
Scheduling Irregular Parallel Computations
on Hierarchical Caches

Guy E. Blelloch
Carnegie Mellon University

Pittsburgh, PA USA
guyb@cs.cmu.edu

Jeremy T. Fineman
Carnegie Mellon University

Pittsburgh, PA USA
jfineman@cs.cmu.edu

Phillip B. Gibbons
Intel Labs Pittsburgh
Pittsburgh, PA USA

phillip.b.gibbons@intel.com

Harsha Vardhan Simhadri
Carnegie Mellon University

Pittsburgh, PA USA
harshas@cs.cmu.edu

ABSTRACT
For nested-parallel computations with low depth (span, crit-
ical path length) analyzing the work, depth, and sequential
cache complexity suffices to attain reasonably strong bounds
on the parallel runtime and cache complexity on machine
models with either shared or private caches. These bounds,
however, do not extend to general hierarchical caches, due
to limitations in (i) the cache-oblivious (CO) model used
to analyze cache complexity and (ii) the schedulers used to
map computation tasks to processors. This paper presents
the parallel cache-oblivious (PCO) model, a relatively simple
modification to the CO model that can be used to account
for costs on a broad range of cache hierarchies. The first
change is to avoid capturing artificial data sharing among
parallel threads, and the second is to account for parallelism-
memory imbalances within tasks. Despite the more restric-
tive nature of PCO compared to CO, many algorithms have
the same asymptotic cache complexity bounds.

The paper then describes a new scheduler for hierarchi-
cal caches, which extends recent work on “space-bounded
schedulers” to allow for computations with arbitrary work
imbalance among parallel subtasks. This scheduler attains
provably good cache performance and runtime on parallel
machine models with hierarchical caches, for nested-parallel
computations analyzed using the PCO model. We show
that under reasonable assumptions our scheduler is “work
efficient” in the sense that the cost of the cache misses are
evenly balanced across the processors—i.e., the runtime can
be determined within a constant factor by taking the total
cost of the cache misses analyzed for a computation and di-
viding it by the number of processors. In contrast, to further
support our model, we show that no scheduler can achieve
such bounds (optimizing for both cache misses and runtime)
if work, depth, and sequential cache complexity are the only
parameters used to analyze a computation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’11, June 4–6, 2011, San Jose, California, USA
Copyright 2011 ACM 978-1-4503-0743-7/11/06 ...$10.00.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; D.2.8 [Software Engineering]:
Metrics—complexity measures, performance measures; D.1.3
[Programming Techniques]: Concurrent Programming—
Parallel programming

General Terms
Algorithms, Theory

Keywords
Parallel hierarchical memory, Cost models, Schedulers, Anal-
ysis of parallel algorithms, Cache complexity

1. INTRODUCTION
Because of limited bandwidths on real parallel machines

locality can be critical to achieving good performance for
parallel programs. To account for this in the design of algo-
rithms, many locality-aware parallel models have been sug-
gested [2,6,18,19,23,24]. This work has contributed signifi-
cantly to our understanding of locality in parallel algorithms.

With the advent of multicores most computer users have
a parallel machine on their desk or lap, and these are all
based on a multi-level cache hierarchy with a 50–200X fac-
tor difference between the access time to the first level cache
and main memory (whether used sequentially or in parallel).
Fig. 1 shows, for example, the memory hierarchies for the
current generation desktop/servers from Intel, AMD, and
IBM. Correspondingly there has been significant recent work
on parallel cache based locality [1,4,5,7,9,10,12–14,21,25].
The work has fallen into two main classes. One class involves
designing algorithms directly for the machine and having
the algorithm designer explicitly allocate tasks to proces-
sors. This includes the work by Arge et al. [4] on designing
algorithms directly for a p-processor machine with one layer
of private caches (the PEM), and by Valiant [25] on algo-
rithms for a hierarchical cache with unit-size cache lines (the
Multi-BSP). The other class involves dynamic parallelism in
which the algorithm designer specifies the full parallelism of
the computation, typically much more than is available on
a real machine, and analyzes the cache cost in an abstract
cost model not directly corresponding to a parallel machine.
A scheduler is then responsible for dynamically mapping the

computation onto the processors in a manner that bounds
the cost as a function of the analyzed costs. Dynamic paral-
lelism has important advantages, including being much sim-
pler, potentially machine independent, and much closer to
how users actually code on these machines using languages
such as OpenMP, Cilk++, Intel TBB, and the Microsoft
Task Parallel Library. However, the abstraction makes it
harder to achieve good performance.

A pair of common abstract measures for capturing par-
allel cache based locality are the number of misses given a
sequential ordering of a parallel computation [1, 9, 10, 21],
and the depth (span, critical path length) of the compu-
tation. The cache-oblivious (CO) model (a.k.a., the ideal
cache model) [20] can be used for analyzing the misses in the
sequential ordering, giving a cache complexity Q(n; M, B)
where n is the size of the problem, M is a single cache size
and B a single block size. One can show, for example, that
any nested-parallel computation with sequential cache com-
plexity Q and depth D will cause at most Q + O(pDM/B)
total misses when run with an appropriate scheduler on p
processors, each with a private cache of size M and block
size B [1]. Unfortunately, current dynamic parallelism ap-
proaches have important limitations: they either apply to hi-
erarchies of only private or only shared caches [1,9,10,16,21],
require some strict balance criteria [7,15], or require a joint
algorithm/scheduler analysis [7, 13–16].

In this paper we present a model and a scheduler that
enable an algorithm analysis that is independent of
both the parallel machine and the scheduler, allow
for irregular computations with arbitrary imbalance
among tasks, and work on hierarchies of shared and
private caches (as in Fig. 1). The approach is limited to
nested-parallel computations, but this includes a very broad
set of algorithms, including most divide-and-conquer, data-
parallel, and CREW PRAM-like algorithms.

The approach is based on three components. The first is a
cache cost model (the Parallel Cache-Oblivious (PCO)
model). As with the standard CO model the cache cost is
derived in terms of a single cache size M and a single block
size B giving a cache complexity Q∗(n; M, B) independent
of the number of processors. The model for a sequential
strand of computation remains the same. When a task t
forks a set of child tasks, however, the child tasks start with
the same cache state; this contrasts with the standard CO
analysis based on a sequential ordering of the child tasks. In
particular if t fits in M all child tasks start with the cache
state of the parent at the fork point, and at the join point
the union of their locations are included in the cache state
of the parent. If the task does not fit in M then the cache
state is emptied at the fork and join points. This model
ignores (incidental) data reuse among parallel subcompu-
tations and accounts for reuse only when there is a serial
relationship between instructions accessing the same data.
As we show, this enables tighter bounds when mapping com-
putations onto, for example, shared caches. For the same M
and B the cache cost in the PCO model may be higher than
in the CO model. For a variety of fundamental parallel al-
gorithms, however, including quicksort, sample sort, matrix
multiplication, matrix inversion, sparse-matrix multiplica-
tion, and convex hulls, the asymptotic bounds are not af-
fected, while the higher baseline enables a provably efficient
mapping to parallel hierarchies for arbitrary nested-parallel
computations.

The second is a new cost metric that penalizes large im-
balance in the ratio of space to parallelism in subtasks. We
present a lower bound that indicates that some form of
parallelism-space imbalance penalty is required. Intuitively
this is because on any given parallel memory hierarchy as
depicted in Fig. 1, the cache resources are linked to the pro-
cessing resources: each cache is shared by a fixed number
of processors. Therefore any large imbalance between space
and processor requirements will require either processors to
be under-utilized or caches to be over-subscribed. As in the
basic PCO model, the cost bQα(n; M, B) for inputs of size
n is asymptotically equal to that of the standard sequential
cache cost Q(n; M, B) for many problems.

The third is a new“space-bounded scheduler”that extends
recent work of Chowdhury et al. [14]. A space-bounded
scheduler accepts dynamically parallel programs that have
been annotated with space requirements for each recursive
subcomputation called a “task.” These schedulers run ev-
ery task in a cache that just fits it (i.e., no lower cache
will fit it), and once assigned, tasks are not migrated across
caches. We show that any space-bounded scheduler guar-
antees that the number of misses across all caches at each
level i of the machine’s hierarchy is at most Q∗(n; Mi, Bi),
where Q∗(n; Mi, Bi) is the cost in the basic PCO model with
problem size n, cache size Mi, and cache-line size Bi.

