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ABSTRACT
This paper presents improved approximation algorithms for the prob-
lem of multiprocessor scheduling under uncertainty (SUU), in
which the execution of each job may fail probabilistically. This
problem is motivated by the increasing use of distributed comput-
ing to handle large, computationally intensive tasks. In theSUU
problem we are givenn unit-length jobs andm machines, a di-
rected acyclic graphG of precedence constraints among jobs, and
unrelated failure probabilitiesqij for each jobj when executed on
machinei for a single timestep. Our goal is to find a schedule that
minimizes the expected makespan.

Lin and Rajaraman gave the first approximations for this NP-
hard problem for the special cases of independent jobs, precedence
constraints forming disjoint chains, and precedence constraints form-
ing trees. In this paper, we present asymptotically better approxi-
mation algorithms. In particular, we improve upon the previously
bestO(log n)-approximation, giving anO(log log(min {m, n}))-
approximation in the case of independent jobs. We also give an
O(log(n + m) log log(min {m, n}))-approximation algorithm for
precedence constraints that form disjoint chains (improving on the

previously bestO
“
log(n) log(m) log(n+m)

log log(n+m)

”
-approximation by

a (log n/ log log n)2 factor whenn = mΘ(1)). Our algorithm for
precedence constraints forming chains can also be used as a com-
ponent for precedence constraints forming trees, yielding a similar
improvement over the previously best algorithms for trees.

Our techniques include reducingSUU to a problem instochastic
scheduling, where machines must process a set of jobs with ran-
domly distributed lengths. We show that our algorithms forSUU
apply to a standard problem in this setting, giving the first approx-
imation algorithms for preemptive stochastic scheduling on unre-
lated machines.
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1. INTRODUCTION
Our work concerns approximation algorithms for multiprocessor

scheduling under uncertainty, first introduced in [11]. This model
extends the classical construction of machine scheduling to handle
cases where machines run jobs for discrete timesteps and succeed
in processing them only probabilistically. Our motivation stems
from the increasing use of distributed computing to handle large,
computationally intensive tasks. Projects like Seti@Home [1] di-
vide computations into smaller jobs of relatively uniform length,
which are then executed on unreliable machines (e.g., of volun-
teers).

Scheduling multiple machines to process the same job at once
can help overcome the problem of unreliable machines, but too
many machines processing a single job can also slow down over-
all throughput. The situation is exacerbated when precedence con-
straints among jobs are present, which is often the case for sophis-
ticated computations; here a single job failing may delay the start
of many others. Note that the special case of having no prece-
dence constraints retains practical significance. Google’s MapRe-
duce architecture [3], for example, generates jobs whose depen-
dencies form a complete bipartite graph, which is equivalent to two
phases of independent jobs.

Motivated by these examples, this paper studies themultipro-
cessor scheduling under uncertainty (SUU) problem. AnSUU
instance is comprised of a set ofn unit-time jobs and a set ofm
machines. For each machinei and jobj, we are given a failure
probability qij , which is the chance that jobj does not complete
when run on machinei for a single timestep. Any precedence con-
straints are modeled as a directed acyclic graph (dag). Our objec-
tive is to construct a schedule assigning machines to eligible jobs
at each timestep, minimizing the expected time until all jobs have
successfully completed. In contrast to many other scheduling prob-



lems,SUU allows multiple machines to execute the same job in a
single timestep.

WhenSUU is properly reformulated (in Section 2), it is strik-
ingly similar to minimum makespan problems on unrelated ma-
chines instochasticscheduling, where job lengths set according to
random variables. Indeed, we demonstrate that our algorithms pre-
sented in this paper can apply to this family of problems, and prove
similar asymptotic approximation ratios.

Related work

Malewicz’s initial presentation ofSUU [11] includes a polynomial-
time dynamic-programming solution for instances where both the
number of machines and the width of the precedence dag are con-
stant. If either of these constraints is relaxed, he proves that the
problem becomes NP-hard. Furthermore, when both constraints
are removed, there is no polynomial-time approximation algorithm
for the problem achieving an approximation ratio lower than 5/4,
unlessP = NP . This work does not include approximation algo-
rithms for the general (NP-hard) problem.

Lin and Rajaraman present the first (and, to date, only) approxi-
mation algorithms forSUU [10]. Using a greedy algorithm to max-
imize the chance of success across all jobs, they give anO(log n)-
approximation when all jobs are independent. More sophisticated
techniques, including LP-rounding and random delay [9,15], yield
a variety ofO(poly log(n + m)) approximations when precedence
graphs are constrained to form only disjoint chains, collections of
in- or out-trees, and directed forests. For these settings, our algo-
rithms improve their approximation ratios by a(log n/ log log n)2

factor, whenn = mΘ(1). See Table 1 for a complete comparison.
The wider field of machine scheduling is an established and well-

studied area of research with a large number of variations on its
core theme (see [6] for a survey). There are three main differences
betweenSUU and problems studied in the literature. First, inSUU,
jobs may run on multiple machines in the same timestep. Second,
each job has a chance of failing to complete on any machine that
processes it. Third, jobs must be scheduled at unit granularity.

We are not aware of many scheduling problems in which jobs
may run on multiple machines at the same time. Interestingly, Ser-
afini, motivated by scheduling looms in the textile industry, pro-
vides a polynomial-time algorithm [14] for scheduling independent
jobs on unrelated machines, given that jobs can be split arbitrar-
ily and run independently on different machines. This problem is
quite close to a deterministic analog of our model (with indepen-
dent jobs), but allows arbitrarily small splits (as opposed to unit-
step allocations), yielding a simpler linear-programming solution
that is not applicable to our problem.

Of deterministic scheduling problems,SUU most closely re-
sembles the problem of preemptively scheduling jobs with prece-
dence constraints on unrelated parallel machines so as to mini-
mize makespan. In Graham’s notation, this problem is written as
R|prec, pmtn|Cmax. Instead of failure probabilitiesqij , there is
a deterministic processing timepij , denoting how long it takes for
machinei to complete jobj. In contrast toSUU, however, ma-
chines never fail, and jobs may only run on one machine at a time.
As in [10], techniques for this problem [7, 9, 15] play an impor-
tant role in our approximations. We also borrow techniques from
“job-shop scheduling” [5] for ourSUU algorithms for precedence
constraints, but the particulars of that setting are not very similar to
the ones we consider here. In the case ofR|prec, pmtn|Cmax, we
are only aware of approximations for precedence constraints form-
ing disjoint chains or trees.

There is also a large body of work on stochastic scheduling (see
[13, Part 2] for a representative sample). The majority of the work

in this area considers how to schedule jobs whose input lengths are
not known, but instead given as random variables distributed ac-
cording to some probability distribution. In this problem, there are
no failure probabilities. Particular attention has been paid to the
case when these distributions are restricted to exponential families.
We show in Section 2 thatSUU is closely related to the problem of
preemptively scheduling precedence-constrained jobs whose pro-
cessing times are given by exponential distributions, on unrelated
parallel machines so as to minimize their expected makespan. In
stochastic scheduling, this problem is known asR|pmtn, prec, pj ∼
stoch|E [Cmax]. We know of no previous nontrivial approximation
algorithms for this problem, although an optimal algorithm exists
when the machines are related and jobs are independent [18].

