
Brief Announcement: Cache-Oblivious Scheduling of
Streaming Applications

Kunal Agrawal
Washington Univ. in St. Louis

kunal@cse.wustl.edu

Jeremy T. Fineman
Georgetown University

jfineman@cs.georgetown.edu

ABSTRACT
This paper considers the problem of cache-obliviously scheduling
streaming pipelines on uniprocessors with the goal of minimizing
cache misses. Our recursive algorithm is not parameterized by
cache size, yet it achieves the asymptotically minimum number of
cache misses with constant factor memory augmentation.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complexity]: General

Keywords
Cache-Oblivious Algorithms; Caching; Partitioning; Pipelines; Schedul-
ing; Streaming; Synchronous Data Flow.

1. INTRODUCTION
As parallel processors such as multicores have become more

prevalent, there has been an increasing interest in parallel program-
ming paradigms such as streaming. Examples include academic
projects like StreamIt [14] and StreamC/KernelC [8], community-
based open-source projects like GNU Radio [7], and commercial
products including Simulink R© [11] and LabVIEW [10]. Streaming
is used to express high-throughput applications such as audio and
video processing, biological sequence or astrophysics data analy-
sis, and financial modeling. In general a streaming application can
be represented by a graph; in this paper, we restrict our attention to
streaming pipelines — a chain topology commonly used in steam-
ing applications.

Streaming Pipelines: A streaming pipeline consists of a sequence
of n computational modules, 1,2, ...,n, and each module i has ex-
actly one incoming channel (from the previous module i−1) and
one outgoing channel (to the subsequent module i+1). The mod-
ules send data, in the form of messages or data items to each other
via these channels. We assume that the incoming channel into mod-
ule 1 (the first module) streams an infinite amount of data into the
pipeline and the outgoing channel from module n streams it out.

Each module i has an associated state; we denote the size of this
state by s(i). In order to execute, or fire a module i, the entire state

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
SPAA’14, June 23–25, 2014, Prague, Czech Republic.
ACM 978-1-4503-2821-0/14/06.
http://dx.doi.org/10.1145/2612669.2612707.

of that module must be loaded into the cache. A standard (discrete)
model is that when the module fires, it consumes in(i) data items
from its incoming channel, performs some computation, and then
produces out(i) data items on its outgoing channel, where in(i) and
out(i) are static parameters of the module. This paper considers
a slightly easier continuous model — when a module fires, it may
consume any amount x of available data from its incoming channel,
then produce x× in(i)/out(i) data on its outgoing channel. The key
distinction in the continuous case is that it may produce a fractional
amount of data, which alleviates any bottlenecks in the pipeline
caused by integrality.

Cache-Efficient Scheduling: Cache efficiency is an important de-
terminant of performance, and many cache-efficient algorithms have
been studied (see [1, 4, 6] for a sample). In this paper, we adopt the
ideal-cache model [6], which is an extension of a classic two-level
memory model [1]. In this model, there is a fast cache of size M
connected to slower storage, and each load (cache miss) moves a
contiguous chunk of data, or block, of size B into cache.

Streaming applications exhibit two kinds of cache misses that
can be controlled using intelligent scheduling. First, since modules
access their state when they fire, it is advantageous to execute the
same module many times once its state has been loaded. Second, it
is advantageous to execute consecutive modules, say i and i+1 in
quick succession in order to keep the data produced by module i on
its output channel in cache until module i+ 1 consumes it. Since
these heuristics are contradictory, we must balance concerns intelli-
gently to design a good scheduling algorithm. While there has been
extensive research, both theoretical and empirical, on scheduling
streaming pipelines to optimize throughput and/or latency [9, 2, 5],
most prior work on cache-efficiency has been empirical [13, 12].

In previous work [3], we show that if the size of the cache M is
known in advance, then one can create a partitioned schedule that
provides asymptotically optimal cache performance given constant
factor cache augmentation. That is, if the optimal schedule, given a
cache of size M, has X cache misses, then this partitioned schedule
has O(X) cache misses, given a cache of size O(M). In the present
paper, we extend a similar result to cache-oblivious [6] scheduling,
albeit in a simpler continuous model. Specifically, without param-
eterizing by cache size M or block size B, we design a schedule
that is asymptotically optimal in the number of cache misses given
a constant-factor memory augmentation.