In contrast to previous work, we describe a space-bounded
scheduler that allows parallel subtasks to be scheduled on
different levels in the memory hierarchy, thus allowing sig-
nificant imbalance in the sizes of tasks. Furthermore, we
show that our space-bounded scheduler achieves efficient to-
tal running time, as long as the parallelism of the machine
is sufficient with respect to the parallelism of the algorithm.
Specifically, we show that our scheduler executes a cache-
oblivious computation on a homogeneous h-level parallel
memory hierarchy having p processors in time:

O

vh

Ph
i=0

bQα(n; Mi, B) · Ci

p

!
,

where Mi is the size of each level-i cache, B is the uniform
cache-line size, Ci is the cost of a level-i cache miss, and vh

is an overhead defined in Theorem 6. For any algorithms

where bQα(n; M, B) is asymptotically equal to the optimal
sequential cache-oblivious cost Q(n; M, B) for the problem,
and under conditions where vh is constant, this is optimal
across all levels of the cache. For example, a parallel sample

sort (that uses imbalanced subtasks) gives bQα(n; M, B) =
O((n/B) logM (n/B)), which matches the optimal sequential
cache complexity for sorting, implying optimality on parallel
cache hierarchies using our scheduler.

2. PRELIMINARIES
Computation Model. As in most of the prior work cited
in Section 1, this paper considers algorithms with nested par-
allelism, allowing arbitrary dynamic nesting of parallel loops
and fork-join constructs but no other synchronizations. This
corresponds to the class of algorithms with series-parallel
dependence graphs (see Fig. 2). Computations can be de-
composed into “tasks”, “parallel blocks” and “strands” re-
cursively as follows. As a base case, a strand is a serial se-
quence of instructions not containing any parallel constructs
or subtasks. A task is formed by serially composing k ≥ 1
strands interleaved with (k−1)“parallel blocks” (denoted by

Memory: up to 1 TB

4 of these

24 MB

32 KB

128 KB 128 KB

8 of these

P

32 KB

P

24 MB

32 KB

128 KB 128 KB

8 of these

P

32 KB

P

L3

L2

L1

Memory: up to 512 GB

4 of these

12 MB

64 KB

512 KB 512 KB

12 of these

P

64 KB

P

12 MB

64 KB

512 KB 512 KB

12 of these

P

64 KB

P

L3

L2

L1

(a) 32-processor Intel Xeon 7500 (b) 48-processor AMD Opteron 6100

196 MB 196 MB

Memory: Up to 3 TB

4 of these

L4

L3

L2

L1

6 of these

24 MB

1.5 MB 1.5 MB

4 of these

128 KB

P

128 KB

P

24 MB

1.5 MB 1.5 MB

4 of these

128 KB

P

128 KB

P

6 of these

24 MB

1.5 MB 1.5 MB

4 of these

128 KB

P

128 KB

P

24 MB

1.5 MB 1.5 MB

4 of these

128 KB

P

128 KB

P

Memory: Mh = ∞, Bh

Mh−1, Bh−1 Mh−1, Bh−1 Mh−1, Bh−1 Mh−1, Bh−1

M1, B1 M1, B1 M1, B1 M1, B1 M1, B1

h

fhfh−1 . . . f1

fh

f1
P P P f1

P P P f1
P P P f1

P P P f1
P P P

Cost: Ch−1

Cost: Ch−2

(c) 96-processor IBM z196 (d) PMH model of [3]

Figure 1: Memory hierarchies of current generation architectures from Intel, AMD, and IBM, plus an example
abstract parallel hierarchy model. Each cache (rectangle) is shared by all processors (circles) in its subtree.

f

Task

Strand

Parallel Block

g

Figure 2: Decomposing the computation: tasks,
strands and parallel blocks

t = s1; b1; . . . ; sk). A parallel block is formed by composing
in parallel one or more tasks with a fork point before all of
them and a join point after (denoted by b = t1‖t2‖ . . . ‖tk).
A parallel block can be, for example, a parallel loop or some
constant number of recursive calls. The top-level computa-
tion is a task. The span (a.k.a., depth) of a computation
is the length of the longest path in the dependence graph.

The nested-parallel model assumes all strands share a sin-
gle memory. We say two strands are concurrent if they are
not ordered in the dependence graph. Concurrent reads (i.e.,
concurrent strands reading the same memory location) are
permitted, but not data races (i.e., concurrent strands that
read or write the same location with at least one write).

Machine Model: The Parallel Memory Hierarchy
model. Following prior work addressing multi-level parallel

hierarchies [3,7,10,12–14,25], we model parallel machines us-
ing a tree-of-caches abstraction. For concreteness, we use a
symmetric variant of the parallel memory hierarchy (PMH)
model [3] (see Fig. 1(d)), which is consistent with many other
models [7, 10, 12–14]. A PMH consists of a height-h tree of
memory units, called caches. We assume that each cache is
an ideal cache. The leaves of the tree are at level-0 and any
internal node has level one greater than its children. The
leaves (level-0 nodes) are processors, and the level-h root
corresponds to an infinitely large main memory. We do not
assume inclusive caches, meaning that a memory location
may be stored in a low-level cache without being stored at
all ancestor caches. We can extend the model to support
inclusive caches, but then we must assume larger cache sizes
to accommodate the inclusion.

Each level in the tree is parameterized by four parame-
ters: M i, Bi, Ci, and fi. We denote the capacity of each
level-i cache by M i. Memory transfers between a cache and
its child occur at the granularity of cache lines. We use
Bi ≥ 1 to denote the line size of a level-i cache, or the size
of contiguous data transferred from a level-(i+1) cache to its
level-i child. If a processor accesses data that is not resident
in its level-1 cache, a level-1 cache miss occurs. More gen-
erally, a level-(i+1) cache miss occurs whenever a level-i
cache miss occurs and the requested line is not resident in
the parent level-(i + 1) cache; once the data becomes resi-
dent in the level-(i+1) cache, a level-i cache request may be
serviced by loading the size-Bi+1 line into the level-i cache.
The cost of a level-i cache miss is denoted by Ci ≥ 1, where
this cost represents the amount of time to load the corre-
sponding line into the level-i cache under full load. Thus,

Task t forks subtasks t1 and t2,
with κ = {l1, l2, l3}

t1 accesses l1, l4, l5 incurring 2 misses
t2 accesses l2, l4, l6 incurring 2 misses

At the join point: κ′ = {l1, l2, l3, l4, l5, l6}

Figure 3: Example applying the PCO model (Defi-
nition 2) to a parallel block. Here, Q∗(t; M, B; κ) = 4.

Ci models both the latency and the bandwidth constraints
of the system (whichever is worse under full load). The cost
of an access at a processor that misses at all levels up to
and including level-j is thus C′

j =
Pj

i=0 Ci. We use fi ≥ 1
to denote the number of level-(i − 1) caches below a single
level-i cache, also called the fanout . As in [1], we assume
the model maintains DAG consistent shared memory with
the BACKER algorithm [11]. This is a weak consistency
model and assumes that cache lines are merged on writing
back to memory thus avoiding “false sharing” issues.

We assume that the number of lines in any nonleaf cache
is greater than the sums of the number of lines in all its
immediate children, i.e., M i/Bi ≥ fiM i−1/Bi−1 for 1 <
i ≤ h, and M1/B1 ≥ f1. The miss cost Ch and line size
Bh are not defined for the root of the tree as there is no
level-(h+1) cache. The leaves (processors) have no capacity
(M0 = 0), and they have B0 = C0 = 1. Also, Bi ≥ Bi−1

for 0 < i < h. Finally, we call the entire subtree rooted at
a level-i cache a level-i cluster , and we call its child level-
(i−1) clusters subclusters. We use pi =

Qi
j=1 fj to denote

the total number of processors in a level-i cluster.

3. THE PCO MODEL
In this section, we present the Parallel Cache-Oblivious

model, a simple, high-level model for algorithm analysis. As
in the sequential cache-oblivious (CO) model [20], in the
Parallel Cache-Oblivious (PCO) model there is a mem-
ory of unbounded size and a single cache with size M , line-
size B (in words), and optimal (i.e., furthest into the future)
replacement policy. The cache state κ consists of the set of
cache lines resident in the cache at a given time. When a
location in a non-resident line l is accessed and the cache is
full, l replaces in κ the line accessed furthest into the future,
incurring a cache miss.