Our results

We give improved approximation algorithms forSUU when jobs
are independent (there are no precedence constraints), and when the
precedence constraints form disjoint chains. For independent jobs,
we give anO(log log(min {m, n}))-approximation algorithm. One
component of this algorithm is based on an LP relaxation.

Our analysis for independent jobs relies on a competitive anal-
ysis as defined in [17]. Essentially, we show that our algorithm
is O(log(pmax/pmin))-competitive for a deterministic scheduling
problem (similar toR|pmtn|Cmax) in which each machine has a
deterministic speed, but processing times for jobs are chosen arbi-
trarily by an adversary, with minimum and maximum valuespmin

andpmax. This competitive result is interesting in its own right.
When the precedence constraints on jobs form a collection of

disjoint chains, we have anO(log(n + m) log log(min {m, n}))-
approximation algorithm. Our disjoint-chains algorithm uses an
LP relaxation similar to the one used for independent jobs. We
also apply techniques from network-flow theory and prior work on
the SUU problem for chains [10]. Thelog log(min {m, n}) factor
arises from the independent-jobs algorithm — therefore improving
that algorithm immediately yields a better algorithm for chains.

Our algorithm for disjoint chains can be extended to yield an
O(log(n+m) log(n) log log(min {m, n}))-approximation for di-
rected forests using the chain-decomposition techniques of [7,10].

We also show how to apply our algorithms to similar variants
in the problem of stochastic scheduling, where jobs have stochas-
tic processing times. To the best of our knowledge, these are the
first approximation algorithms for stochastic scheduling with the
expected-completion-time objective andunrelatedmachines.

Paper organization

In Section 2 we give formal definitions of theSUU problem, the
scheduling algorithms that we apply to it, and an equivalent for-
mulation ofSUU that plays an important role in our approxima-
tion algorithms. Section 3 presents our algorithms for independent
jobs, and Section 4 shows how to extend them to handle precedence
constraints forming chains. We address tree-like precedence con-
straints and stochastic scheduling in Sections 5 and 6, respectively.

2. PRELIMINARIES
In this section, we give a formal statement of our problem and

then define what we mean by a schedule. Most of our notation is
consistent with that of Malewicz [11] or Lin and Rajaraman [10].
One minor difference is that we use “failure probabilities”qij in
lieu of “success probabilities”pij , for ease of notation. We then
present a reformulation of theSUU problem, which we use in sub-
sequent sections to simplify both our algorithms and the analysis
involved.



Precedence Constraints Lin and Rajaraman [10] This work

Independent O(log(n)) O(log log(min {m, n}))

Disjoint Chains O
“

log(m) log(n) log(n+m)
log log(n+m)

”
O(log(n + m) log log(min {m, n}))

Directed Forests O
“

log(m) log2(n) log(n+m)
log log(n+m)

”
O(log(n + m) log(n) log log(min {m, n}))

Table 1: Improved approximation ratios

The SUU problem

An instanceI = (J, M, {qij} , G) of the SUU problem includes
a setJ of unit-step jobs and a setM of machines. Throughout
this paper, we letn = |J | be the number of jobs andm = |M |
be the number of machines. For each machinei and jobj, we
are given afailure probability qij , which is the probability that
job j does notcomplete when run on machinei for one unit step;
these probabilities are independent. In addition, without loss of
generality, we assume that for each jobj, there exists a machinei
such thatqij < 1.

An SUU instance also includes a set of precedence constraints
comprising a directed acyclic graph (dag)G with jobs as vertices.
We say that a jobj is eligible for execution at timet if all jobs
precedingj (i.e, jobs having a directed path toj) in the dag have
successfully completed before timet. If a job j is eligible at timet,
a schedule may assign multiple machinesMj,t ⊆ M to executej
in parallel. As all machine/job failures are independent, the proba-
bility that j does notcomplete in that timestep is

Q
i∈Mj,t

qij .
Failure probabilities are difficult to work with because they mul-

tiply. Instead, we define thelog failure of job j on machinei, de-
noted byℓij , asℓij = − log qij . Here and throughout the paper, we
uselog to mean a base-2 log. Note that by definition,qij = 1/2ℓij ,

and hence
Q

i∈Mj,t
qij = 1/2

P

i∈Mj,t
ℓij .

Our work focuses on finding scheduling algorithms that mini-
mize expected makespans for restricted classes of precedence con-
straints. If there are no precedence constraints, we say that the
jobs areindependent, and refer to the problem asSUU-I . When
the precedence constraints form a collection of disjoint chains, we
call the problemSUU-C . When the constraints form a collection
of disjoint trees, we call the problemSUU-T . We use sans-serif
fonts to refer to problem variants, whereas serif fonts refer to algo-
rithms/schedules for the problem.

Schedules

A schedule Σ is a policy for assigning machines to (uncompleted)
jobs. Jobs must be scheduled at a unit granularity, but the sched-
ule may assign multiple machines to the same job. A schedule
may base its decisions on any of its history, but we concern our-
selves with only schedules that can be computed in polynomial
time. More formally, a schedule is a functionΣ : (H × N) →
(M → J ∪ {⊥}) that, given a history1 h ∈ H and timet ∈ N, re-
turns a function assigning machines to jobs. We use the symbol⊥
to indicate that the machine remains idle. To allow for more con-
cise schedules, the assignment function returned byΣ(h, t) may
map a machine to a job that has already completed.

1A full history for a deterministic schedule can be cap-
tured by the sets of remaining jobs at each timestep prior
to the current timestept. More formally, let Ht =
{〈S1, S2, . . . , St〉|J = S1 ⊇ S2 ⊇ · · · ⊇ St} denote the set of all
feasible ordered sets of remaining jobs at timesteps1, 2, . . . , t.
Then valid histories are given by the setH =

S∞

t=1 Ht. Note
that compact representations of the history exist, so a polynomially
computable schedule may consider the entire history.

We define anexecution of Σ as follows. Suppose thath ∈ H is
the history of the execution up to timet. ThenΣ assigns machinei
to job j = Σ(h, t)(i) at stept. If j has been completed when it is
scheduled to run,i is assigned to⊥. SinceJ , M , {qij}, andG are
invariant over a problem instance, we allowΣ to reference those
implicitly.

Whenever the scheduleΣ is such that it assigns machines to jobs
depending only on the current time and the initial set of jobs, not
the jobs that have completed (i.e., for allt, Σ(h, t) = Σ(h′, t) for
all h, h′ ∈ H), we say that the schedule isoblivious. An oblivious
schedule has finite length if it is only defined fort ≤ to, for some
to.

We say that a schedule issemioblivious if it can be decomposed
into “rounds” such that the assignments within each round are char-
acterized by finite oblivious schedules. Thus, while executing a
step contained in a particular round, the assignment of machines to
jobs depends only on the initial set of jobs when the round began
and the number of steps the round has been running. Note that all
oblivious schedules are naturally semioblivious, whereas the con-
verse is not necessarily true. Our schedule forSUU-I is semiobliv-
ious.

