM design for a transactional Definition 2 suggests a conflict-detection algorithm tha¢slo
memory system with nested parallel transactions and epgeites not require maintainingowest(writers(¢)) and the normal ac-
and eager conflict detection. We first describe how CWSTM up- cess stack. In particular, I&tbe the last node that has successfully
dates the computation-tree-node statuses on commits amtsab  written to/. Then wheru accesseg, test for conflict by finding<’s

We then give an overview of the conflict-detection mechaniden nearest active transactional ancedtand determining whethéf
ferring details of the XConflict data structure to later g@ts. The is an ancestor ofi. Figure 6 gives pseudocode for this test. Note
conflict-detection mechanism includes a “lazy access Stavk that CWSTM does not actually implement this query as given—

instead, it uses an equivalent, but more efficient quergrdesd in
2This value can either be stored in the stack itself, or in glkgransaction. Section 6.



XCONFLICT-ORACLE(X, U)
> For any nodeX and active memory operatian

N -

3
4
5
6
7

if 3Z € ances(X) such thastatus[Z] = ABORTED

then return “no conflict: X aborted”

Y « closest active transactional ancestoXof
if Y € ances(u)

then return “no conflict: X committed tou’s ancestor”
else pick a transactiom in (ances(Y) — ances(LCA(Y,u)))
return “conflict with B”

Figure 6. Pseudocode for a conflict-detection query suggested by
Definition 2. Many subroutine (e.g., line 3) details are aedt(and

in fact do not have efficient implementations). Thea function

returns the least common ancestor of two nodes in the comnputa

tree.

To maintain the most recent successful write (and reads); fa
itating the necessary conflict queries, CWSTM usészg access
stack The structure of the lazy access stack is somewhat differ-
ent from the simple access stack given in Section 4. An olfjsct

lazy stack stores (possibly complete) transactions thes ait-
ten to ¢ and sets of transactions that have read frorbut now
these stack entries are ordered chronologically by ac@ésstop

of the stack holds the last writer or the last readers. We tlase
invariant that if a transactioX on the stack has aborted, then all
transactions located above on the stack (later chronologically)

also have aborted ancestors, and thus represent depreahied.
The main difference in maintenance is that the lazy acces& &
not updated on transactional commit (thus ignoring the mefg
transaction’s readset and writeset into its parent’s). @mory op-

erations, new transactions are added to the access stdeksarne

way as described in Section 4.

Figure 7 gives pseudocode for an instrumentation of each-mem

ory access, assuming for simplicity that all memory accesse

have asw i t e instructions® Incorporating readers into the access

stacks is more complicated, but conceptually similar. [femory

accesau does not belong to an aborting transaction, then it is al-

lowed to proceed. First, we test for conflict with the lasttaurin

lines 4-5. If the last writer has aborted (or has an abortegsn
tor), handled in lines 6-9, then the access stack shouldeametl
up by calling G.EANUP. (This auxiliary procedure, given in Fig-
ure 8, rolls back the value of the topmost aborted transaciio

{'s access stack.) Since there is no new conflict, aftegABIUP,

the access should be retried. If, on the other hand, theredna
flict betweenu and an active transaction (lines 10-16), then ei-

therxparent|[u] must abort or the conflicting transactioB) (must

abort. Finally, if there are no conflicts, then the accessiteass-
ful. The access stack is updated as necessary (lines 1&Djhe

access is performed.

Note that whileu is running the ACESsmethod, concurrent
transactions (that accegscan continue to commit or abort. The

commit or abort of such a transaction can eliminate a conflitt

u, but never create a new conflict with Thus, concurrent changes

may introduce spurious aborts, but do not affect correstnes

The CWSTM Scheduler
XConflict relies on a Cilk-like work-stealing scheduler feffi-

ciency and correctness. The main idea of a work stealingais th
when a processor completes its own work, it “steals” workrfro
a differentvictim processor. Conceptually, the entire (unexpanded)

3|tis possible to reduce locking on the access stack, but wetldescribe

that optimization in this paper.