To extend the CO model to parallel computations, one
needs to define how to analyze the number of cache misses
during execution of a parallel block. Analyzing using a se-
quential ordering of the subtasks in a parallel block (as in
most prior work1) is problematic for mapping to even a sin-
gle shared cache, as the following theorem demonstrates for
the CO model:

Theorem 1. Consider a PMH comprised of a single cache
shared by p > 1 processors, with cache-line size B, cache size
M ≥ pB, and a memory (i.e., h = 2). Then there exists a
parallel block such that for any greedy scheduler2 the number

1Two prior works not using the sequential ordering are the
concurrent cache-oblivious model [5] and the ideal distributed
cache model [21], but both design directly for p processors
and consider only a single level of private caches.
2In a greedy scheduler, a processor remains idle only if there
is no ready-to-execute task.

of cache misses is nearly a factor of p larger than the cache
complexity on the CO model.

Proof. Consider a parallel block that forks off p identical
tasks, each consisting of a strand reading the same set of M
memory locations from M/B blocks. In the CO model, after
the first M/B misses, all other accesses are hits, yielding a
total cost of M/B misses in the CO model.

Any greedy schedule on p processors executes all strands
at the same time, incurring simultaneous cache misses (for
the same line) on each processor. Thus, the parallel block
incurs p(M/B) misses. ut

The gap arises because a sequential ordering accounts for
significant reuse among the subtasks in the block, but a
parallel execution cannot exploit reuse unless the line has
been loaded earlier.

To overcome this difficulty, we instead use an approach
of (i) ignoring any data reuse among the subtasks and (ii)
flushing the cache at each fork and join point of any task
that does not fit within the cache, as follows. Let loc(t; B)
denote the set of distinct cache lines accessed by task t, and
S(t; B) = |loc(t; B)| · B denote its size (also let s(t; B) =
|loc(t; B)| denote the size in terms of number of cache lines).
Let Q(c; M, B; κ) be the cache complexity of c in the sequen-
tial CO model when starting with cache state κ.

Definition 2. [Parallel Cache-Oblivious Model] For cache
parameters M and B the cache complexity of a strand s,
parallel block b, or task t starting at state κ is defined as:
strand:

Q∗(s; M, B; κ) = Q(s; M, B; κ)

parallel block: For b = t1‖t2‖ . . . ‖tk,

Q∗(b; M, B; κ) =

kX
i=1

Q∗(ti; M, B; κ)

task: For t = c1; c2; . . . ; ck,

Q∗(t; M, B; κ) =

kX
i=1

Q∗(ci; M, B; κi−1) ,

where κi = ∅ if S(t; B) > M , and κi = κ ∪i
j=1 loc(cj ; B) if

S(t; B) ≤ M .

We use Q∗(c; M, B) to denote a computation c starting
with an empty cache, Q∗(n; M, B) when n is a parameter
of the computation, and Q∗(c; 0, 1) to denote the compu-
tational work. Note that by setting M to 0, we force the
analysis to count every instruction that touches even a reg-
ister and hence effectively corresponds to instruction count.

Comments on the definition: Since a task t alternates be-
tween strands and parallel blocks the definition effectively
clears the cache at every fork and join point in t when
S(t; B) > M . This is perhaps more conservative than re-
quired but leads to a simple model and does not seem to af-
fect bounds. Since in a parallel block all subtasks start with
the same cache state, no sharing is assumed among paral-
lel blocks. If an algorithms wants to share a value loaded
from memory, then the load should occur before the fork.
The notion of furthest in the future for Q in a strand might
seem ill-defined since the future might entail parallel tasks.
However, all future references fit into cache until reaching
a supertask that does not fit in cache, at which point the

Problem Span Cache Complexity Q∗

Scan (prefix sums, etc.) O(log n) O(dn/Be)
Matrix Transpose (n×m matrix) [20] O(log(n + m)) O(dnm/Be)
Matrix Multiplication (

√
n×

√
n matrix) [20] O(

√
n) O(dn1.5/Be/

√
M + 1)

Matrix Inversion (
√

n×
√

n matrix) O(
√

n) O(dn1.5/Be/
√

M + 1)

Quicksort [22] O(log2 n) O(dn/Be(1 + logdn/(M + 1)e))
Sample Sort [10] O(log2 n) O(dn/BedlogM+2 ne)
Sparse-Matrix Vector Multiply [10] O(log2 n) O(dm/B + n/(M + 1)1−εe)

(m nonzeros, nε edge separators)

Convex Hull (e.g., see [8]) O(log2 n) O(dn/BedlogM+2 ne)
Barnes Hut tree (e.g., see [8]) O(log2 n) O(dn/Be(1 + logdn/(M + 1)e))

Table 1: Cache complexities of some algorithms analyzed in the PCO model. The bounds assume M = Ω(B2).
All algorithms are work optimal and their cache complexities match the best sequential algorithms.

cache is assumed to be flushed. Thus, there is no need to
choose cache lines to evict. For a single strand the model is
equivalent to the cache-oblivious model.

We believe that the PCO model is a simple, effective
model for the cache analysis of parallel algorithms. It retains
much of the simplicity of the ideal cache model, such as ana-
lyzing using only one level of cache. It ignores the complexi-
ties of artificial locality among parallel subtasks. Thus, it is
relatively easy to analyze algorithms in the PCO model (ex-
amples are given in Section 4). Moreover, as we will show in
Section 5, PCO bounds optimally map to cache miss bounds
on each level of a PMH. Finally, although the PCO bounds
are upper bounds, for many fundamental algorithms, they
are tight: they asymptotically match the bounds given by
the sequential ideal cache model, which are asymptotically
optimal. Table 1 presents the PCO cache complexity of a few
such algorithms, including both algorithms with polynomial
span (matrix inversion) and highly imbalanced algorithms
(the block transpose used in sample sort).

4. EXAMPLE PCO ANALYSIS
It is relatively easy to analyze algorithms in the PCO

model. Let us consider first a simple map over an array
which touches each element by recursively splitting the ar-
ray in half until reaching a single element. If the algorithm
for performing the map does not touch any array elements
until recursing down to a single element, then each recursive
task begins with an empty cache state, and hence the cache
performance is Q∗(n; M, B) = n. An efficient implemen-
tation would instead load the middle element of the array
before recursing, thus guaranteeing that a size-Θ(B) recur-
sive subcomputation begins with a cache state containing
the relevant line. We thus have the recurrence

Q∗(n; M, B) =


2Q∗(n

2
; M, B) + O(1) n > B

O(1) n ≤ B ,

which implies Q∗(n; M, B) = O(n/B), matching the sequen-
tial cache complexity.

Quicksort is another algorithm that is easy to analyze in
this model. A standard quicksort analysis for work [17] ob-
serves that all work can be amortized against comparisons
of keys with a pivot. The probability of comparing keys of
rank i and j > i is at most 2/(j − i), i.e., the probability
of selecting i or j as a pivot before any element in between.
The expected work is thus

Pn
i=1

Pn
j>i 2/(j−i) = Θ(n log n).

Extending this analysis to either the CO or the PCO models

is identical—comparisons become free once the correspond-
ing subarray fits in memory. Specifically, for nearby keys i
and j < i + M/3, no paid comparison occurs if a key be-
tween i − M/3 and i − 1 is chosen before i and if j + 1 to
j +M/3 is chosen before j. Summing over all keys gives ex-
pected number of paid comparisons

Pn
i=1

Pn
j>i+M/3 2/(j −

1)+
Pn

i=1

P
j<i+M/3 6/M = Θ(n logdn/(M +1)e+n). Com-

pleting the analysis (dividing this cost by B) entails observ-
ing that each recursive quicksort scans the subarray in order,
and thus whenever a comparison causes a cache miss, we can
charge Θ(B) comparisons against the same cache miss.

The rest of the algorithms in Table 1 can be similarly an-
alyzed without difficulty, observing that for the original CO
analyses, the cache complexities of the parallel subtasks were
already analyzed independently assuming no data reuse.

5. BASIC SPACE-BOUNDED SCHEDULER
In this section we describe a class of schedulers, called

space-bounded schedulers, and show (Theorem 3) that such
schedulers have cache complexity on the PMH machine model
that matches the PCO cache complexity. Space-bounded
schedulers were introduced by Chowdhury et al. [14], but
their paper does not use the PCO model and hence can-
not show the same kind of optimality as Theorem 3. This
section briefly describes a “greedy-space-bounded” scheduler
that performs very well in terms of runtime on very balanced
computations, and uses it to highlight some of the difficul-
ties in designing a scheduler (such as the one in Section 7)
that permits imbalance.