Malewicz [11] also definesregimens as schedules having assign-
ment of machines to jobs dependent only on the subset of jobs re-
maining. Although regimens appear to be the most intuitive form
of schedules for theSUU problem, none of the schedules given in
this paper are regimens.

We letTΣ be a random variable denoting the length of the exe-
cution of scheduleΣ, which is the number of steps before all jobs
have completed. Our objective is to minimizeE [TΣ] (denoted by
E [Cmax] in much of the scheduling literature). We refer to a sched-
ule that has minimum expected makespan asΣOPT, and its ex-
pected makespan, which is finite [11], asE [TOPT]. For anySUU
instance,ΣOPT exists, and can be computed (inefficiently) by se-
lecting the assignment of jobs to machines on a particular timestep
that minimizes the expected makespan of the remaining jobs.

In this paper, we consider schedules that are polynomial-time
computable (in the variablesn, m, andlog E [TOPT]) and whose
expected makespans approximateE [TOPT]. We say thatΣ is an
α-approximation ifE [TΣ] ≤ αE [TOPT] for all choices of proba-
bilities {qij}.

Throughout the remainder of this paper, we use algorithm and
schedule interchangeably. Moreover, we generally do not give the
schedule explicitly as a function assigning machines to jobs. In-
stead, we describe it algorithmically.

Problem reformulation

We now describe a new, and equivalent formulation of theSUU
problem, which we refer to asSUU∗. Because of their equivalence,
we refer to both problems asSUU later in the paper.

An SUU∗ instanceI = (J, M, {qij} , G) has the same structure
as anSUU instance. The difference is that rather than consider-
ing the success or failure of a job as it runs on machines in each
timestep, we use the Principle of Deferred Decisions [12] to view
the problem as one of deterministically scheduling jobs with ran-



domly distributed lengths.
Instead of failure probability, inSUU∗, we viewℓij = − log qij

as an amount ofwork that a machine does towards a job completion
in each unit timestep. As inSUU, machines must be scheduled
at a unit granularity. At the start of a schedule’s execution, we
draw for each jobj a single random variablepj chosen from an
exponential distribution with rate parameterλj = ln 2; specifically,
Pr [pj ≤ c] = 1 − 2−c. A job j completes when the total work
accrued byj exceedspj . In other words,j completes at the first
stept in which

Pt
k=1

P
i∈Mj,k

ℓij ≥ pj .
Observe that a schedule is oblivious to the random valuespj . In-

stead, it is only aware of whether a job completes in each timestep.
Thus, a schedule must make its decisions for assignments in stept
based only on the surviving set of jobs at each previous timestep.
Hence, the same schedule may be applied to bothSUU andSUU∗.
In fact, a particular schedule has the same distribution of remain-
ing jobs at each timestep in bothSUU andSUU∗, and hence both
problem formulations are equivalent. Proof of this equivalence is
given with Theorem 15 in Appendix A.

3. INDEPENDENT JOBS
This section describes anO(log log n)-approximation algorithm

for SUU-I, theSUU problem with independent jobs. We first give
an obliviousO(log n)-approximation algorithm forSUU-I, based
on scheduling an (approximation of an) integer linear program. We
then modify this algorithm into a semioblivious solution consisting
of O(log log n) nearly optimal rounds.

An oblivious O(log n)-approximation

We now describe anO(log n)-approximation forSUU-I, which we
call SUU-I-OBL. Our approach constructs a schedule of length
O(E [TOPT]), based on an integer linear program, such that each
job has no more than a constant probability of failure upon com-
pletion. This finite oblivious schedule is repeated until all jobs
have completed. Using Chernoff bounds, we conclude that the ex-
pected number of repetitions isO(log n), yielding anO(log n)-
approximation.

We use the following integer linear program for SUU-I-OBL.
Let xij denote the number of steps during which machinei is as-
signed to jobj. Recallℓij = − log qij is the log failure of jobj
on machinei. Let Lj be a nonnegative real, representing a target
work for each job. To understand the integer program, think ofLj

as being fixed atLj = 1 for all jobsj. We later assignLj = 0 to
jobs that do not need to be scheduled, and increasing values toLj

for the semiobliviousO(log log n)-approximation.

(LP1) min t

s.t.
X

i∈M

ℓijxij ≥ Lj ∀j ∈ J (1)

X

j∈J

xij ≤ t ∀i ∈ M (2)

xij ∈ N ∪ {0} ∀i ∈ M, j ∈ J . (3)

Here Equation (1) enforces that every job inJ has a failure proba-
bility no greater than2−Lj (or1/2 whenLj = 1), and Equation (3)
guarantees that all jobs are scheduled for an integral number of
steps on each machine. We use (LP1) to refer to this integer linear
program generically, andLP1(J ′, L) to refer to it withLj = L if
j ∈ J ′, andLj = 0 otherwise. We denote the optimal value for
LP1(J ′, L) by tLP1(J′,L).

A solution forLP1(J ′, L) naturally generalizes to a finite obliv-
ious schedule, denoted byΣLP1(J′,L), with lengthtLP1(J′,L) as

follows. Consider a machinei, and consider each jobj in arbi-
trary order. Assign machinei to job j for xij timesteps. To finish
our description of this schedule, we first claim thattLP1(J,1) ap-
proximatesE [TOPT]. Then we show how to approximate (LP1) in
polynomial time.

LEMMA 1. tLP1(J,1) = O(E [TOPT])

PROOF. Let t be the optimum solution toLP1(J, 1). Consider
any subsetU ⊆ J , and its complementU . ThenLP1(U, 1) +
LP1(U, 1) ≥ t, since we can construct a solution toLP1(J, 1) by
adding a solution toLP1(U, 1) and a solution toLP1(U, 1).

Now recall our view of the problem in terms ofSUU∗: there is
a pj chosen from an exponential distribution for each jobj such
that jobj completes only if

P
i∈M ℓijxij ≥ pj . For any sample

from the event space, letU be the set of jobsj for which pj > 1,
and letU be the complement set of jobsj for which pj < 1 (note
pj = 1 with probability 0 so can be ignored). By definition, each
job is in U independently with probability1/2. Next observe that
whateverΣOPT is, it must allocate at least1 unit of work to each
job in U ; in other words, Equation (1) of (LP1) must hold for every
j ∈ U . Thus, the optimum schedule contains a feasible solution to
LP1(U, 1).

Now observe that by construction,U is a uniformly random sub-
set ofJ , meaning all subsets are equally likely. Thus,

E[TOPT] = 2−n
X

U

E[TOPT | U ]

= 2−n ·
1

2
(
X

U

E[TOPT | U ] +
X

U

E[TOPT | U ])

≥ 2−n 1

2

X

U

(LP1(U, 1) + LP1(U, 1))

≥ 2−n 1

2

X

U

LP1(J, 1)

=
1

2
LP1(J, 1)

Where the second line of this derivation follows from the first para-
graph of this proof.

The following lemma states that, in polynomial time, we can find
an integral assignment that approximates (LP1) to within a con-
stant factor. Some aspects of the proof are similar to [10, Theorem
4.1], which solves a slightly different problem useful for prece-
dence constraints that form disjoint chains, but we add several steps
that improve the approximation ratio. Our tighter approximation
doesapply to the more general disjoint-chains variant, which we
revisit in Section 4.