AccEs§u,/)
1 Z+« xparent[U]
2 if status[Z] = PENDI NG.ABORT return XABORT
> OtherwiseZ is active
3 accessStack(¢).Lock()

> SetX to be the last writer.
X «accessSt ack(¢).TopP()
result<— XCONFLICT-ORACLE(X, u)

(G2

if resultis “no conflict: X aborted”
then accessSt ack (£).UNLOCK()
CLEANUP(?) > Rollback some values
return RETRY > The access should be retried

©O©oo~N®

10 if resultindicates a conflict with transactidh
11 then if choose to abort self

12 then accessSt ack (¢).UNLOCK()
13 return XABORT
14 else accessStack(¢).UNLOCK()
15 signal an abort d8
16 return RETRY
> Otherwise, there is no conflick is an ancestor of
17 ifZ#X > Z's first access td
18 then > Log the access
19 LOGVALUE(Z,()
20 accessStack(¢).PusH(Z)

> Actually perform the write operation
21 Perform the write
22 accessStack(¢).UNLOCK()
23 return SUCCESS

Figure7. Pseudocode instrumenting an access hiyan object,
assuming that all accesses are writescAsgu, ¢) returnsXABORT
if Z should abortRETRY if the access should be retried, 3WCCESS
if the memory operation succeeded.

CLEANUP(?)

1 accessStack(¢).Lock()

2 X« accessStack(¢).Topr()

3 if 3Z € ances(X) such thastatus|[Z] = ABORTED

4 then RESTORBVALUE(X, ¢) > Restore/ from X’s log
5 accessStack(¢).Por()

6 accessStack(¢).UNLOCK()

Figure 8. Code for cleaning up an aborted transaction from the
top of accessStack(¢), assuming all accesses are writes. If the
last writer has an aborted ancestor, it should be rolled.back

computation tree is initially “owned” by a single processbipro-
cessor traverses the current subtree that it owns, and et tib-
tree that it owns. As this processor “discovers” P-nodesdtates
one of its nontransactional S-node children, and the ot can
subsequently be stolen by a thief processor. Whenever assoc
pi has no work (does not own a subtree), it steals a sulitreeted
at such a nontransactional S-node. Thsiow owns and traverses
the subtred'.

When we say a work-stealing scheduler is ‘Cilk-like,” as re-
quired by XConflict, we mean that it has the following two prop



erties. First, a processor executes its computation subira left-
to-right fashion. Second, whenever a thief processor st@atk
from a victim processor, it steals the right subtree fromhighest
P-node in the victim’s subtree that has work available.

6. CWSTM CONFLICT DETECTION

This section describes the high-lev&Conflict scheme for conflict
detection in CWSTM. As the computation tree dynamicallyolais
during an execution, our algorithm dynamically divides ¢tbenpu-
tation tree into “traces,” where each trace consists of nmgroper-
ations (and internal nodes) that execute on the same poyc€ss
algorithm uses several data structures that organizerdithees,
or nodes and transactions contained in a single trace. €bt®a
describes traces and gives a high-level algorithm for adrdfitec-
tion.

By dividing the computation tree into traces, we reduce ts ¢
of locking on shared data structures. Updates and queriasiaia
structure whose elements belong to a single trace are also pe
formed without locks because these updates are performadiny
gle processor. Data structures whose elements are tramesugl-
port queries in constant time without locks. These datacgiras
are, however, shared among all processors, and therefpugea
global lock on updates. Since the traces are created onljeafss
however, we can bound the number of trace©pp T, )—the num-
ber of steals performed by the Cilk-like work-stealing ioré sys-
tem. Therefore, the number of updates on these data steucanr
be bounded similarly.

The technique of splitting the computation into traces aad h
ing two types of data structures—"global” data structurbsse ele-
ments are traces and “local” data structures whose elerhelisg
to a single trace—appears in Bender et al.’s (Bender et @4)20P-
hybrid algorithm for series-parallel maintenance (latepioved
in (Fineman 2005)). Our traces differ slightly, and our dsttaic-
tures are a little more complicated, but the analysis teghiis
similar.

Trace Definition and Properties

XConflict assigns computation-tree nodesti@acesin the essen-
tially the same fashion as the SP-hybrid data structureritbestin
(Bender et al. 2004; Fineman 2005). We briefly describe thest
ture of traces here. Since our computation tree has a sfigfiter-
ent canonical form from the canonical Cilk parse tree usester
hybrid, XConflict simplifies the trace structure slightly imerging
some traces together.

Formally, each trac® is a disjoint subset of nodes of tha (
posterior) computation tree. We le@ denote the set of all traces.
Q partitions the nodes of the computation teednitially, the entire
computation belongs to a single trace. As the program egecut
traces dynamically split into multiple traces whenevealsteccur.