Assumptions and Definitions: We use the term “gain” to describe
the amplification of messages along the pipeline. In particular, for
an edge from module i to i+ 1, the gain of the edge is defined as
the number of messages produced along the edge for each input
consumed by the first module in the pipeline. Therefore gain(i) =∏i

j=1(out(j)/ in(j)).

79

In addition, we define some terms for a given partition of the
pipeline from module i to module j, denoted by 〈i, j〉. The to-
tal size of the pipeline partition 〈i, j〉 is denoted by total(i, j) =∑ j

k=i s(k). Similarly, the largest module within the partition is
max(i, j) = max j

k=i s(k). Throughout the paper, we assume that the
size of each module is at most M/6; that is, max(1,n)≤M/6. Even
the optimal algorithm requires that max(1,n)≤M to allow a mod-
ule to be in cache when fired; we allow a factor of 6 augmentation
over optimal.

2. CACHE-OBLIVIOUS PARTITIONING
AND THE SCHEDULING ALGORITHM

This section describes the cache-oblivious scheduling algorithm
for streaming pipelines. As with many cache-oblivious algorithms,
this scheduling algorithm is recursive, meaning that contiguous sub-
pipelines are scheduled recursively with buffers in between to ac-
commodate messages. One of the challenges is controlling the
amount of space used by buffers.

At the highest level, consider the entire pipeline 〈1,n〉. Define
X = total(1,n) and BASE = 6max(1,n). Here, BASE specifies
a base case for the recursion (even though M is unknown to the
algorithm, the model assumes M ≥ 6max(1,n), as stated in Sec-
tion 1). Without loss of generality, we assume the inputs to the
entire pipeline arrive on a size-X input buffer B1, and the output
edge from the last module has an infinite-size buffer Bn+1.

Schedule: The scheduling is performed by recursively calling FIRE,
specified in Figure 1. The call FIRE(i,k,Bi,Bk+1) corresponds to
repeatedly executing the sub-pipeline 〈i,k〉 until (1) all of the inputs
are removed from Bi, and (2) all buffers Bi, . . . ,Bk are empty, i.e.,
all messages have moved to the output. The algorithm is carefully
constructed so that Bk+1 has enough capacity to store all outputs.
The top-level call is FIRE(1,n,B1,Bn+1), which may be repeated
whenever X inputs become available to the pipeline.

The main idea of the algorithm is to recursively cut the pipeline
into pieces that have nearly equal state, insert a buffer of size roughly
their state between them, and then recursively schedule each of
those pieces. For conciseness, this partitioning is specified in Fig-
ure 1, but it could be performed statically a priori.

The following lemma states that the preconditions and postcon-
ditions hold. The important feature here is that emptying internal
buffers allows us to reclaim space (last line in Figure 1), and hence
we can relate the (dynamically allocated) space used by the algo-
rithm to the state in the subsequent lemma. This in turn leads to the
corollary as long as the algorithm is careful about allocating space.

LEMMA 1. Any recursive call made to FIRE(i,k,Bi,Bk+1) moves
all x inputs from Bi to Bk+1 without 1) overflowing the buffer Bk+1
or 2) leaving any data in internal buffers.

PROOF. To prove (2), assume inductively that the statement holds
for lower levels in the recursion. (It trivially holds for the base
case.) Observe that data moved to the middle buffer B j is drained
by inductive assumption in FIRE(j,k,B j,Bk+1); hence all internal
buffers are empty. The input buffer is also drained by construction.

For (1), induct starting from the top of the recursion, where it
holds trivially since Bn+1 has infinite size. It holds by construc-
tion for the next level of recursion as the number of times the first
subpipeline fires is bounded by the size of B j (i.e., case 1).

LEMMA 2. Let t = total(i,k). During FIRE(i,k,Bi,Bk+1) the
following are true: 1) At any point, the total recursively allocated
buffer space that has not been freed is Θ(t), and 2) the input buffer
Bi has size Θ(t).