LEMMA 2. There exists a polynomial-time algorithm that com-
putes a feasible solution toLP1(J ′, L) having valueO(tLP1(J′,L)).

PROOF. We relax our integer linear program to a linear program,
and then show that the relaxed LP can be rounded to yield an inte-
gral{cxij} solution with valueO(TLP1(J′,L)).

First, letℓ′ij = min {ℓij , L}. Then we replace eachℓij in Equa-
tion (1) with ℓ′ij , yielding the constraint

P
i∈M ℓ′ijxij ≥ L, ∀j ∈

J ′. Note that since assignments are restricted to be integral, this
change has no effect on either the feasibility or the value of an
assignment. Next we remove Equation (3) and solve the relaxed
linear program. Letting

˘
x∗

ij , t
∗
¯

be an optimal solution, we note
thatt∗ ≤ tLP1(J′,L), because integral solutions are feasible.

Our goal now is to round the LP solution to an integral solu-
tion, while not increasing its value by very much. We proceed in



three steps. First, we group machines having similarℓ′ij for a jobj,
yielding a single assignment for the whole group. Then, we round
those assignments to integers. Finally, we show that the rounded
assignments satisfy (LP1), using an integral flow network.

For each jobj, we group machines havingℓ′ij values within a
factor of 2, and determine the total assignment to that group. More
formally, for eachj and integerk, we let

D∗
jk =

X

i:⌊log ℓ′
ij⌋=k

x∗
ij

be the total assignment of machines withℓ′ij ∈ [2k, 2k+1) to job j.
It should be clear that for allj ∈ J ′,

X

i∈M

ℓ′ijx
∗
ij ≥

X

k

D∗
jk2k ≥ L/2.

We next round the value ofD∗
jk up to

¨
6D∗

jk

˝
. We claim that

∀j ∈ J ′,
X

k

¨
6D∗

jk

˝
2k ≥ L.

Observe that sinceℓ′ij ≤ L, the maximum value ofk having nonzero
D∗

jk is ⌊log L⌋. Thus, the claim follows because

X

k

¨
6D∗

jk

˝
2k ≥ 3

 
2
X

k

D∗
jk2k

!
−

0
@ X

k≤log L

2k

1
A

≥ 3(L) −

 
∞X

k=0

L/2k

!

≥ 3L − 2L = L.

In other words, rounding the group assignments down to integers
can only cause us to lose at most2L work. We therefore need an
assignment giving3L work to the job.

To complete the integral assignment, we construct a network-
flow instance as follows. For each jobj and integerk, we have
a nodeujk. For each machinei, we have a nodevi. We also
add a source-nodes and a sink-nodew. For eachujk, we add
a directed edge(s, ujk) with capacity

¨
6D∗

jk

˝
. For eachvi, we

add a directed edge(vi, w) with capacity⌈6t∗⌉. Finally, we add
a directed edge(ujk, vi) with infinite capacity, for anyj, k, i such
that

¨
log ℓ′ij

˝
= k. Note that for a givenj andi, there is exactly

onek such that(ujk, vi) exists. We refer to this edge as edge(j, i).
Note that if we make the capacity of edges(s, ujk) be 6D∗

jk

instead, then a flow of demand
P

jk 6D∗
jk exists in this network,

and it can be constructed by setting the flow along edge(j, i) to
be6x∗

ij (and flow along edge(vi, w) to be6
P

j∈J x∗
ij). Thus, a

flow of capacity
P

jk

¨
6D∗

jk

˝
exists when we lower the capacity

of edge(s, ujk) to
¨
6D∗

jk

˝
.

Ford-Fulkerson’s theorem [2, 4] states that an integral max flow
exists whenever the capacities are integral, as they are here. We
therefore take the flow across the edges(j, i) as our integral as-
signmentscxij . Moreover, by construction,cxij satisfy

∀i ∈ M,
X

j∈J

cxij ≤ ⌈6t∗⌉ ,

∀j ∈ J,
X

i∈M

ℓ′ijcxij ≥
X

k

¨
6D∗

jk

˝
2k ≥ L.

We thus have an integral feasible solution{cxij , 6t∗}. Noting that
6t∗ ≤ 6TLP1(J′,L) completes the proof.

Recall that Lemma 1 shows thattLP1(J,1) = O(E [TOPT]).
Then Lemmas 1 and 2 in concert state that in polynomial time,
we can find a scheduleΣ of lengthO(E [TOPT]), such that every
job has at most a constant probability of failure. RepeatingΣ until
all jobs complete gives our oblivious schedule SUU-I-OBL.

THEOREM 3. LetTSUU-I-OBL denote the random variable cor-
responding to the time it takes for an execution of SUU-I-OBL to
complete all jobs. ThenE [TSUU-I-OBL] = O(E [TOPT] log n).

PROOF. From Lemmas 1 and 2, we have a scheduleΣ of length
O(E [TOPT]) that gives each job a constant probability of success.
Applying a Chernoff bound gives us that a particular job completes
in O(log n) repetitions ofΣ, with probability at least1− 1/nΘ(1),
where the constant exponent appears as a constant factor in the
number of repetitions. Taking a union bound over all jobs gives
that with probability at least1 − 1/nΘ(1), all jobs complete in
O(log n) repetitions. Since this probability drops off dramatically
as the number of repetitions increases, we haveE [TSUU-I-OBL] =
O(E [TOPT] log n).

An O(log log(min {m, n}))-approximation

We construct our semioblivious schedule SUU-I as follows. The
schedule is divided into “rounds.” The first round corresponds to
an execution of the schedule suggested by the (rounded) solution
to LP1(J, 1). In each following round, (LP1) is applied to all re-
maining jobs with doubling target work. IfJk ⊆ Jk−1 ⊆ J are the
set of jobs left at the start of roundk, then for that round we find an
approximate solution toLP1(Jk, 2k−1), and schedule obliviously
according to it.

SUU-I runs at mostK = log log(min {m, n}) + O(1) of these
rounds. If uncompleted jobs remain after theKth round, one of
two things is done. Ifn ≤ m, SUU-I runs each job one at a time on
all machines, until all jobs are completed. Ifm < n, SUU-I simply
repeats the scheduleΣLP1(Jk,2k−1) given by theKth round until
all jobs complete.

We will prove that SUU-I achieves an approximation factor of
O(log log min {m, n}). A key aspect of our analysis is viewing
SUU-I as an “online algorithm” to solve theSUU∗ problem over
the hidden input{pj}. Essentially, SUU-I “discovers” the values
of pj as jobs complete.

In the proof of the following lemma, we compare the length of
rounds2, 3, . . . , K against the makespan of an optimal offline al-
gorithm, called OFF, that knows the values{pj}. In particular, we
show that if OFF takes total timet on input{pj}, then each round
of SUU-I takes timeO(t) on the same input. This part of our proof
is essentially a competitive analysis [17]. In subsequent lemmas,
we bound the time of SUU-I for the later rounds.

LEMMA 4. The total expected time of rounds2, 3, . . . , K of
SUU-I isO(K · E[TOPT]).