A trace itself executes on a single processor in a depth-first

manner. Whenever a steal occurs and a processor stealgtthe ri
subtree of a P-node € U, the tracdJ splits into three traceldy,

Ui, andU; (i.e., Q «— QU {Up,U1,Us} — {U}). Each of the left
and right subtrees d? become traceld; andU,, respectively. The
traceUg consists of those nodes remaining afés subtrees are
removed fromU. Notice that although the processor performing
the steal begins work oonly the right subtre®f P, both subtrees
become new traces. Figure 9 gives an example of tracesingsult
from a steal. The left and right children of theghest uncompleted

P-nodeP; (both these nodes are nontransactional S-nodes in our

canonical tree) are the roots of two new tra¢ésandU,.
Traces in CWSTM satisfy the following properties.

Figure 9. Traces of a computation tree (a) before and (b) after a
steal action. Before thest eal , only one processor is executing
the subtree, bu§, and S are ready. After the steal, the subtree
rooted at the highest ready S-no@g)(is executed by the thief. The
subtree rooted &, on the other hand, is still owned and executed
by the victim processor.

PROPERTY1. Every trace Ue Q has a well-definechead non-
transactional S-node S head[U] € U such that for all nodes
B U, we have & ances(B).

For a traceU € Q, we usexparent(U] as a shorthand for
xparent|head[U]]. We similarly definensParent[U].

PROPERTY2. The computation-tree nodes of a tracedQ form
atree rooted at S= head[U].

PROPERTY3. Trace boundaries occur at P-nodes; either both
children of the P-node and the node itself belong to diffeteces,

or all three nodes belong to the same trace. All children ofSan
node, however, belong to the same trace.

PROPERTY4. Trace boundaries occur at “highest” P-nodes. That
is, suppose a P-node P has a stolen child (i.e., P and its i&mild
belong to different traces). Consider all ancestor P-noBesf P
such that P is in the left subtree of.FThen P must have a stolen
child (i.e., P and ancestor’Pelong to different traces).

The last property follows from the Cilk-like work stealing.

The partitionQ of nodes in the computation tre@ induces a
tree of traces)(C) as follows. For any traced,U’ € Q, there is
an edggU,U’) € J(C) if and only if parent[head[U’]] € U.* The
properties of traces and the fact that traces partitianto disjoint
subtrees together imply thafC) is also a tree.

We say that a tracd is activeif and only if head[U] is active.
The following lemma states that if a descendant ttdtés active,
thenU’ is a descendant ail active nodes itJ. The proof relies on
the fact that traces execute serially in a depth-first (oivedgntly,
left-to-right) manner.

4The functionparent|] refers to the parent in the computation t@enot
in the trace tred(C).



LEMMA 2. Consider active traces W’ € Q, with U # U’. Let
D € U’ be an active node, and supposez[iesc(head[U]) (i.e.,
U’ is a descendant trace of U). Then for any active nodelB we
have Be ances(D).

PROOF Since traces execute on a single processor in a depth-first
manner, only a single head-to-leaf path of each trace cantvea
Thus, if a descendant trat¥ is active, it must be the descendant
of some node along that path. In particular, we claim thats a
descendant of the leaf, and hence it is a descendaall efctive
nodes as the lemma states. This claim follows from Property 3
because both children of treetive P-node on the trace boundary
must belong to different traces. (I

XConflict Algorithm

Recall that CWSTM instruments memory accesses, testirngpfor
flicts on each memory access by performing queries of XCon-
flict data structures. In particular, XConflict must test Wies a
recorded access by nodg conflicts with the current access by
nodeu. Suppose thaB does not have an aborted ancestor. Then
recall Definition 2 states that a conflict occurs if only if thearest
uncommitted transactional ancestoBi not an ancestor of.

A straightforward algorithm (given in Figure 6) for conflict
detection finds the nearest uncommitted transactionaksmcef B
and determines whether this node is an ancestar bfaintaining
such a data structure subject to parallel updates is casttgrms
of locking overheads).