FIRE(i,k,Bi,Bk+1) //execute 〈i,k〉= i, i+1, . . . ,k
// let x be the number of inputs on Bi
// Precondition: Bk+1 has capacity for all inputs on Bi, i.e.,
// i.e., at least xgain(k)/gain(i−1)
// Postcondition: the input and all internal buffers are empty

1 let t = total(i,k)
2 if t < BASE
3 fire all modules in order until the input buffer is empty.
4 find the module j having minimum gain edge from j−1 to j

such that min{total(i, j−1), total(j,k)} ≥ t/3
5 create buffers B′i and B j with size t
6 if gain(j−1)≥ gain(i−1) //(case 1)
7 repeat dx∗ (gain(j−1)/gain(i−1))/te times
8 move t

gain(j−1)/gain(i−1) items from Bi to B′i
9 FIRE(i, j−1,B′i,B j)

10 // there is t data is buffered at B j
11 FIRE(j,k,B j,Bk+1)
12 else // gain(j+1)< gain(i) (case 2)
13 repeat dx/te times
14 move t inputs from Bi to B′i
15 FIRE(i, j−1,B′i,B j)
16 // there is < t data buffered at B j+1
17 FIRE(j,k,B j,Bk+1)
18 deallocate or free buffers B′i and B j+1

Figure 1: Recursive pseudocode for the schedule.

PROOF. Since each partition has size at least t/3, the total state
size of either subpipeline is at least t/3 and at most 2t/3. Since each
recursive call is given a buffer of size t, (2) holds by construction at
each level of recursion. To prove (1), observe that every recursive
call frees any space it allocates, and hence the outstanding space
corresponds to the recurrence S(t) ≤ S(2t/3)+ 2t, where 2t is the
space allocated to B′i and B j. This recurrence solves to Θ(t).

COROLLARY 3. For any partition 〈i,k〉 if total state satisfying
total(i,k) ≤ M, then FIRE(i,k,Bi,Bk+1) incurs at most O(M/B)
cache misses in addition to misses incurred writing the outputs to
Bk+1.

PROOF. By Lemma 2, then entire subcomputation with the excep-
tion of the output fits in Θ(M) space, and hence we need only load
this state and buffer space once.

Finally, we prove the main theorem, which bounds the cache cost
with respect to gains of edges crossing the recursive partition.

THEOREM 4. Let P1,P2, . . . ,P2 be the maximal recursive sub-
pipelines, passed to FIRE calls, such that total(P̀) ≤ M. Let C
be the set of edges crossing between these sub-pipelines. Then
FIRE(1,n,B1,Bn+1) incurs a total of O((X/B)

∑
(k,k+1)∈C gain(k))

cache misses, where X is the number of inputs processed per FIRE.

PROOF. From Corollary 3, we know that each time P̀ is FIREd,
the cost of firing it is O(M/B) plus the cost of the outputs. (The cost
of outputs trivially bounded by the sum of the gains.) The goal is
thus to show that we can charge this O(M/B) cost against the gain
of an edge in C. In particular, let FIRE(i,k,Bi,Bk+1) be the nearest
ancestor call (i.e., P̀ ⊆ 〈i,k〉) such that the loop (case 1 or case 2)
has more than 1 repetition (or the root if no such ancestor exists).
Let e ∈ {(i−1, i),(j−1, j),(k,k+1)} ⊆C be the edge with max-
imum gain from among the input/middle/output edges. We will
charge firing P̀ against e.

80

Note that by assumption, any sub-pipeline P̀ charged to e only
fires once per iteration of the repeat loop (it could only be more
than once if a nearer recursive call had multiple iterations). Thus,
if there are q iterations, then there is at most q

∑
P̀ ∈〈i,k〉O(M/B) =

O(q · total(i,k)) work charged to e. Moreover, there must be at
least Ω(q · total(i,k)) data moving through edge e to cause q ≥ 1
iterations (due to bounded buffer size in case 1 or 2). Thus, the
cost charged per data on e is at most O(1/B), or O(X gain(e)/B) in
total. Summing across all edges in C completes the proof.

We now argue that the cache-oblivious schedule shown in Fig-
ure 1 is asymptotically optimal given constant factor memory aug-
mentation.

LEMMA 5. If the optimal algorithm for scheduling pipelines
has M memory and incurs Q cache misses, then the recursive
schedule in Figure 1 incurs O(Q) cache misses given O(M) mem-
ory.

PROOF. Our previous lower bound [3] argues the following: Con-
sider any arbitrary partition of the pipeline into contiguous seg-
ments S1,S2, . . . ,Sk such that each segment has total size at least
2M , where M is the memory afforded to the (optimal) algorithm.
Define gmi = mine∈Si gain(e) to be the smallest gain edge within
segment Si. On processing X inputs (for large enough X), the op-
timal algorithm incurs Ω((X/B)

∑k
i=1 gmi) cache misses. In other

words, the optimal algorithm has to “pay for” the minimum-gain
edge of any segment with size 2M . While our previous statement
of the lower bound [3] is with respect to the discrete model, the
proof does not leverage discreteness, and hence the bound applies
to the continuous model as well.