PROOF. We show that for any fixed set of random values{pj},
each round of SUU-I takes time proportional to that of the opti-
mal offline strategy OFF. We then combine all these rounds, taking
an expectation over{pj}, to get that rounds2, 3, . . . , K take total
expectedtimeO(K · E [TOPT]).

Consider an optimal offline strategy OFF that knows the random
values of{pj}, and letTOFF({pj}) denote OFF’s makespan given
the values{pj} (i.e., TOFF({pj}) is the minimum over all strate-
gies for a fixed{pj}). For eachk ∈ {2, 3, . . . , K}, let Jk ⊆ J
be the subset of jobs such thatpj > 2k−2. Thus, OFF must as-
sign machines to jobj ∈ Jk such that

P
i∈M xijℓij ≥ 2k−2. And

hence we haveTOFF({pj}) ≥ TLP1(Jk,2k−2).



Now consider an execution of SUU-I for the same{pj}. We note
that if a jobj remains uncompleted at the start of thekth round, for
k ∈ {2, 3, . . . K}, thenpj > 2k−2. This inequality follows from
the fact that in the(k − 1)th round, every job receives work that
exceeds2k−2. Hence, the jobs executed in thekth round are a
subset of those defined byJk above. By Lemma 2, thekth round
takes timeO(TLP1(Jk,2k−1)). Observing thatTLP1(Jk,2k−1) ≤
2TLP1(Jk,2k−2), we conclude that SUU-I’skth round takes time
O(TOFF({pj})).

We thus have that for any particular{pj}, rounds2, 3, . . . , K of
SUU-I take total timeO(K · TOFF({pj})). Since OFF is the opti-
mal offline strategy, it follows thatTOPT({pj}) ≥ TOFF({pj}) on
the same{pj}. Thus, SUU-I takes time at mostO(k·TOPT({pj})).
Taking the expectation over all{pj}, we conclude that these rounds
take in expectation total time

O
“
K · E{pj}[TOPT({pj})]

”
= O(K · E [TOPT]) .

In fact, Lemma 4 shows that this doubling technique yields a de-
terministicO(log(pmax/pmin))-competitive algorithm for the prob-
lem of hidden but arbitrarily chosenpj ∈ [pmin, pmax]. SUU-I,
however, changes strategies afterK rounds. We take advantage of
the fact that whenpmax is chosen from an exponential distribution,
the probability thatpmax exceedsΘ(log n) is small.

The following two lemmas bound the expected time of the late
rounds of SUU-I whenm > n or n > m, respectively.

LEMMA 5. Supposem ≥ n. Then roundsK + 1, K + 2, . . .
of SUU-I take total expected timeO(E[TOPT]).

PROOF. Recall that after theKth round, SUU-I runs jobs one
after the other. Running jobs one at a time on all machines is triv-
ially an O(n)-approximation. It remains to bound the probability
that SUU-I proceeds to theKth round.

Recall also that jobs remaining after roundK must havepj ≥
2K−1 ≥ 2log log n+O(1) ≥ 2 log n (for appropriate choice of con-
stant inO(1)), which occurs with probability at most2−2 log n =
1/n2. Applying a union bound over allj, we get probability at
most1/n that any job survives to roundK + 1. And hence we
conclude that the expected time for roundsK + 1, K + 2, . . . is at
most(1/n)O(nE [TOPT]) = O(E [TOPT]).

LEMMA 6. Supposen > m. Then roundsK + 1, K + 2, . . .
of SUU-I take total expected timeO(E[TOPT]).

PROOF. Let ΣK = ΣLP1(JK ,2k−1) be the schedule computed
for the theKth round. Here, SUU-I repeatsΣK until all jobs com-
plete. Define the loadH of a finite schedule to be the maximum
number of timesteps during which any machine is assigned to an
uncompleted job (i.e.,H = maxi

P
j xij); our scheduleΣK can

be easily “compressed” to run in exactly a number of a timesteps
equal to its load. We will analyze how long it takes for the load of
our instance to drop from its initial expected valueO(E [TOPT])
(at the end of theKth round) to 0 (when all jobs have completed).

Let TK be the (random variable) denoting the length ofΣK . Let
Xi be the random variable representing a number of repetitions of
Σk necessary to drop the its load fromTK/2i to TK/2i+1. We de-
fineX to be the random variable denoting the number of timesteps
until the compressed load ofΣK drops below1 (and hence reaches
0). Then we have

X ≤

log TKX

i=0

XiTK

2i
= TK

log TKX

i=0

Xi

2i
,

By construction, a single execution ofΣK ensures that each job
remains with probability at most1/m2, and thus the expected load

of each machine shrinks by at least a (multiplicative) factor ofm2.
Markov’s inequality gives us that each machines load decreases by
a factor ofm/2. with probability at least1 − 1/(2m). Taking a
union bound over all machines gives us that the load ofall machines
decreases by a factor ofm/2. with probability at least1/2.

For m > 4, we now have that each repetition ofΣK decreases
the remaining load by a factor of 2 with probability at least1/2, and
henceE [Xi] ≤ 2 for all i—requiring only an expected constant
number of repetitions to reduce the load by a constant factor. We
now have that

E

"
log TKX

i=0

Xi

2i

#
≤

∞X

i=0

E [Xi]

2i
≤ O(1).

SinceTk and eachXi are independent, it follows that

E [X] ≤ E [TK ]

∞X

i=0

E [Xi]

2i
= O(E [TK ]).

HavingE [TK ] ≤ O(E [TOPT]) (as exhibited by Lemma 4) com-
pletes the proof.

THEOREM 7. Let K = log log(min {m, n}) + O(1) and let
the random variableTSUU-I be defined as the time it takes for an
execution of SUU-I to complete all of the jobs. ThenE [TSUU-I] =
O(K · E [TOPT]).

PROOF. We apply Lemma 1 to bound the expected length of
the first round, Lemma 4 to bound the expected length of rounds
2, 3, . . . , K, and Lemma 5 or Lemma 6 as appropriate to bound
the expected length of roundsK + 1, K + 2, . . .. We conclude
that E [TSUU-I] = O(E [TOPT] + K · E [TOPT] + E [TOPT]) =
O(K · E [TOPT]).

4. JOBS WITH CHAIN-LIKE PRECEDENCE
CONSTRAINTS

In this section we give ourO(log(n + m) log log(min {m, n}))-
approximation forSUU-C, the case when precedence constraints
form a collection of disjoint chains. Our algorithm may be used as
a subroutine forSUU-T, the more general case where precedence
constraints form disjoint trees (see Section 5).

In SUU-C, the dependency graphG is a collection disjoint chains
G = {C1, C2, . . . , Cz}, where eachCk gives a total order on a
subset of jobs.

Our algorithm for disjoint chains is similar to Lin and Rajara-
man’s algorithm [10], but we achieve a better approximation ratio
through various improvements. We first give an overview of the
algorithm. We provide more details later in the section.

To construct our schedule, we first find assignment{xij} of ma-
chines to jobs (wherexij is an integral number of steps for which
machinei is assigned to jobj), giving each job one unit of work,
such that the “length” and “load” of the assignment are bounded by
O(E [TOPT]). The load of a machine is the number of timesteps
for which any job is assigned to it (i.e,

P
j xij), and the load of

the assignment is the maximum across all machines. Thelength
of a chain is the sum of the length of the jobs in the chain. The
length of a jobj, denoted bydj , is the maximum number of steps
for which j is assigned to a single machines (i.e.,dj = maxi xij).
Clearly, a schedule taking timeT must have a length and load no
more thanT .