XConflict performs a slightly simpler query that takes advan
tages of traces. XConflict does not explicitly find the netauss
committed transactional ancestor Bf it does, however, still de-
termine whether that transaction is an ancestau. dh particular,
let Z be the nearest uncommitted transactional ancest8&; ahd
letUz be the trace that contaiizs Then XConflict findsJz (with-
out necessarily finding). Testing whethelJz is an ancestor of
is sufficient to determine wheth&ris an ancestor of.. Note that
XConflict does not lock on any queries. Many of the subrowstine
(described in later sections) need only perform simple A8gtg to
see if anything changed between the start and end of the.query

The XCoNFLICT algorithm is given by pseudocode in Fig-
ure 10. lines 1-4 handle the simple base casdsatfdu belong to
the same trace, they are executed by a single processogrsoigh
no conflict. IfB is aborted, there is also no conflict.

SupposeB is not aborted and th& andu belong to different
traces. X@NFLICT first finds X, the nearest transactional ancestor
of Athat belongs to an active trace, in line 5. The possible iooat
of X in the computation tree are shown in Figure 12. Ugt=
trace(X). Notice thatUy is active, butX may be active or inactive.
For cases (a) or (b), we firdwith a simple lookup okparent|B].
Case (c) involves first finding, the highest completed ancestor
trace oftrace(B), then performing a simple lookup @parent[U].
Section 9 describes how to find the highest completed arrcesto
trace.

Line 9 findsY, the highest active transactionlirx. If Y exists
and is an ancestor of, as shown in the left of Figure 13, then
XCONFLICT is in the case given by lines 11-13. Wk is an
ancestor ofu, we conclude thaf has committed to an ancestor
of u. Figure 13 (a) and (b) show the possible scenarios whgrs
an ancestor ofi: eitherX is an ancestou, or X has committed to
some transactiod that is an ancestor of.

Suppose instead thdtis not an ancestor of (or thatY does not
exist), as shown in the left of Figure 14. Then BQFLICT follows
the case given in lines 15-17. L&tbe the transactional parent of
Ux. SinceX has no active transactional ancestolig, it follows
that X has committed t&. Thus, iftrace(Z) is an ancestor ofl,

XCONFLICT(B,u)

> For any computation-tree nodand any
active memory-operation

> Test for simple base cases

1 if trace(B) = trace(u)

2 then return “no conflict”

3 if some ancestor transaction®fs aborted

4 then return “no conflict: B aborted”

5 LetX be the nearest transactional ancestds of

belonging to an active trace.

if X=null > committed at top level
then return “no conflict: B committed to root”

Ux « trace(X)

o ~NO®

9 LetY be the highest active transactionly
10 if Y #null andY is an ancestor ok
11 then if Uy is an ancestor af
12 then return “no conflict: B committed
to u's ancestor”
13 else return “conflict with Y”
14 else Z «— xparent|Ux]
15 if Z=nul| ortrace(Z) is an ancestor af
16 then return “no conflict: B committed
to u's ancestor”
17 else return “conflict with Z”
Figure 10. Pseudocode for the XConflict algorithm.
Edge shape Edge style

. . No traces on path
¢ No active xaction on path p

8 Active xactions on path

Figure 11. The definition of arrows used to represent paths in
Figures 12, 13 and 14.

I
* Active traces only

1"
* Complete traces only

we conclude thaf has committed to an ancestorwfas shown in
Figure 14.

Section 7 describes how to find the trace containing a particu
lar computation-tree node (i.e., computimace (B)). Section 8 de-
scribes how to maintain the highest active transaction pfteate
(used in line 9). Section 9 describes how to find the highest-co
pleted ancestor trace of a trace (used for line 5), or find anted
ancestor trace (line 3). Computing the transactional pareany
node in the computation tre&garent|B]) is trivial. Section 10
describes a data structure for performing ancestor queitas a
trace (line 10), and a data structure for performing ancegteries
between traces (lines 11 and 15).

The following theorem states that XConflict is correct.

THEOREM3. Let B be a node in the computation tree, and let u be
a currently executing memory access. Suppose that B dobavet
an aborted ancestor. ThedCONFLICT(B, u) reports a conflict if
and only if the nearest (deepest) active transactional stuzeof B

is an ancestor of u.



Figure 12. The three possible scenarios in whiXhis the nearest
transactional ancestor &that belongs to an active trace. Arrows
represent paths between nodes (i.e., many nodes are omstted
Figures 4 and 11 for definitions. In both (a) and ®)helongs to
an active trace. In (akparent B] belongs to the same active trace
asB. In (b), xparent|B] belongs to an ancestor tracetafce(B).

In (c), B belongs to a complete tradd, is the highest completed
ancestor trace d8, andX is thexparent[U].