Our upper bound (Theorem 4) states that the cache-oblivious al-
gorithm need only “pay for” edges crossing certain partitions. It
remains only to show that these edges also contribute to the lower
bound. Specifically, a size-t >M segment is subdivided by splitting
it at the minimum-gain edge in its middle size-t/3 subsegment (Fig-
ure 1, Line 4). As long as t/3 > 2M , the optimal algorithm must
also pay for this edge. Setting M = M/6 implies that all of these
crossing edges must also be paid for by the optimal algorithm with
M memory. In conclusion, the number of cache misses incurred by
the cache-oblivious scheduler is at most a constant factor more than
the optimal algorithms cache misses if the cache-oblivious sched-
uler has constant factor more memory.

3. CONCLUSIONS
We have presented a cache-oblivious scheduling algorithm for

streaming pipelines based on recursive partitioning of the pipeline.
This algorithm is asymptotically optimal given constant factor mem-
ory augmentation under the continuous assumption — that is, when
each module of the pipeline can consume and produce fractional
items. Under the more realistic non-continuous assumption — when
a module can only fire when it can consume integral number of
items equal to its input rate — the problem of cache-oblivious
scheduling remains open. In addition, the problem of cache-oblivious
scheduling of streaming applications which can be described using
directed acyclic graphs (instead of simple linear chains) also re-
mains open.

Acknowledgements
This research was supported by NSF grants CCF-1218017, CCF-
1150036, and CCF-1218188.

4. REFERENCES
[1] A. Aggarwal and J. S. Vitter. The input/output complexity of

sorting and related problems. Communications of the ACM,
31(9):1116–1127, September 1988.

[2] K. Agrawal, A. Benoit, and Y. Robert. Mapping linear
workflows with computation/communication overlap. In
Proceedings of the IEEE International Conference on
Parallel and Distributed Systems (ICPADS), pages 195–202,
Washington, DC, USA, 2008. IEEE Computer Society.

[3] K. Agrawal, J. T. Fineman, J. Krage, C. E. Leiserson, and
S. Toledo. Cache-conscious scheduling of streaming
applications. In Proceedings of the ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages
236–245, June 2012.

[4] M. A. Bender, E. Demaine, and M. Farach-Colton.
Cache-oblivious B-trees. In Proceedings of the 41st Annual
Symposium on Foundations of Computer Science (FOCS),
pages 399–409, 2000.

[5] S. M. Farhad, Y. Ko, B. Burgstaller, and B. Scholz.
Orchestration by approximation mapping stream programs
onto multicore architectures. ACM SIGPLAN Notices,
46:357–368, 2011.

[6] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. ACM Transactions on
Algorithms, January 2012.

[7] GNU Radio, 2001. Software, gnuradio.org.
[8] U. J. Kapasi, P. Mattson, W. J. Dally, J. D. Owens, and

B. Towles. Stream scheduling. Concurrent VLSI
Architecture Tech Report 122, Stanford University,
Computer Systems Laboratory, March 2002.

[9] M. Karczmarek, W. Thies, and S. Amarasinghe. Phased
scheduling of stream programs. ACM SIGPLAN Notices,
38(7):103–112, 2003.

[10] LabVIEW, 2011. Software, www.ni.com/labview.
[11] Mathworks. Simulink User’s Guide, 2011. Release 2011b.
[12] A. Moonen, M. Bekooij, R. Van Den Berg, and

J. Van Meerbergen. Cache aware mapping of streaming
applications on a multiprocessor system-on-chip. In
Proceeings of the Conference on Design, Automation and
Test in Europe (DATE), pages 300–305, 2008.

[13] J. Sermulins, W. Thies, R. Rabbah, and S. Amarasinghe.
Cache aware optimization of stream programs. ACM
SIGPLAN Notices, 40(7):115–126, 2005.

[14] W. Thies, M. Karczmarek, and S. P. Amarasinghe. Streamit:
A language for streaming applications. In Proceedings of the
International Conference on Compiler Construction (CC),
pages 179–196, London, UK, 2002. Springer-Verlag.

81