We use an LP relaxation (similar to (LP1) in Section 3) to gener-
ate our assignment. Details appear later in the section. As in Sec-
tion 3, our LP relaxation achieves anO(1)-approximation. Note
that this assignment does not immediately yield a schedule.



As we transform our assignment into an adaptive schedule, we
treat long and short jobs differently. We say that a job isshort if the
length of its assignment is at most some valueγ, to be defined later,
and the job islong otherwise. To simplify presentation, suppose for
now that all jobs are short. We later describe how to deal with long
jobs.

We then transform the assignment into anadaptivescheduleΣk

for each chainCk. The scheduleΣk considers the next eligible
(uncompleted) jobj in Ck, and (obliviously) schedules the nextdj

timesteps according to the assignment{xij}. Specifically, ifΣk

begins executing jobj at timet, then it schedulesj from timet to
t + xij on machinei. (Machinei remains idle from timet + xij

to t + dj .) After the dj timesteps,Σk again considers the next
eligible job in the chain (which may be the same job if it failed). We
note that each time jobj is obliviously scheduled, it has a constant
probability of success.

We then combine all theΣk in a straightforward manner, yield-
ing a “pseudoschedule” for theSUU-C instance, denoted by{Σk}.
In particular, apseudoschedule runs allΣk “in parallel,” possibly
assigning multiple jobs to the same machine in each timestep. To
avoid confusion, we call each of the timesteps of a pseudoschedule
a superstep, and we call the number of jobs assigned to a single
machine during a superstept thecongestion at that superstep, de-
noted byc(t). We “flatten” each superstep toc(t) timesteps by
arbitrarily ordering the jobs assigned to each machine, thus yield-
ing a schedule called SUU-C. Ifcmax is the maximum congestion
over all supersteps, andZ is the maximum length of any chain, then
SUU-C comprisesO(cmaxZ) timesteps.

To reduce congestion, we apply a random-delay technique [9,
16], also used by Lin and Rajaraman [10]. We also utilize the fact
that when chains consist of sufficiently many (short) jobs, the num-
ber of supersteps spanned byΣk is near the expected length of
Σk, with high probability. To deal with long jobs, we run SUU-I
O(log(n + m)) times, which dominates the runtime, yielding the
O(log(n + m) log log(min {m, n}))-approximation.

Finding an assignment with low load and length.

As in Section 3, we use an integer linear program to optimize for
the constraints. This integer linear program for chains matches that
used in [10, LP1].

(LP2) min t

s.t.
X

i∈M

ℓijxij ≥ 1 ∀j ∈ J (4)

X

j∈J

xij ≤ t ∀i ∈ M (5)

X

j∈Ck

dj ≤ t ∀Ck ∈ G (6)

0 ≤ xij ≤ dj ∀i ∈ M, j ∈ J (7)

dj ≥ 1 ∀j ∈ J (8)

xij ∈ N ∪ {0} ∀i ∈ M, j ∈ J . (9)

Equations (4), (5), and (9) correspond to Equations (1), (2), and (3),
respectively, in (LP1). Equation (5) bounds the load of each ma-
chine. Equation (6) bounds the length of each chain, and Equations
(7) and (8) determines the length of each job.

The following lemma, proven in [10, Lemma 4.2], states that the
optimal value for (LP2) is a lower bound onE [TOPT].

LEMMA 8. Let t(LP2) be the optimal value for (LP2). Then
t(LP2) = O(E [TOPT]).

The next lemma exhibits anO(1)-approximation to (LP2). Lem-
mas 8 and 9 together imply a polynomial-time algorithm giving an
integral assignment{xij} of machines to jobs, such that the load
and length are bothO(E [TOPT]).

LEMMA 9. Let t(LP2) be the optimal value for (LP2). There
exists a polynomial-time algorithm that computes a feasible solu-
tion to (LP2) having valueO

`
t(LP2)

´
.

PROOF. The rounding proceeds as in Lemma 2, starting by re-
moving Equation (9) and replacing Equation (4) by

P
i∈M ℓ′ijxij ≥

1, for ℓ′ij = min {ℓij , 1}. The only major difference is in the ca-
pacity of some edges in the flow network. Instead of giving edge
(j, i) an infinite capacity, we restrict the capacity of edge(j, i) to˚
6d∗

j

ˇ
, whered∗

j is the assignment given by the optimal solution to
the relaxed linear program. We note that the length of a chainCk

may increase up to at most6
P

j∈Ck
d∗

j + |Ck| ≤ 7
P

j∈Ck
d∗

j .
The capacity of edges(vi, w) from machine nodes to the sink node
remains⌈6t∗⌉, so machine loads are also bounded.

Reducing congestion of SUU-C

As described thus far, SUU-C may haveΘ(n) congestion. We take
advantage of a random-delay technique [9,16] to reduce congestion

to O
“

log(n+m)
log log(n+m)

”
, with high probability. Essentially, we modify

SUU-C to simply delay the start time of each chain by a value cho-
sen uniformly at random from{0, 1, . . . , H}, whereH is the load
of SUU-C.

The delay technique is summed up by the following theorem,
proof omitted (as similar theorems appear elsewhere). It originates
in [9], and Lin and Rajaraman [10, Section 4.1] outline the neces-
sary proof as applied toSUU-C.

THEOREM 10. Consider a pseudoschedule{Σk}with total load
H, whereH is polynomially bounded inn and m. Consider the
pseudoschedule{Σk′} generated by randomly shifting, or “delay-
ing,” the start time of each chain scheduleΣk by a value chosen
uniformly at random from{0, 1, . . . , H}. Then{Σk′} has conges-

tion at mostO
“

log(n+m)
log log(n+m)

”
, with high probability with respect

to n andm.

Notice that whenever the load of and length of{Σk} are bounded
by O(E [TOPT]), it follows that the length of{Σk′} is at most
O(E [TOPT]) supersteps, with high probability.

SinceΣk repeats the assignment for some jobs, the load and
length of the pseudoschedules{Σk′} are random variables. We
note, however, that the random successes and failures of jobs (and
hence load and length) are independent of the initial random de-
lay selected. Suppose that our random execution yields a load
and length of at mostO(E [TOPT]). Suppose also thatTOPT is
polynomially bounded inn and m. Then we can apply Theo-
rem 10 to conclude that each superstep has low congestion, and thus

the makespan isO(cmaxE [TOPT]) = O
“

log(n+m)
log log(n+m)

E [TOPT]
”

steps.
The following lemma implies that most executions of SUU-C re-

sult in low load and length. (We deal with the fact thatTOPT may
not be polynomially bounded later in the section.) In this lemma,
yj is the random variable indicating the number of repetitions of
job j’s assignment used to completej, anddj denotes the length
of job j’s assignment. In theSUU-C context,η = n + m. The
valueW here represents the load or the length of the assignment.
The lemma states that whenever a job has length (or causes load)
that is logarithmically smaller than the total, then the length of the



chain or (load on a machine) is close to the expectation, with high
probability. Union bounding over allO(n) chains (orm machines)
implies that the total length (and load) of SUU-C schedule is close
to the expectation, with high probability. The proof appears in Ap-
pendix B.