Figure 13. The possible scenarios in which the highest active
transactionY in Uy is an ancestor oK, andUx is an ancestor
of u (i.e., line 11 of Figure 10 returns true). Arrows represethp
between nodes (i.e., many nodes are omitted): see Figures #la
for definitions. The block arrow shows implication from thedtl
side to either (a) or (b).

PrRoOOF If B has an aborted ancestor, then XG-LICT properly
returns no conflict.

Let Z be the nearest active transactional ancestd®. dfet Uz
be the trace containing; sinceZ is active,Uz is active. Lemma 2
states thal)z is an ancestor af if and only if Z is an ancestor af.

It remains to show that XConflict findg,.

XConflict first finds X, the nearest transactional ancestoBof
belonging to an active trace (line 5). The nearest activestnc
of B must beX or an ancestor oK. LetUx be the trace contain-
ing X, and letY be the highest active transactionU. If Y is an
ancestor ofX, then eithelZ = X, or Z is an ancestor oK and a
descendant of (as shown in Figure 13). Thus, XConflict performs
the correct test in lines 11-13.

Suppose instead tht the highestactive transaction iy, is
not an ancestor of. Then no active transactionlf is an ancestor
of X. LetZ be the transactional ancestorlgf. SinceUy is active,

Z must be active. Thug is the nearest uncommitted transactional

Figure 14. The scenario in which the highest active transact¥ion
in Ux is not an ancestor of, andZ = xparent|Ux] is an ancestor
of u (i.e., line 15 of Figure 10 returns true). The block arromsso
implication from the left side to the situation on the right.

ancestor oB, and XConflict performs the correct test in lines 15—
17.

In the above explanation, we assume that no XConflict data-
structural changes occur concurrently with a query. The ads
concurrent updates is a bit more complicated and omitted this
proof. The main idea for proving correctness subject to omeat
updates is as follows. Even when trace splits occur, if a minfl
exists, XGNFLICT has pointers to traces that exhibit the conflict.
Similarly, if XCONFLICT acquires pointers to a transaction ¢r
Z) deemed to be active, that transaction was active at thedftar
the X CONFLICT execution.

[l

Note that X@NFLICT may return some spurious conflicts if
transactions complete during the course of a query.

7. TRACE MAINTENANCE

This section describes how to maintain trace membership&oh
nodeB in the computation tree, subject to quertese(B). The
queries takéD(1) time in the worst case. We give the main idea of
the scheme here for completeness, but we omit details asatieey
similar to the local-tier of SP-hybrid (Bender et al. 200fhdtman
2005).

To support trace membership queries, XConflict organizes
computation-tree nodes belonging to a single trace aswsllo
Nodes are associated with their nearest nontransactionald&
ancestor. These S-nodes are grouped into sets, callee tegs.”
Each bad has a pointer to a trace, denotethceField[b], which
must be maintained efficiently. A trace may contain manyetrac
bags.

Bags are merged dynamically in a way similar to the SP-
bags (Feng and Leiserson 1997) in the local tier of SP-hyBeah-
der et al. 2004; Fineman 2005) using a disjoint-sets data-str
ture (Cormen et al. 2001, Chapter 21). Since traces exeaute o
a single processor, we do not lock the data structure on epdat
(UNION) operations. The difference in our setting is that we use
only one kind of bag (instead of two in SP-bags).

When steals occur, a global lock is acquired, and then a isace
splitinto multiple traces, as in the global tier of SP-hyhBender
et al. 2004; Fineman 2005). The difference in our settindha t
traces split into three traces (instead of five in SP-hybittdrns
out that trace splits can be done@1) worst-case time by simply
moving a constant number of bags. When the trace constast-ti
split completes (including the split work in Sections 8 af), the
global lock is released.

To query what trace a nod® belongs to, we perform the op-
erations traceField[FIND-BAG(nsParent[B])]. These queries
(in particular, END-BAG) take O(1) worst-case time as in SP-



hybrid (Bender et al. 2004; Fineman 2005). Merging bags ases
UNION operation and take®(1) amortized time, but an optimiza-
tion (Fineman 2005) gives a technique that improvesdis to
worst-caseO(1) time whenever the amortization might adversely
increase the program'’s critical path.

8. HIGHEST ACTIVE TRANSACTION

This section describes how XConflict finds the highest adtives-
action in a trace, used in line 9 of Figure 10011) time.