Space-Bounded Schedulers. A “space-bounded sched-
uler” is parameterized by a global dilation parameter 0 <
σ ≤ 1 and machine parameters {Mi, Bi, Ci, fi}. Given these
parameters, we define a level-i task to be a task that fits
within a σ fraction of the level-i cache, but not within a σ
fraction of the level-(i − 1) cache, i.e., S(t; Bi) ≤ σMi and
S(t; Bi−1) > σMi−1. We call t a maximal level-i task if it
is a level-i task but its parent (i.e., minimal containing) task
is not. The top level task (no parent) is considered maximal.
We call a strand a level-i strand if its minimal containing
task is a level-i task.

A space-bounded scheduler [14] is one that limits the mi-
gration of tasks across caches and the number of outstanding
subtasks as follows. Consider any level-i task t. Once any
of t is executed by some processor below level-i cache Ui, all
remaining strands of t must be executed by the same level-i
cluster. We say that t is anchored at Ui. Moreover, at any

point in time, consider the maximal level-i tasks t1, t2, . . . , tk

anchored to level-i cache Ui. Then
Pk

j=1 S(tj ; Bi) ≤ Mi.
That is to say, the total space used by tasks anchored to Ui

does not exceed Ui’s capacity. Finally, we consider strands.
Whereas a task is anchored to a single cache, a level-i strand
is anchored to caches along a level-i to level-1 path in the
memory hierarchy. When a level-i strand is anchored to a
level-j < i cache, it is treated as a task that takes σMj

space, thereby preventing (many) other tasks/strands from
being anchored at the same cache.

We relax the usual definition of greedy scheduler in the
following: A greedy-space-bounded scheduler is a space-
bounded scheduler in which a processor remains idle only
if there is no ready-to-execute strand that can be anchored
to the processor (and appropriate ancestor caches) without
violating the space-bounded constraints.

Cache Bounds: PCO Cache Complexity is Optimal
For Space-Bounded Schedulers. The following theorem
implies that a nested-parallel computation scheduled with
any space-bounded scheduler achieves optimal cache perfor-
mance, with respect to the PCO model. A main idea of the
proof is that each task reserves sufficient cache space and
hence never needs to evict a previously loaded cache line.

Theorem 3. Consider a PMH and any dilation parame-
ter 0 < σ ≤ 1. Let t be a level-i task. Then for all memory-
hierarchy levels j ≤ i, the number of level-j cache misses
incurred by executing t with any space-bounded scheduler is
at most Q∗(t; σMj , Bj).

Proof. Let Ui be the level-i cache to which t is assigned.
Observe that t uses space at most σMi. Moreover, by defini-
tion of the space-bounded scheduler, the total space needed
for tasks assigned to Ui is at most Mi, and hence no line
from t need ever be evicted from U ’s level-i cache. Thus,
an instruction x in t accessing a line ` does not exhibit a
level-i cache miss if there is an earlier-executing instruction
in t that also accesses `. Any instruction serially preceding
x must execute earlier than x. Hence, the parallel cache
complexity Q∗(t; σMi, Bi) is an upper bound on the actual
number of level-i cache misses.

We next extend the proof for lower-level caches. First,
let us consider a level-i strand s belonging to task t. The
PCO model states that for any Mj<i, the cache complex-
ity of a level-i strand matches the serial cache complexity
of the strand beginning from an initially empty state. Con-
sider each cache partitioned such that a level-i strand can
use only the σMj capacity of a level-(j < i) cache awarded
to it by the space-bounded scheduler. Then the number of
misses is indeed as though the strand executed on a serial
level-(i − 1) memory hierarchy with σMj cache capacity at
each level j. Hence, Q∗(s; σMj , Bj) is an upper bound on
the actual number of level-j cache misses incurred while exe-
cuting the strand s. (The actual number may be less because
an optimal replacement policy may not partition the caches
and the cache state is not initially empty.)

Finally, to complete the proof for all memory-hierarchy
levels j, we assume inductively that the theorem holds for all
maximal subtasks of t. The PCO model assumes an empty
initial level-j cache state for any maximal level-j subtask of
t, as S(t; Bj) > σMj . Thus, the level-j cache complexity for
t is defined as Q∗(t; σMj , Bj) =

P
t′∈A(t) Q∗(t′; σMj , Bj , ∅),

where A(t) is the set of all level-i strands and nearest max-

imal subtasks of t. Since the theorem holds inductively for
those tasks and strands in A(t), it holds for t. ut

In contrast, there is no such optimality result for the
CO model: Theorem 1 (showing a factor of p gap) readily
extends to any greedy-space-bounded scheduler, using the
same proof.

Runtime Bounds: A Simple Space-Bounded Sched-
uler and its Limitations. While all space-bounded sched-
ulers achieve optimal cache complexity, they vary in total
running time. Greedy-space-bounded schedulers, like the
scheduler in [14], perform well for computations that are
very well balanced. At a high level, a greedy-space-bounded
scheduler operates on tasks anchored at each cache. These
tasks are “unrolled” to produce maximal tasks, which are
in turn anchored at descendant caches. If a processor P
becomes idle and a strand is ready, we assume P begins
working on a strand immediately (i.e., we ignore scheduler
overheads). If multiple strands are available, one is chosen
arbitrarily. Our main scheduler is based on a greedy-space-
bounded scheduler, and an operational description of both
is included in [8].

Chowdhury et al. [14] present analyses of a (nearly) greedy-
space-bounded scheduler (which includes minor enhance-
ments violating the greedy principle). These analyses are
algorithm specific and rely on the balance of the underly-
ing computation. A more general performance theorem is
included in the associated technical report [8]. Along with
our main theorem (Theorem 6), these analyses all use recur-
sive application of Brent’s theorem to obtain a total running
time: small recursive tasks are assumed inductively to exe-
cute quickly, and the larger tasks are analyzed using Brent’s
theorem with respect to a single-level machine of coarser
granularity.

The following are the types of informal structural restric-
tions imposed on the underlying algorithms to guarantee
efficient scheduling with a greedy-space-bounded scheduler
and previous work. For more precise, sufficient restrictions,
see the technical report [8].

1. When multiple tasks are anchored at the same cache,
they should have similar structure and work. More-
over, none of them should fall on a much longer path
through the computation. If this condition is relaxed,
then some anchored task may fall on the critical path.
It is important to guarantee each task a fair share of
processing resources without leaving many processors
idle.

2. Tasks of the same size should have the same paral-
lelism.

3. The nearest maximal descendant tasks of a given task
should have roughly the same size. Relaxing this con-
dition allows two or more tasks at different levels of the
memory hierarchy to compete for the same resources.
Guaranteeing that each of these tasks gets enough pro-
cessing resources becomes a challenge.

In addition to these balance conditions, the previous anal-
yses exploit preloading of tasks: the memory used by a task
is assumed to be loaded (quickly) into the cache before exe-
cuting the task. For array-based algorithms preloading is a
reasonable requirement. When the blocks to be loaded are
not contiguous, however, it may be computationally chal-

lenging to determine which blocks should be loaded. Re-
moving the preloading requirement complicates the analy-
sis, which then must account for high-level cache misses that
may occur as a result of tasks anchored at lower-level caches.

Our new scheduler in Section 7 relaxes all of these bal-
ance conditions, allowing for more asymmetric computa-
tions. Moreover, we do not assume preloading. To facili-
tate analysis of less regular computations, we first define a
more holistic measure of the balance of the algorithm in Sec-
tion 6 and then prove our performance bounds with respect
to this metric. This balance metric has the added benefit of
separating the algorithm analysis from the scheduler.

6. EXTENDING PCO FOR IMBALANCE
In the PMH (or any machine with shared caches), all

caches are associated with a set of processors. It therefore
stands to reason that if a task needs memory M but does not
have sufficient parallelism to make use of a cache of appro-
priate size, that either processors will sit idle or additional
misses will be required. This might be true even if there is
plenty of parallelism on average in the computation. The
following lower-bound makes this intuition more concrete.

Theorem 4. (Lower Bound) Consider a PMH comprised
of a single cache shared by p > 1 processors with parameters
B = 1, M and C, and a memory (i.e., h = 2). Then
for all r ≥ 1, there exists a computation with n = rpM
memory accesses, Θ(n/p) span, and Q∗(M, B) = pM , such
that for any scheduler, the runtime on the PMH is at least
nC/(C + p) ≥ (1/2)min(n, nC/p).

Proof. Consider a computation that forks off p > 1 par-
allel tasks. Each task is sequential (a single strand) and
loops over touching M locations, distinct from any other
task (i.e., a total of Mp locations are touched). Each task
then repeats touching the same M locations in the same
order a total of r times, for a total of n = rMp accesses.
Because M fits within the cache, only a task’s first M ac-
cesses are misses and the rest are hits in the PCO model.
The total cache complexity is thus only Q∗(M, B) = Mp for
B = 1 and any r ≥ 1.