LEMMA 11. For eachj ∈ {1, 2, . . . , n}, letyj be a positive in-
teger drawn from the geometric distributionPr [yj = k] = (1/2)k

(for k a positive integer), and letdj ≥ 1 be a weight associated
with eachj. LetW andη be chosen such thatW/ log η ≥ dj for
all j, W ≥

P
j 2dj , and log η ≤ W . Then

P
j djyj ≤ O(cW )

with probability at least1 − 1/ηc, for any positive constantc.

We conclude that if jobs are short, where short jobs have length
at mostγ = tLP2/ log(n+m), and iftLP2 is polynomial inn and

m, then SUU-C takes timeO
“

log(n+m)
log log(n+m)

E [TOPT]
”

with high

probability. To get this bound in expectation, we simply modify
SUU-C to run theO(n)-approximation (as for SUU-I) whenever
congestion, load, or length exceed the desired bounds, which oc-
curs with probability at most1/n.

Handling long jobs

We now extend SUU-C to handle jobs having length greater than
tLP2/ log(n + m). In the chain scheduleΣk, we replace each
longer job by a “pause” of lengthtLP2/ log(n + m). Specif-
ically, no job from the chain is scheduled untiltLP2/ log(n +
m) supersteps later. We then divide our schedule SUU-C into
O(log(n + m)) segments of lengthtLP2/ log(n + m) supersteps.
Note that by construction, there is at most one pause per chain per
segment. After executing each segment, SUU-C executes SUU-I
on the jobs corresponding to the pauses starting in that segment
(suspending the rest of the chains until completion). Once those
long jobs complete, SUU-I continues to the next segment.

All of our previous analyses (that assume jobs are short) still
hold. In particular, we satisfy the requirement that all relevant long
jobs complete before the short jobs are scheduled again. Since there
areO(log(n + m)) executions of SUU-I, it follows that the total
expected time increases to

O(log(n + m) log log(min {m, n}) · E [TOPT]) ,

giving anO(log(n + m) log log(min {m, n}))-approximation.

Extending to nonpolynomial tLP 2

We now address the requirement in Theorem 10 that load and length
be polynomially bounded inn and m. We make use of a trick
from [16, Section 3.1], also used in [10]. Consider the chain sched-
ule Σk (having lengthO(tLP2), with high probability) before the
random delay is applied. We round each assignmentxij down to
the nearest multiple oftLP2/nm. We thus treat the assignments
as integers in the range{0, 1, . . . , O(nm)}. We can then apply
the random-delay technique (from Theorem 10) to these rounded
assignments.

The issue now is that the rounding may have decreased many
assignments, so we reinsert steps into the schedule. In particular,
whenever executing jobj, we reinsert steps (not supersteps) into
the execution, executing only jobj during those steps. Specifically,
the execution of jobj may result in reinserting at most an expected
2tLP2/nm steps for each machine, and hence2tLP2/n steps in
total. Summing across alln jobs gives an expected2tLP2 steps,
thereby increasing the total length of SUU-C byO(E [TOPT]).

THEOREM 12. Let TSUU-C be the random variable denoting
the time at which an execution of SUU-C completes all jobs. Then
E [TSUU-C] = O(log(n + m) log log(min {m, n})E [TOPT]).

5. JOBS WITH TREE-LIKE PRECEDENCE
CONSTRAINTS

We can obtain algorithms for tree-like precedence constraints by
trivially applying techniques from [7], as done in [10]. We state the
bound here without proof.

When precedence constraints form a directed forest, the tech-
nique from [7] decomposes the graph intoO(log n) blocks, each
consisting of disjoint chains. We then apply SUU-CO(log n) times.

THEOREM 13. If precedence constraints form a directed for-
est, there exists a polynomially computable schedule with expected
makespanO(log(n) log(n + m) log log(min {m, n})E [TOPT]).

6. STOCHASTIC SCHEDULING
This section shows how our algorithms from Sections 3 and 4

apply to the problem of preemptively scheduling, on unrelated par-
allel machines, jobs whose lengths are given by exponentially dis-
tributed random variables. In Graham notation, these problems are
of the formR|pmtn, prec, pj∼stoch|E [Cmax], and we refer to the
group asSTOCH. We show anO(log log n)-approximation for the
special case ofSTOCH-I, when all jobs are independent. Then we
discuss briefly how the rest of our algorithms forSUU generalize
to theSTOCH context.

Preliminaries

An instanceIstoch = (J, M, {λj} , {vij} , G) of STOCH contains
a set of jobsJ , a set of machinesM , and a dependency graphG
just as inSUU. However, the lengthpj of each jobj, instead of
identically one, is set randomly according to the exponential distri-
bution with rate parameterλj . That is,Pr [pj ≤ c] = 1 − e−cλj .
The actual value ofpj is not revealed until the job completes. Fi-
nally, for each machinei and jobj, vij specifies the speed with
which machinei processes jobj. Thus, ifxij is the amount of time
during which machinei processes jobj, then j completes onceP

i xijvij ≥ pj . ForSTOCH, xij need not be integral, but we do
require that every job be processed by at most one machine at any
point in time.

An O(log log n)-approximation for STOCH-I

We now show how to provide aO(log log n)-approximation for
STOCH-I. Our techniques are analogous to those in Section 3, and
our algorithm STC-I operates similarly to SUU-I.

STC-I runs inK = log log n + O(1) rounds, each correspond-
ing to an oblivious scheduleΣk. We construct the obliviousΣk

such that any job havingpj ≤ 2k−2/λj completes by the end of
the round. Specifically,Σk corresponds to solving thedetermin-
istic problemR|pmtn|Cmax, with the length each jobj fixed as
2k−2/λj . Jobs remaining after the end of theKth round are run
one at a time on the fastest possible machine. We use the algo-
rithm from Lawler and Labetoulle [8] to compute a schedule for
R|pmtn|Cmax in polynomial time, giving us each of ourΣk.

The following theorem states that STC-I approximatesSTOCH-
I. The proof sketch is similar to Theorem 3 and Lemma 1

THEOREM 14. LetTSTC-I be the random variable denoting the
time it takes for an execution of STC-I to complete all jobs. Then
E [TSTC-I] = O(log log n · E [TOPT]).

PROOF SKETCH. We show that the length of the first round ap-
proximatesE [TOPT], using a slight modification to Lemma 1, where
Lj are set according to1/(2λj)). Then we an use an competitive-
analysis argument to prove that theK − 1 subsequent rounds take
expected timeO(E [TOPT] · K), along the lines of Lemma 4.



To complete the proof, we note that whenmaxj pj is bounded
above by2 log n/λj , all jobs complete by the end of roundK.
Since thepj are exponentially distributed,

Pr [∃j s.t.pj > 2 log n/λj ] ≤ 1/n

Thus, running jobs sequentially is trivially ann-approximation,
but we see that it occurs only with probability at most1/n. The
expected completion time is thus dominated by the firstK rounds,
which takeO(E [TOPT] · K) = O(log log n · E [TOPT]).