For each nontransactional S-noB8ewe have a fielchext{S
that stores a pointer to the nearest active descendantttaons
of S. Maintaining this field forall S-nodes is expensive, so instead
we maintain it only for some S-nodes as follows. ISat U be an
active nontransactional S-node such that eifethead|[U], or Sis
the left child of a P-node an8ls nearest S-node ancestor (which is
always a grandparent) is a transaction. Thert{S is defined to
be the nearest, active descendant transacti@irofJ. Otherwise,
nextX§ =nul | .

Finding the highest active transaction simply entails & tcal
next{head[U]], which takesO(1) time. The complication is main-
taining thenextxvalues, especially subject to dynamic trace splits.

To maintainnextx we keep a stack of S-nodeslinfor which
nextxis defined. Initially pusthead[U] onto the stack. For each of
the following scenarios, | be the S-node on the top of the stack.
Whenever encountering a transactional S-n&dehecknextxs].

If next{§ = nul |, then senext}y « X. Otherwise, do nothing.
Whenever completing a transactignchecknextxs. If next{S =

X, then setnext{S < nul | . Otherwise, do nothing. Whenever
encountering a nontransactional S-n@&lelf nextXS = nul |, do
nothing. Otherwise, pus8 onto the stack. Whenever completing
a nontransactional S-no&; popS from the stack if it is on top of
the stack.

Finally, XConflict maintains theseextxvalues even subject to
trace splits. Consider a split of trateinto three traceb, U,, and
Us, rooted atS, S;, andS,, respectively. Since CWSTM steals from
the highest P-node in the computation tf8emust be the highest,
active, nontransactional S-node descenda@itbét is the left child
of a P-node. Thus, eith&; is the second S-node d's stack, or
S is not onU'’s stack.

If S is onU's stack, themext{S is defined to be an ancestor
of S, and we leave it as such. Moreover, sirfgeis on the stack,
nextxS | is defined appropriately. Simply split the stack into two

just belowSto adjust the data structure to the new traces. Suppose

instead thatS; is not onU’s stack. Then theext{S] may be a
descendant d§; (or it is undefined). Satext{S;| < nexts and
next{S < nul | . Then split the stack belo® and prepen; at the
top of its stack. The necessary stack splitting ta®€k) worst-case
time. This splitting occurs while holding the global lockgaiired
during the steal (as in Section 7).

9. SUPERTRACES

This section describes XConflict's data structure to findhiggh-
est completed ancestor trace of a given trace (used as aosebpr
dure for line 5 in Figure 10, illustrated By in Figure 12 (c)). To
facilitate these queries, XConflict groups traces togeiter “su-
pertraces.” Grouping traces into supertraces also faigkt faster
aborts—when aborting a transaction in tritbeve need only abort
some of the supertrace childrendf not the entire subtree ig.
This section also provides some details on performing tlogtab
All update operations on supertraces take place while hgldi
the same global lock acquired during the steal (as in Sexfio8,
and 10). Note that unlike the data structures in Sections &né
10, the updates to supertraces do not occur when steals docur
prove good performance (in Section 11), we use the fact Heat t

number of supertrace-update operations is asymptotichlytical
to the number of steals. This amortization is similar to tgebal
tier” of SP-hybrid (Bender et al. 2004).

At any point during program execution, a completed tridce
Q belongs to asupertraceK = strace(U) C Q. In particular, the
traces inK form a tree rooted at sonrepresentative traceep[K],
which is an ancestor of all tracesl Our structure of supertraces
is such that eitherep[strace(U)] is the highest completed ancestor
trace ofU (i.e., as used by line 5 in Figure 10),drhas an aborted
ancestor. We prove this claim in Lemma 4 after describing tow
maintain supertraces.

Supertraces are implemented using a disjoint-sets daia- str
ture (Cormen et al. 2001, Chapter 21). In particular, we usiec®
and Tarjan’s data structure that supportak# -SET, FIND (imple-
mentingstrace(U)), and WNION operations, all ifD(1) amortized
time when unions are restricted to a tree structure (as theyna
our case).

When a trac&J is created, we create an empty supertrace for
U (sostrace(U) = 0). When the trace completes (i.e., aj@ n
operation), we acquire the global lock. We then ddldo U’s
supertrace (givingtrace(U) = {U}). Next, we consider all child
traced)’ of U (in the tree of traced(()).% If head|U’] is ABORTED,
then we skipU’. If head[U’] is COW TTED, we merge the two
supertraces with NioN(strace(U ), strace(U’)). Thus, forU’ (and
all relevant descendantsep[strace(U’)] = rep[strace(U)] = U.
Once these updates complete, the global lock is releaseelr, La
U’s supertrace may be merged with its parents, thereby upylati
rep[strace(U)].