Now consider an execution (schedule) of this computation
on a shared cache of size M with p processors and a miss
cost of C. Divide the execution into consecutive sequences
of M timesteps, called rounds. Because it takes 1 (on a
hit) or C ≥ 1 (on a miss) units of time for a task to access a
location, no task reads the same memory location twice in
the same round. Thus, a memory access costs 1 only if it
is to a location in memory at the start of the round and C
otherwise. Because a round begins with at most M locations
in memory, the total number of accesses during a round is at
most (Mp−M)/C+M by a packing argument. Equivalently,
in a full round, M processor steps execute at a rate of 1
access per step, and the remaining Mp−M processor steps
complete 1/C accesses per step, for an average “speed” of
1/p + (1 − 1/p)/C < 1/p + 1/C accesses per step. This
bound holds for all rounds except the first and last. In the
first round, the cache is empty, so the processor speed is
1/C. The final round may include at most M fast steps,
and the remaining steps are slow. Charging the last round’s
fast steps to the first round’s slow steps proves an average
“speed”of at most 1/p+1/C accesses per processor timestep.
Thus, the computation requires at least n/(p(1/p+1/C)) =
nC/(C +p) time to complete all accesses. When C ≥ p, this

time is at least nC/(2C) = n/2. When C ≤ p, this time is
at least nC/(2p). ut

The proof shows that even though there is plenty of par-
allelism overall and a fraction of at most 1/r of the accesses
are misses in Q∗, an optimal scheduler either executes tasks
(nearly) sequentially (if C ≥ p) or incurs a cache miss on
(nearly) every access (if C ≤ p).

This indicates that some cost must be charged to account
for the space-parallelism imbalance. We extend PCO with
a cost metric that charges for such imbalance, but does not
charge for imbalance in subtask size. When coupled with
our scheduler in Section 7, the metric enables PCO bounds
to effectively map to PMH runtime, even for highly-irregular
computations.

The metric aims to estimate the degree of parallelism that
can be utilized by a symmetric hierarchy as a function of
the size of the computation. Intuitively, a computation of
size S with “parallelism” α ≥ 0 should be able to use p =
O(Sα) processors effectively. This intuition works well for
algorithms where parallelism is polynomial in the size of the
problem.

More formally, we define a notion of effective cache com-

plexity bQα(c) for a computation c based on the definition

of Q∗. Just as for Q∗, bQα() for tasks, parallel blocks and
strands is defined inductively based on the composition rules
described in section 2 for building a computation. (Note that
since work is just a special case of Q∗, obtained by substi-
tuting M = 0, the following metric can be used to compute
effective work just like effective cache complexity).

Definition 5. [PCO extended for imbalance] For cache
parameters M and B and parallelism α, the effective cache
complexity of a strand s, parallel block b, or task t starting
at cache state κ is defined as:
strand: Let t be the nearest containing task of strand sbQα(s; M, B; κ) = Q∗(s; M, B; κ)× s(t; B)α

parallel block: For b = t1‖t2‖ . . . ‖tk in task t,bQα(b; M, B; κ) =

max

(
s(t; B)α maxi

n bQα(ti;M,B;κ)

s(ti;B)α

o
(depth dominated)P

i
bQα(ti; M, B; κ) (work dominated)

task: For t = c1; c2; . . . ; ck,

bQα(t; M, B; κ) =

kX
i=1

bQα(ci; M, B; κi) ,

where κi is defined as in Definition 2.

In the rule for parallel block, the depth dominated term
corresponds to limiting the number of processors available to
do the work on each subproblem ti to s(ti)

α. This throttling

yields a span (depth) bQα(ti)/s(ti)
α for each task and the

effective cache complexity is then the maximum of the spans
over the subtasks multiplied by the number of processors for
the parallel block b, which is s(t; B)α (see Fig. 4).

We say that an algorithm is α-efficient if Q∗(n; M, B) =

O(bQα(n; M, B)), where n denotes the input size. This α-
efficiency occurs trivially if the work term always dominates,
but can also happen if sometimes the depth term dominates.
The maximum α for which an algorithm is α-efficient spec-
ifies the effective parallelism .

s(t)α

̂Q(b)
s(t)α

s(t2)
α

̂Q(b) = ̂Q(t1) + ̂Q(t2) + ̂Q(t3)

s(t1)
α

s(t3)
α

s(t)α

̂Q(b)
s(t)α =

̂Q(t2)
s(t2)α

̂Q(t2)
s(t2)α

s(t2)
α

Parallel block b; area denotes ̂Q(b)

s(t1)
α

s(t3)
α

Figure 4: Two examples of Definition 5 applied to a parallel block b = t1 ‖ t2 ‖ t3 belonging to task t. The
shaded rectangles represent the subtasks and the white rectangle represents the parallel block b. Subtask

rectangles have fixed area (bQα(ti), determined recursively) and maximum width s(ti)
α. The left example is

work dominated: the total area of b’s subtasks is larger than any depth subterms, and determines the areabQα(b) = bQα(t1) + bQα(t2) + bQα(t3). The right example is depth dominated: the height of a subtask t2 determines

the height of b and hence the area is (s(t)/s(t2))
α bQα(t2).

bQα(·) is an attribute of an algorithm, and as such can be
analyzed irrespective of the machine and the scheduler. Ap-
pendix B of the associated report [8] illustrates the analysis

for bQα(·) and effective parallelism for several algorithms.
Note that, as illustrated in Fig. 4(left) and the analysis
of algorithms in the report, good effective parallelism can
be achieved even when there is significant work imbalance
among subtasks. Finally, depth dominated term implicitly
includes the span so we do not need a separate span (depth)
cost in our model.

7. SCHEDULER
This section modifies the space-bounded scheduler to ad-

dress some of the balance concerns discussed in Section 5.
These modification restrict the space bounded scheduler,
potentially forcing more processors to remain idle. These
restriction, nevertheless, allow nicer provable performance
guarantees.

The main performance theorem for our scheduler is the
following, which is proven in Section 8. This theorem does
not assume any preloading of the caches, but we do assume
that all block sizes are the same (except at level 0). Here, the
machine parallelism β is defined as the minimum value such
that for all hierarchy levels i > 1, we have fi ≤ (Mi/Mi−1)

β ,
and f1 ≤ (M1/3B1)

β . Aside from the overhead vh (defined
in the theorem), this bound is optimal in the PCO model
for a PMH with 1/3-rd the given memory sizes. Here, k
is a tunable constant scheduler parameter with 0 < k < 1,
discussed later in this section. Observe that the vh overhead
reduces significantly (even down to a constant) if the ratio
of memory sizes is large but the fanout is small (as in the
machines in Figure 1), or if α � β.3

Theorem 6. Consider an h-level PMH with B = Bj for
all 1 ≤ j ≤ h, and let t be a task such that S(t; B) >
fhMh−1/3 (the desire function allocates the entire hierar-
chy to such a task) with effective parallelism α ≥ β, and let

3For example, vh < 10 on the Xeon 7500 as α → 1.

α′ = min {α, 1}. The runtime of t is no more than:Ph−1
j=0

bQα(t; Mj/3, Bj) · Cj

ph
· vh, where overhead vh is

vh = 2

h−1Y
j=1

„
1

k
+

fj

(1− k)(Mj/Mj−1)α′

«
.

Since much of the scheduler matches the greedy-space-
bounded scheduler from Section 5, only the differences are
highlighted here. An operational description of the scheduler
can be found in the associated technical report [8].

There are three main differences between this scheduler
and greedy-space-bounded scheduler from Section 5. First,
we fix the dilation to σ = 1/3 instead of σ = 1. Whereas
reducing σ worsens the bound in Theorem 3 (only by a con-
stant factor for cache-oblivious algorithms), this factor of
1/3 allows us more flexibility in scheduling.

Second, to cope with tasks that may skip levels in the
memory hierarchy, we associate with each cache a notion
of how busy the descending cluster is, to be described more
fully later. For now, we say that a cluster is saturated if it is
“too busy” to accept new tasks, and unsaturated otherwise.
The modification to the scheduler here is then restricting it
to anchor maximal tasks only at unsaturated caches.