A slight modification to this algorithm gives anO(log log(n))-
approximation to the slightly weaker setting ofSTOCH-R-I. Here
we allow restartsinstead of preemption. In this setting, a job may
be moved from one machine to another, but it loses all previous
progress when this migration occurs. In contrast, recall that with
preemption a job accrues work from all machines that process it.
The only necessary change to Theorem 14 is settingΣk according
to R||Cmax instead ofR|pmtn|Cmax.

Other results

We can apply the remaining algorithms from Sections 3 and 4 to
STOCH, with identical approximation ratios. Thus, we have al-
gorithms achieving anO(log log(min {m, n}))-approximation for
STOCH-I, anO(log(n+m) log log(min {m, n}))-approximation
for STOCH-C, and anO(log(n) log(n+m) log log(min {m, n}))-
approximation forSTOCH-T. Here problems have been named ac-
cording to theirSUU analogs. These approximation ratios also
hold when we allow restarts instead of preemption.

7. CONCLUSION
In this paper, we have presented improved approximation algo-

rithms for multiprocessor scheduling under uncertainty. We believe
that our bounds are not tight. In particular, we believe that a fully
adaptive schedule should be able to trim anO(log log(min {m, n}))
factor from our bounds. It would also be interesting if a greedy
heuristic could achieve the same bounds. Finally, we would be in-
terested in developing nontrivial approximations for more general
precedence constraints. At first glance, however, it seems like any
technique forSUU and arbitrary precedence constraints may gen-
eralize toR|pmtn, prec|Cmax, which remains unsolved.
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APPENDIX

A. PROBLEM REFORMULATION
Here, we prove thatSUU andSUU∗ are equivalent. First, we

define a history of an execution. Then we prove the main theorem,
which shows thatSUU andSUU∗ have the same distribution over
histories.

Consider an execution of a scheduleΣ on SUU or SUU∗. We
define thehistory of the execution aftert − 1 steps by a sequence
of job subsets〈S1, S2, . . . , St〉, with J = S1 ⊇ S2 ⊇ · · · ⊇ St,
whereSk is the set of jobs remaining at the start of stept.

THEOREM 15. Consider(t−1)-step execution historiesht and
h∗

t of scheduleΣ onSUU-instanceI = (J, M, {qij} , G) and cor-
respondingSUU∗-instanceI∗ = (J, M, {qij} , G), respectively.
For any particular(t−1)-step historyxt, we havePr [ht = xt] =
Pr [h∗

t = xt].

PROOF. By induction on timet. Initially, Pr [h1 = 〈J〉] =
Pr [h∗

1 = 〈J〉] = 1.
Suppose that both executions have the same(t − 1)-step history

xt, and letMj,t be the set of machines assigned to jobj at stept
by the scheduleΣ given the historyxt. We need only show that
both SUU andSUU∗ have the same distribution over remaining
jobs after stept.

Let St+1 andS∗
t+1 be the random variables denoting the set of

remaining jobs at the start of stept, for SUU andSUU∗ executions,
respectively. For theSUU execution, the probability that jobj does
notcomplete in stept is given byPr [j ∈ St+1|xt] =

Q
i∈Mj,t

qij .

We now consider the probability that theSUU∗ executiondoes
not complete a remaining jobj in stept. For job j, let zj,k =P

i∈Mj,k
ℓij be the amount of workj receives at stepk. By defini-

tion, j does not complete if
Pt

k=1 zj,k < pj . By assumption, since
j remains at stept, we have

Pt−1
k=1 zj,k < pj . Moreover, since the

exponential distribution ofpj is memoryless, we have

Pr

"
tX

k=1

zk,j < pj

t−1X

k=1

zk,j < pj

#
= Pr

2
4 X

i∈Mj,t

ℓij < pj

3
5

Thus, we have

Pr [j ∈ S∗
t+1|xt] = Pr

2
4 X

i∈Mj,t

ℓij < pj

3
5

= 2
−

P

i∈Mj,t
ℓij

=
Y

i∈Mj,t

qij ,

and hencePr [j ∈ St+1|xt] = Pr [j ∈ S∗
t+1|xt].

Since all jobs have the same distribution given the history, we
concludePr [St+1 = S|xt] = Pr [S∗

t+1 = S|xt]. Applying the in-
ductive hypothesis (i.e.,Pr [ht = xt] = Pr [h∗

t = xt]) completes
the proof.

B. PROOFS

LEMMA 11. For eachj ∈ {1, 2, . . . , n}, letyj be a positive in-
teger drawn from the geometric distributionPr [yj = k] = (1/2)k

(for k a positive integer), and letdj ≥ 1 be a weight associated
with eachj. LetW andη be chosen such thatW/ log η ≥ dj for
all j, W ≥

P
j 2dj , and log η ≤ W . Then

P
j djyj ≤ O(cW )

with probability at least1 − 1/ηc, for any positive constantc.

PROOF. First, we round all thedj up to the next power of2,
grouping thedj by value. Specifically, letZk be the set ofj such
thatdj is bounded in the following way

W/(2k log η) < dj ≤ W/(2k−1 log η),

for k ∈ {1, 2, . . . , ⌈log(W/ log η)⌉}. We observe that

X

j

djyj ≤
X

k

W

2k log η

X

j∈Zk

yj ,

and thus our goal is first to bound
P

j∈Zk
yj near its expectation.

To bound
P

j∈Zk
yj , we view eachyj as the length of a sequence

of fair-coin flips that terminates when flipping the first “head.” Thus,
their sum exceeds some valuebk (to be assigned later) whenbk

fair-coin flips do not yield|Zk| heads. LetBk be the sum ofbk

Bernoulli random variables with expectation1/2 (i.e., Bk is the
number of “heads” in a size-bk set of fair-coin flips). Then we have

Pr [Bk < |Zk|] = Pr
hP

j∈Zk
yj > bk

i
.

We will boundPr [∃k s.t.Bk < |Zk|] ≤ η−c by taking a union
bound over allk. Note, however, thatk ranges over roughlylog W
values, andW is not a function of aη, so we need a stronger
bound thanPr [Bk < |Zk|] ≤ η−c. Instead, we setbk such that
Pr [Bk < |Zk|] ≤ η−c2−k. Then taking a union bound over allk
gives probability at most

log(W/ log η)X

k=1

η−c2−k ≤ η−c
∞X

k=1

2−k ≤ η−c

that there exists ak such that
P

j∈Zk
yj > bk. Thus if we set

bk = Θ(c(|Zk| + log η + k)) and apply a Chernoff bound for
Pr [Bk < |Zk|], we achieve the desired probability bound.

Thus, with probability at least1 − 1/ηc, we are left with

X

j

djyj ≤
X

k

W

2k log η
Θ(c(|Zk| + log η + k))

= O

 
c
X

k

W |Zk|

2k log η

!
+ O

 
cW

X

k

log η + k

2k log η

!

≤ O

 
c
X

j

dj

!
+ O

 
cW

∞X

k=1

1 + k

2k

!

= O(cW ) ,

where the third line of the derivation follows from the restriction
thatW ≥

P
j 2dj .