A naive algorithm to abort a transactidhmust walk the entire
computation subtree rooted ¥t changing all ofX's COW TTED
descendants tABORTED. Instead, we only walk the subtree rooted
atX in U, not C. Whenever hitting a trace boundary (i.B.€ U,

D € children(B), D € U’ #U), we set that root of the child trace
(D) to be aborted and do not continue into its descendants., Thus
we enforce all descendants Bthave a supertrace with an aborted
representative.

The following lemma (proof omitted) states that either tap-r
resentative o) 's supertrace is the highest completed ancestor trace
of U, orU has an aborted ancestor.

LEMMA 4. For any completed trace g Q, let K= strace(U), and
let U’ = rep[K]. Exactly one of the following cases holds.

1. Eitherhead[U’] is ABORTED, or

2. head|U’] is COMM TTED, trace(parent head[U’]]) is active,
and there is nCABORTED transaction betweehead|[U] and
head[U’].

10. ANCESTOR QUERIES

This section describes how XConflict performs ancestorigser
XConflict performs a “local” ancestor query of two nodes Iogjo
ing to the same trace (line 10 of Figure 10) and a “global” atare
query of two different traces (lines 11 and 15 of Figure 1@thBof
these queries can be performedifil) worst-case time. The global
lock is acquired only on updates to the global data structunéch
occurs on trace splits (i.e., steals).

Local ancestor queries

CWSTM executes a trace on a single processor, and each $race i
executed in depth-first (e.g.., left-to-right) order. Weishview a
trace execution as a depth-first execution of a computasiain){ree

(or a depth-first tree walk).

5Maintaining a list of all child traces is not difficult. We kea linked list
for each node in the trace tree and add to it whenever a trédite sp



To perform ancestor queries on a depth-first walk of a tree, we
associate with each tree nodehe discovery timed[u], indicating
whenu is first visited (i.e., before visiting any afs children), and
the finish time f[u], indicating whenu is last visited (i.e., when

One way of viewing these bounds is as the overhead of XConflict
algorithm itself. These bounds nearly match those of a Qitk p
gram without XConflict’s conflict detection. The only difearce is
that theT,, term is multiplied by a factor op. In most cases, we

all of u's descendants have finished). (This same labeling appearsexpectpT. < T1/p, so these bound represents only constant-factor

in depth-first search in (Cormen et al. 2001, Section 2213)dse
timestamps are sufficient to perform ancestor queries iistaon
time.

In the context of XConflict, we simply need associate a “time”
counter with each trace. Whenever a trace splits, this eosnt
value is copied to the new traces.

Global ancestor queries

Since the computation tree does not execute in a depth-fnsher,

the same discovery/finish time approach does not work fagstnc
queries between traces. Instead, we keep two total ordetbeon
traces dynamically using order-maintenance data strest{Dietz
and Sleator 1987; Bender et al. 2002). These two orders give u
enough information to query the ancestor-descendaniaeitip
between two nodes in the tree of traces. These total orders ar
updated while holding the global lock acquired during theaktas

in Sections 7 and 8. Since our global ancestor-query datatste
resembles the global series-parallel-maintenance datette in
SP-hybrid (Bender et al. 2004), we omit the details of theadat
structure. As in SP-hybrid, each query has a worst-case afost
O(1), and trace splits have an amortized cosDot).

Note that correctness of the global ancestor queries reties
Property 4—the Cilk-like work-stealing property that aethpro-
cessor steals a subtree from the highest available P-noaedoby
the victim.

11. PERFORMANCE CLAIMS

The section bounds the running time of an CWSTM program in
the absence of conflicts. The bound includes the time to check
for conflictsassuming that all accesses are writasd to maintain
the relevant data structures. Checking for conflicts witHtiple
readers, however, increases the runtime. Additionallgrtabadd
more work to the computation. Those slowdowns are not iredud
in the analysis.