Third, to allow multiple differently sized tasks to share a
cache and still guarantee fairness, we partition each of the
caches, awarding ownership of specific subclusters to each
task. Specifically, whenever a task t is anchored at U , t is
also allocated some subset Ut of U ’s level-(i − 1) subclus-
ters, essentially granting ownership of the clusters to t. This
allocation restricts the scheduler further in that now t may
execute only on Ut instead of all of U . This allocation is
exclusive in that a cluster may be allocated to only one task
at a time, and no new tasks may be anchored at any cluster
V ∈ Ut except descendent tasks of t. Moreover, tasks may
not skip levels through V , i.e., a new level-(j < i−1) subtask
of a level-k > i task may not be anchored at any descendent
cache of V . Tasks that skipped levels in the hierarchy before
V was allocated may have already been anchored at or be-
low V — these tasks continue running as normal, and they
are the main reason for our notion of saturation.

A level-i strand is allocated every cache to which it is an-

chored, i.e., exactly one cache at every level below i. In
contrast, a level-i task t is anchored only to a level-i cache
and allocated potentially many level-(i− 1) subclusters, de-
pending on its size. We say that the size-s = S(t; Bi) task
t desires gi(s) level-(i− 1) clusters, gi to be specified later.
When anchoring t to a level-i cache U , let q be the num-
ber of unsaturated and unallocated subclusters of U . Select
the most unsaturated min{q, gi(s)} of these subclusters and
allocate them to t.

For each cache, there may be one anchored maximal task
that is underallocated , meaning that it receives fewer sub-
clusters than it desires. The only underallocated task is the
most recent task that caused the cache to transition from be-
ing unsaturated to saturated. Whenever a subcluster frees
up, allocate it to the underallocated task. If assigning a sub-
cluster causes the underallocated task to achieve its desire,
it is no longer underallocated, and future free subclusters
become available to other tasks.

Scheduler details. We now describe the two missing de-
tails of the scheduler, namely the notion of saturation, as
well as the desire function gi, which specifies for a particu-
lar task size the number of desired subclusters.

One difficulty is trying to schedule tasks with large desires
on partially assigned clusters. We continue assigning tasks
below a cluster until that cluster becomes saturated. But
what if the last job has large desire? To compensate, our
notion of saturation leaves a bit of slack, guaranteeing that
the last task scheduled can get some minimum amount of
computing power. Roughly speaking, we set aside a con-
stant fraction of the subclusters at each level as a reserve.
The cluster becomes saturated when all other subclusters
have been allocated. The last task scheduled, the one that
causes the cluster to become saturated, may be allocated
subclusters from the reserve.

There is some tradeoff in selecting the reserve constant
here. If a large constant is reserved, we may only allocate
a small fraction of clusters at each level, thereby wasting a
large fraction of all processing power at each level. If, on
the other hand, the constant is small, then the last task
scheduled may run too slowly. Our analysis will count the
first against the work of the computation and the second
against the depth.

Designing a good function to describe saturation and the
reserved subclusters is complicated by the fact that task as-
signments may skip levels in the hierarchy. The notion of
saturation thus cannot just count the number of saturated
or allocated subclusters — instead, we consider the degree to
which a subcluster is utilized. For a cluster U with subclus-
ters V1, V2, . . . , Vfi (fi > 1), define the utilization function
µ(U) as follows:

µ(U) =

8>><>>:
min

n
1, 1

kfi

Pfi
i=1 µ′(Vi)

o
if U is a level-(≥ 2)

cluster

min{1, x
f1k

} if U is a level-1 cluster with
x allocated processors

and

µ′(V) =

(
1 if V is allocated

µ(V) otherwise
,

where k ∈ (0, 1), the value (1− k) specifying the fraction of
processors to reserve. For a cluster U with just one subclus-
ter V , µ(U) = µ(V). To understand the remainder of this

section, it is sufficient to think of k as 1/2. We say that U
is saturated when µ(U) = 1 and unsaturated otherwise.

It remains to define the desire function gi for level i in the
hierarchy. A natural choice for gi is gi(S) = dS/(Mi/fi)e =
dSfi/Mie. That is, associate with each subcluster a 1/fi

fraction of the space in the level-i cache — if a task uses x
times this fraction of total space, it should receive x subclus-
ters. It turns out that this desire does not yield good sched-
uler performance with respect to our notion of balanced
cache complexity. In particular it does not give enough
parallel slackness to properly load-balance subtasks across
subclusters.

Instead, we use gi(S) = min{fi, max{1, bf(3S/Mi)
α′c}},

where α′ = min{α, 1}. What this says is that a maxi-
mal level-i task is allocated one subcluster when it has size
S(t; Bi) = Mi/(3f

1/α′

i), and the number of subclusters al-
located to t increases by a factor of 2 whenever the size of

t increases by a factor of 21/α′ . It reaches the maximum
number of subclusters when it has size S(t; Bi) = Mi−1/3.
We define g(S) = gi(S)pi−1 if S ∈ (Mi−1/3, Mi/3].

For simplicity we assumed in our model that all memory
is preallocated, which includes stack space. This assump-
tion would be problematic for algorithms with α > 1 or for
algorithms which are highly dynamic. However, it is easy
to remove this restriction by allowing temporary allocation
inside a task, and assume this space can be shared among
parallel tasks in the analysis of Q∗. To make our bounds
work this would require that for every cache we add an ad-
ditional number of lines equal to the sum of the sizes of the
subclusters. This augmentation would account even for the
very worst case where all memory is temporarily allocated.

The analysis of this scheduler is in Section 8, summarized
by Theorem 6. There are a couple of challenges that arise
in the analysis. First, while it is easy to separate the run
time of a task on a sequential machine in to a sum of the
cache miss costs for each level, it is not as easy on a paral-
lel machine. Periods of waiting on cache misses at several
levels at multiple processors can be interleaved in a complex
manner. Our separation lemma (lemma 9) addresses this
issue by bounding the run time by the sum of its cache costs

at different levels (bQα(t; M,Bi) · Ci).
Second, whereas a simple greedy-space-bounded sched-

uler applied to balanced tasks lends itself to an easy anal-
ysis through an inductive application of Brent’s theorem,
we have to tackle the problem of subtasks skipping levels
in the hierarchy and partially allocated caches. At a high
level, the analysis of Theorem 6 recursively decomposes a
maximal level-i task into its nearest maximal descendent
level-j < i tasks. By inductively assuming that these tasks
finish “quickly enough,” we combine the subproblems with
respect to the level-i cache analogous to Brent’s theorem, ar-
guing that a) when all subclusters are busy, a large amount
of productive work occurs, b) and when subclusters are idle,
all tasks have been allocated sufficient resources to progress
at a sufficiently quick rate. Our carefully planned alloca-
tion and reservations of clusters as described earlier in this
section are critical to this proof.

8. ANALYSIS OF THE SCHEDULER
This section presents the analysis of our scheduler, proving

several lemmas leading up to Theorem 6. First, the following
lemma implies that the capacity restriction of each cache is

subsumed by the scheduling decision of only assigning tasks
to unallocated, unsaturated clusters.

Lemma 7. Any unsaturated level-i cluster U has at least
Mi/3 capacity available and at least one subcluster that is
both unsaturated and unallocated.

Proof. The fact that an unsaturated cluster has an un-
saturated, unallocated cluster follows from the definition.
Any saturated or allocated subcluster Vi has µ′(Vi) = 1.
Thus, for unsaturated cluster U with subclusters V1, . . . , Vfi ,

we have 1 > (1/kfi)
Pfi

j=1 µ′(Vi) ≥ (1/fi)
Pfi

j=1 µ′(Vi), and

it follows that some µ′(Vi) < 1.
We now argue that if U is unsaturated, then it has at least

Mi/3 capacity remaining. This fact is trivial for fi = 1, as in
that case at most one task is allocated. Suppose that tasks
t1, t2, . . . , tk are anchored to an unsaturated cluster and have
desires x1, x2, . . . , xk. Since U is unsaturated

Pk
i=1 xi ≤

fi − 1, which implies xi ≤ fi − 1 for all i. We will show that
the ratio of space to desire, S(ti; B)/xi, is at most 2Mi/3fi

for all tasks anchored to U , which implies
Pk

i=1 S(ti; B) ≤
2Mi/3.

Since a task with desire x ∈ {1, 2, . . . , fi − 1} has size at

most (Mi/3)((x+1)/fi)
1/α′ , where α′ = min{α, 1} ≤ 1, the

ratio of its space to its desire x is at most (Mi/3x)((x +

1)/fi)
1/α′ . Letting q = 1/α′ ≥ 1, we have the space-to-

desire ratio r bounded by

r ≤ Mi

3
· (x + 1)q

x
· 1

fq
i

≤ 2Mi

3
· (x + 1)q

x + 1
· 1

fq
i

≤ 2Mi

3fi
· (x + 1)q−1

fq−1
i

≤ 2Mi

3fi ut

Latency added cost. Section 6 introduced effective cache

complexity bQα(·), which is algorithmic measure. To analyze
the scheduler, however, it is important to consider when
cache misses occur. To factor in the effect of the cache miss
costs, we define the latency added effective work, denoted

by cW ∗
α(·), of a computation with respect to the particular

PMH. Latency added effective work is only for use in the
analysis of the scheduler, and does not need to be analyzed
by an algorithm designer.

The latency added effective work is similar to the effec-
tive cache complexity, but instead of counting just instruc-
tions, we add the cost of cache misses at each instruction.
The cost ρ(x) of an instruction x accessing location m is
ρ(x) = W (x) + C′

i if the scheduler causes the instruction x
to fetch m from a level i cache on the given PMH. Using

this per-instruction cost, we define effective work cW ∗
α(.) of

a computation using structural induction in a manner that

is deliberately similar to that of bQα(.).

Definition 8 (Latency added cost). For cost ρ(x)
of instruction x, the latency added effective work of a
task t, or a strand s or parallel block b nested inside t is
defined as:
strand: cW ∗

α(s) = s(t; B)α
X
x∈s

ρ(x).

parallel block: For b = t1‖t2‖ . . . ‖tk,

cW ∗
α(b) = max

(
s(t; B)α max

i

(cW ∗
α(ti)

s(ti; B)α

)
,
X

i

cW ∗
α(ti)

)
.

(1)

task: For t = c1; c2; . . . ; ck,

cW ∗
α(t) =

kX
i=1

cW ∗
α(ci). (2)

Because of the large number of parameters involved ({Mi,
B, Ci}i etc.), it is undesirable to compute the latency added
work directly for an algorithm. Instead, we will show a nice
relationship between latency added work and effective work.

We first show that cW ∗
α(·) (and ρ(·), on which it is based)

can be decomposed into a per (cache) level costs cW (i)
α (·) that

can each be analyzed in terms of that level’s parameters
({Mi, B, Ci}). We then show that these costs can be put

together to provide an upper bound oncW ∗
α(·). For i ∈ [h−1],cW (i)

α (c) of a computation c is computed exactly like cW ∗
α(c)

using a different base case: for each instruction x in c, if
the memory access at x costs at least C′

i, assign a cost of
ρi(x) = Ci to that node. Else, assign a cost of ρi(x) = 0.

Further, we set ρ0(x) = W (x), and define cW (0)
α (c) in terms

of ρo(·). It also follows from these definitions that ρ(x) =Ph−1
i=0 ρi(x) for all instructions x.

Lemma 9. Separation Lemma: For an h-level PMH
with B = Bj for all 1 ≤ j ≤ h and computation A, we
have

cW ∗
α(A) ≤

h−1X
i=0

cW (i)
α (A).

Proof. The proof is based on induction on the struc-
ture of the computation (in terms of its decomposition in
to block, tasks and strands). For the base case of the in-
duction, consider the sequential thread (or strand) s at the
lowest level in the call tree. If S(s) denotes the space of task
immediately enclosing s, then by definition

cW ∗
α(s) =

 X
x∈s

ρ(x)

!
· s(s; B)α ≤

 X
x∈s

h−1X
i=0

ρi(x)

!
· s(s; B)α

=

h−1X
i=0

 X
x∈s

ρi(x) · s(s; B)α

!
=

h−1X
i=0

cW (i)
α (s).

For a series composition of strands and blocks with in a
task t = x1; x2; . . . ; xk,

cW ∗
α(t) =

kX
i=1

cW ∗
α(xi) ≤

kX
i=1

hX
l=0

cW (h)
α (xi) =

hX
l=0

cW (l)
α (x)

For a parallel block b inside task t consisting of tasks

{ti}m
i=1, consider the equation 1 for cW ∗

α(b) which is the max-
imum of m + 1 terms, the (m + 1)-th term being a summa-
tion. Suppose that of these terms, the term that determinescW ∗

α(b) is the k-th term (denote this by Tk). Similarly, con-

sider the equation 1 for evaluating each of cW (l)
α (b) and sup-

pose that the kl-th term (denoted by T
(l)
kl

) on the right hand

side determines the value of cW (l)
α (b). Then,

cW ∗
α(b)

s(t; B)α
= Tk ≤

h−1X
l=0

T
(l)
k ≤

h−1X
l=0

T
(l)
kl

=

Ph−1
l=0

cW (l)
α (b)

s(t; B)α
, (3)

which completes the proof. Note that we did not use the
fact that some of the components were work or cache com-
plexities. The proof only depended on the fact that ρ(x) =

Ph−1
i=0 ρi(x) and the structure of the composition rules given

by equations 2, 1. ρ could have been replaced with any other
kind of work and ρi with its decomposition. ut

The previous lemma indicates that the latency added work
can be separated into costs per cache level. The following
lemma then relates these separated costs to effective cache

complexity bQα(·).

Lemma 10. Consider an h-level PMH with B = Bj for
all 1 ≤ j ≤ h and a computation c. If c is scheduled on this
PMH using a space-bounded scheduler with dilation σ = 1/3,

then cW ∗
α(c) ≤

Ph−1
i=0

bQα(c; Mi/3, B) · Ci.

Proof. (Sketch) The function cW (i)
α (·) is monotonic in

that if it is computed based on function ρ′i(·) instead of ρi(x),
where ρ′i(x) ≤ ρi(x) for all instructions x, then the former
estimate would be no more than the latter. It then follows
from the definitions of cW (i)

α (·) and ρi(·), that cW (i)
α (c) ≤bQα(c; Mi/3, B) ·Ci for all computations c, i ∈ {0, 1, . . . , h−

1}. Lemma 9 then implies that for any computation c:cW ∗
α(c) ≤

Ph−1
i=0

bQα(c; Mi/3, B) · Ci. ut

Finally, we prove the main lemma, bounding the running
time of a task with respect to the remaining utilization the
clusters it has been allocated. At a high level, the anal-
ysis recursively decomposes a maximal level-i task into its
nearest maximal descendent level-j < i tasks. We assume
inductively that these tasks finish “quickly enough.” Finally,
we combine the subproblems with respect to the level-i cache
analogous to Brent’s theorem, arguing that a) when all sub-
clusters are busy, a large amount of productive work occurs,
b) and when subclusters are idle, all tasks make sufficient
progress. Whereas this analysis outline is consistent with
a simple analysis of the greedy scheduler and that in [14],
here we address complications that arise due to partially al-
located caches and subtasks skipping levels in the hierarchy.

Lemma 11. Consider an h-level PMH with B = Bj for
all 1 ≤ j ≤ h and a computation to schedule with α ≥ β,
and let α′ = min {α, 1}. Let Ni be a task or strand which
has been assigned a set Ut of q ≤ gi(S(Ni; B)) level-(i − 1)
subclusters by the scheduler. Letting

P
V ∈Ut

(1 − µ(V)) = r

(by definition, r ≤ |Ut| = q), the running time of Ni is at
most:cW ∗

α(Ni)

rpi−1
· vi, where overhead vi is

vi = 2

i−1Y
j=1

„
1

k
+

fi

(1− k)(Mi/Mi−1)α′

«
.

Proof. We prove the claim on run time using induction
on the levels.
Induction: Assume that all child maximal tasks of Ni have
run times as specified above. Now look at the set of clusters
Ut assigned to Ni. At any point in time, either:

1. all of them are saturated.

2. at least one of the subcluster is unsaturated and there
are no jobs waiting in the queue R(Ni). More specif-
ically, the job on the critical path (χ(Ni)) is running.
Here, critical path χ(Ni) is the set of strictly ordered

immediate child subtasks that have the largest sum
of effective depths. We would argue in this case that
progress is being made along the critical path at a rea-
sonable rate.

Assuming q > 1, we will now bound the run time required
to complete Ni by bounding the number of cycles the above
two phases use. Consider the first phase. A job x ∈ C(Ni)
(subtasks of Ni) when given an appropriate number of pro-
cessors (as specified by the function g) can not have an over-

head of more than vi−1, i.e., it uses at most cW ∗
α(x)vi−1 in-

dividual processor clock cycles. Since in the first phase, at
least k fraction of available subclusters under Ut are always
allocated (at least rpi−1 clock cycles put together) to some
subtask of Ni, it can not last for more thanX
x∈C(Ni)

1

k

cW ∗
α(x)

rpi−1
·vi−1 <

1

k

cW ∗
α(Ni)

rpi−1
·vi−1 number of cycles.