The proof technique here is similar to the proof of perforogn
of SP-hybrid in (Fineman 2005), and we omit the details of the
proof. The key insight in this analysis technique is to aizerthe
cost of updates of global-lock-protected data structugesnst the
number of steals. One important feature of XConflict's “gltib
data structures is that they ha@# of trace$ total update cost.
Another is that whenever a steal attempt occurs, the procbsgg
stolen from is making progress on the original computat{@hat
is, whenever stealable, a processor performs @tll) additional
work for each step of the original computation.) The prookesa
the pessimistic assumption that while the global lock isihehly
the processor holding the lock makes any progress.

The following theorem states the running time of an CWSTM
program under nice conditions. We give bounds for both €ilk’
normal randomized work-stealing scheduler, and for a raohih
work-stealing scheduler (as in (Fineman 2005)).

THEOREMS5. Consider an CWSTM program with; Twork and
critical-path length T, in which all memory accesses are writes.
Suppose the program, augmented with XConflict, is executqn o
and that no transaction aborts occur.

1. When using a randomized work-stealing scheduler, thgram
runsin QT /p+ p(Tw +1g(1/€))) time with probability at least
1—¢, foranye > 0,

2. When using a round-robin work-stealing scheduler, the- pr
gram runs in @T1/p+ pTe) Worst-case time.

overheads beyond optimal. We would also expect the first dboun
(using the randomized scheduler) to have better constéafdern
in the big-O.

These XConflict bounds translate to bounds on completioe tim
of an CWSTM program under optimistic conditions. For ilhast
tion, consider a program where all concurrent paths accisss d
joint sets of memory. The overhead of maintaining the XCotfli
data structures i®(Ty/p+ pTw ). Each memory access queries the
XConflict data structure at most once. Since each query mesgjui
only O(1) time, the entire program runs ®(T;/p+ pTe) time.

The CWSTM design we describe does not provide any rea-
sonable performance guarantees when we allow multipleeread
There are two reasons for this problem. First, concurreadgeo
an object may contend on the access stack to that objectn&eco
even in the case where concurrent read operations nevertavait
acquire an access stack lock, it appears that write oparatay
need to check for conflicts against potentially many readeis
reader list (some of which may have already committed). &her
fore, a write operation is no longer a constant time openatmd
it seems the work of the computation might increase propoati
to the number of parallel readers to an object. It is part tidrk
work to improve the CWSTM design and analysis in the presence
of multiple readers.

12. CONCLUSIONS

The CWSTM model presented in Section 5 describes one agproac
for implementing a software transactional memory systeat th
supports transactions with nested fork-join paralleli€VSTM
design was guided by a few major goals.

e Supporting nested transactions of unbounded depth.

e Small overhead when there are no aborts.

e Avoid asymptotically increasing the work or the criticatipaf
the computation too much.

We believe that we have achieved these goals to some extetd, s
the CWSTM guarantees provably good completion time in tise ca
when there are no aborts, and there are no concurrent re@iers
all accesses are treated as writes).

We believe that supporting unbounded nesting depth ina@ans
tions is important for composability of programs. If a fuoct is
called from inside a transaction, the caller should not haweorry
about how many transactions are nested inside the functbn c
However, it may be true that the common case is transactibns o
small depth. In this case, a simpler design like the one destr
in Section 4 might be sufficient in the common case, at the ex-
pense of a slowdown in the case when the nesting depth is large
It is difficult, however, to conclude what the common cassiis;e
there are currently few examples of programs with nestedlpar
lel transactions. An important part of future research ddug to
write series-parallel programs with nested transactionanider-
stand what the common case is, and what one should optimize fo

CWSTM is a TM system design and has not been implemented
yet. As described in this paper, each memory access may-poten
tially require multiple data structure queries. CWSTM atsay
have a large memory footprint. Due to lazy cleanup on aborts,
and fast commits, the access stack for an object may grow and
require space proportional to the number of accesses tmthat
ject. Also, access stacks may contain pointers to tramsaéigs
that persist long after the transactions are committed orted.
Thus, a computation’s memory footprint can become quitgelan



practice, implementing a separate, concurrent threadgantiage-
collection” of metadata may help. As part of future work, weuld

like to implement the system in the Cilk runtime system tdeste

its practical performance and explore ways to optimize thglé-

mentation.

It would be interesting to see if CWSTM-like mechanisms are

useful for high-performance languages like Fortress (Al al.

2007) and X10 (Ebcioglu et al. 2005). Both these languagps su

port transactions and fork-join parallelism. The langusgecifica-
tion for Fortress also permits nested parallel transastibhese are
richer languages than Cilk, however, and may require margte
cated mechanisms to support nested parallel transactions.
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