For the second phase, we argue that the critical path runs
fast enough because we do not underallocate processing re-
sources for any subtask by more than a factor of (1− k) as
against that indicated by the g function. Specifically, con-
sider a job x along the critical path χ(Ni). Suppose x is a
maximal level-j(x) task, j(x) < i. If the job is allocated sub-
clusters below a level-j(x) subcluster V , then V was unsat-
urated at the time of allocation. Therefore, when the sched-
uler picked the gj(x)(S(x; B)) most unsaturated subclusters
under V (call this set V),

P
v∈V µ(v) ≥ (1−k)gj(x)(S(x; B)).

When we run x on V using the subclusters V, its run time
is at mostcW ∗

α(x)

(
P

v∈V µ(v))pj(x)−1

· vj(x)−1 <
cW ∗

α(x) · vj(x)−1

(1− k)g(S(x; Bj(x)))

=
cW ∗

α(x)

s(x; B)α

s(x; B)α

g(S(x; Bj(x)))

vj(x)−1

1− k

time. Amongst all subtasks x of Ni, the ratio s(x;B)α

g(S(x;Bj(x)))

is maximum when when S(x; B) = Mi−1/3, where the ratio
is (Mi−1/3B)α/pi−1. Summing the run times of all jobs
along the critical path would give us an upper bound for
time spent in phase two. This would be at mostX

x∈χ(Ni)

cW ∗
α(x)

(1− k)g(S(x; B))
· vi−1

=
X

x∈χ(Ni)

cW ∗
α(x)

s(x; B)α
· s(x; B)α

g(S(x; B))
· vi−1

1− k

≤

0@ X
x∈χ(Ni)

cW ∗
α(x)

s(x; B)α

1A · (Mi−1/3B)α

pi−1
· vi−1

1− k

≤
cW ∗

α(Ni)

s(Ni; B)α
· (Mi−1/3B)α

pi−1
· vi−1

1− k
(by defn. of cW ∗

α())

=
cW ∗

α(Ni)

rpi−1
· r(Mi−1/3B)α

s(Ni; B)α
· vi−1

1− k

≤
cW ∗

α(Ni)

rpi−1
· q(Mi−1/3B)α

s(Ni; B)α
· vi−1

1− k

≤
cW ∗

α(Ni)

rpi−1
· fi

(1− k)(Mi/Mi−1)α′
· vi−1 (by defn. of g).

Putting together the run times of both the phases, we have
an upper bound of

cW ∗
α(Ni)

rpi−1
vi−1 ·

„
1

k
+

fi

(1− k)(Mi/Mi−1)α′

«
=
cW ∗

α(Ni)

rpi−1
· vi.

If q = 1, Ni would get allocated just one (i−1)-subcluster
V , and of course, all the (yet unassigned) (i−2) subclusters
V below V . Then, we can view this scenario as Ni running
on the (i − 1)-level hierarchy. Memory accesses and cache
latency costs are charged the same way as before with out
modification so that the effective work of Ni would still becW ∗

α(Ni). By inductive hypothesis, we know that the run
time of Ni would be at mostcW ∗

α(Ni)

(
P

V ∈V(1− µ(V)))pi−2
· vi−1

which is at most
cW∗

α(Ni)

rpi−1
· vi since

P
V ∈V(1− µ(V)) ≥ rfi−1

and vi−1 < vi.
Base case (i = 1): N1 has q = r processors available, all
under a shared cache. If q = 1, the claim is clearly true. If
q > 1, since there is no further anchoring beneath the level-1
cache (since M0 = 0), we can use Brent’s theorem on the

latency added effective work to bound the run time:
cW∗

α(N1)

r

added to the critical path length, which is at most
cW∗

α(N1)

s(N1;B)α .

This sum is at mostcW ∗
α(N1)

r

„
1 +

q

s(N1; B)α

«
≤
cW ∗

α(N1)

r

„
1 +

g(S(N1; B))

s(N1; B)α

«
≤
cW ∗

α(N1)

r

„
1 +

S(N1; B)α

s(N1; B)α
· f1

(M1/3)α

«
≤
cW ∗

α(N1)

r
× 2. ut

Theorem 6 follows from Lemmas 10 and 11, starting on a
system with no utilization.

9. CONCLUSION
The paper described models that capture the “locality”

of an algorithm independently of the machine or how the
computation is mapped onto the machine either by hand
or by a scheduler. In particular the models are just based
on the structure of the program: they make no reference
to processors, and use only two simple cache parameters,
one capturing temporal locality (M) and one spatial locality
(B), and one parallelism parameter (α). The models modify
the sequential cache-oblivious model to avoid capturing false
dependences and to account for memory-parallelism imbal-
ances. The paper also developed a scheduler that can guar-
antee strong bounds when mapping the costs analyzed in
the model to cache misses and runtime on parallel machines
with tree-of-caches hierarchies. We expect the model can
also be used for other types of machines with hierarchical
locality.

Acknowledgments. This work is partially supported by
the National Science Foundation under grant number CCF-
1018188, as well as under the NSF/CRA sponsored CIFel-
lows program. We are grateful to Intel, IBM, and Microsoft
for generous gifts that have helped support this work.

10. REFERENCES
[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data

locality of work stealing. In Theory of Computing Systems,
2000.

[2] B. Alpern, L. Carter, E. Feig, and T. Selker. The uniform
memory hierarchy model of computation. Algorithmica, 12,
1994.

[3] B. Alpern, L. Carter, and J. Ferrante. Modeling parallel
computers as memory hierarchies. In Programming Models
for Massively Parallel Computers, 1993.

[4] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava.
Fundamental parallel algorithms for private-cache chip
multiprocessors. In SPAA, 2008.

[5] M. A. Bender, J. T. Fineman, S. Gilbert, and B. C.
Kuszmaul. Concurrent cache-oblivious B-trees. In SPAA,
2005.

[6] G. Bilardi, A. Pietracaprina, G. Pucci, and F. Silvestri.
Network-oblivious algorithms. In IPDPS, 2007.

[7] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons,
V. Ramachandran, S. Chen, and M. Kozuch. Provably good
multicore cache performance for divide-and-conquer
algorithms. In SODA, 2008.

[8] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and H. V.
Simhadri. A cache-oblivious model for parallel memory
hierarchies. Technical Report CMU-CS-10-154, Computer
Science Department, Carnegie Mellon University, 2010.

[9] G. E. Blelloch and P. B. Gibbons. Effectively sharing a
cache among threads. In SPAA, 2004.

[10] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri.
Low-depth cache oblivious algorithms. In SPAA, 2010.

[11] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and
K. H. Randall. Dag-consistent distributed shared memory.
In IPPS, 1996.

[12] R. A. Chowdhury and V. Ramachandran. The
cache-oblivious gaussian elimination paradigm: theoretical
framework, parallelization and experimental evaluation. In
SPAA, 2007.

[13] R. A. Chowdhury and V. Ramachandran. Cache-efficient
dynamic programming algorithms for multicores. In SPAA,
2008.

[14] R. A. Chowdhury, F. Silvestri, B. Blakeley, and
V. Ramachandran. Oblivious algorithms for multicores and
network of processors. In IPDPS, 2010.

[15] R. Cole and V. Ramachandran. Efficient resource oblivious
scheduling of multicore algorithms. manuscript, 2010.

[16] R. Cole and V. Ramachandran. Resource oblivious sorting
on multicores. In ICALP, 2010.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, 2nd Edition. MIT Press, 2001.

[18] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and T. von Eicken. Logp:
towards a realistic model of parallel computation.
SIGPLAN Not., 28(7), 1993.

[19] P. de la Torre and C. P. Kruskal. Submachine locality in
the bulk synchronous setting. In Euro-Par, Vol. II, 1996.

[20] M. Frigo, C. E. Leiserson, H. Prokop, and
S. Ramachandran. Cache-oblivious algorithms. In FOCS,
1999.

[21] M. Frigo and V. Strumpen. The cache complexity of
multithreaded cache oblivious algorithms. In SPAA, 2006.

[22] P. Kumar. Cache oblivious algorithms. In U. Meyer,
P. Sanders, and J. Sibeyn, editors, Algorithms for Memory
Hierarchies. Springer, 2003.

[23] C. E. Leiserson. Fat-Trees: Universal networks for
hardware-efficient supercomputing. IEEE Transactions on
Computers, C–34(10), 1985.

[24] L. G. Valiant. A bridging model for parallel computation.
CACM, 33(8), 1990.

[25] L. G. Valiant. A bridging model for multi-core computing.
In ESA, 2008.

