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ABSTRACT
Memory contention can be a serious performance bottleneck
in concurrent programs on shared-memory multicore archi-
tectures. Having all threads write to a small set of shared lo-
cations, for example, can lead to orders of magnitude loss in
performance relative to all threads writing to distinct loca-
tions, or even relative to a single thread doing all the writes.
Shared write access, however, can be very useful in paral-
lel algorithms, concurrent data structures, and protocols for
communicating among threads.

We study the“priority update”operation as a useful prim-
itive for limiting write contention in parallel and concurrent
programs. A priority update takes as arguments a mem-
ory location, a new value, and a comparison function >p
that enforces a partial order over values. The operation
atomically compares the new value with the current value
in the memory location, and writes the new value only if it
has higher priority according to >p. On the implementa-
tion side, we show that if implemented appropriately, prior-
ity updates greatly reduce memory contention over standard
writes or other atomic operations when locations have a high
degree of sharing. This is shown both experimentally and
theoretically. On the application side, we describe several
uses of priority updates for implementing parallel algorithms
and concurrent data structures, often in a way that is deter-
ministic, guarantees progress, and avoids serial bottlenecks.
We present experiments showing that a variety of such algo-
rithms and data structures perform well under high degrees
of sharing. Given the results, we believe that the priority
update operation serves as a useful parallel primitive and
good programming abstraction as (1) the user largely need
not worry about the degree of sharing, (2) it can be used to
avoid non-determinism since, in the common case when >p
is a total order, priority updates commute, and (3) it has
many applications to programs using shared data.

Categories and Subject Descriptors: D.1.3 [Program-
ming Techniques]: Concurrent Programming—Parallel pro-
gramming
Keywords: Memory Contention, Parallel Programming
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1. INTRODUCTION
When programming algorithms and applications on shared
memory machines, contention in accessing shared data struc-
tures is often a major source of performance problems. The
problems can be particularly severe when there is a high
degree of sharing of data among threads. With naive data
structures the performance issues are typically due to con-
tention over locks. Lock-free data structures alleviate the
contention, but such solutions only partially solve issues of
contention because even the simplest lock free shared write
access to a single memory location can create severe per-
formance problems. For example, simply having all threads
write to a small set of shared locations can lead to orders of
magnitude loss in performance relative to writing to distinct
locations. The problem is caused by coherence protocols
that require each thread to acquire the cache line in exclu-
sive mode to update a location; this cycling of the cache line
through the caches incurs significant overhead—far greater
than even the cost of having a single thread perform all of
the writes. The performance is even worse when using op-
erations such as a compare-and-swap to atomically update
shared locations.

To avoid these issues, researchers have suggested a vari-
ety of approaches to reduce the cost of memory contention.
One approach is to use contention-aware schedulers [26, 11]
that seek to avoid co-scheduling threads likely to contend
for resources. For many algorithms, however, high degrees
of sharing cannot be avoided via scheduling choices. A sec-
ond approach is to use hardware combining, in which con-
current associative operations on the same memory location
can be “combined” on their way through the memory sys-
tem [13, 12, 9, 3]. Multiple writes to a location, for example,
can be combined by dropping all but one write. No current
machines, however, support hardware combining. A third
approach is to use software combining based on techniques
such as combining funnels [22] or diffracting trees [21, 8].
These approaches tend to be complicated and have signifi-
cant overhead, because a single operation is implemented by
multiple accesses that traverse the shared combining struc-
ture. In cases where the contending operations are (atomic)
updates to a shared data structure, more recent work has
shown that having a single combiner thread perform the up-
dates greatly reduces the overheads [14, 10]. This approach,
however, does not scale in general. A fourth approach par-
titions the memory among the threads such that each lo-
cation (more specifically, each cache line) can be written
by only a single thread. This avoids the cycling-of-cache-
lines problem: Each cache line alternates between the desig-



nated writer and a set of parallel readers. Such partitioning,
however, severely limits the sorts of algorithms that can be
used. Finally, the test and test-and-set operation can be
used to significantly reduce contention in some settings [20,
16, 18, 17]. While contention can still arise from multiple
threads attempting to initially set the location, any subse-
quent thread will see the location set during its “test” and
drop out without performing a test-and-set. This operation
has limited applicability, however, so our aim is to iden-
tify a more generally applicable operation with the same
contention-reducing benefits.

Throughout the paper we will use the term sharing to
indicate that a location is shared among many parallel op-
erations, and contention to indicate a performance problem
due to such sharing.

Priority Update. In this paper we study a generalization
of the test-and-set operation, which we call priority update.
A priority update takes as arguments a memory location, a
new value, and a >p function that enforces a partial order
over values. The operation atomically compares the new
value with the current value in the memory location, and
writes the new value only if it has higher priority according
to >p. At any (quiescent) time a location will contain the
highest priority value written to it so far. A test-and-set is a
special case of priority update over two values—the location
initially holds 0, the new value to be written is 1, and 1 has
a higher priority than 0. Another special case is the write-
with-min over integers, where the minimum value written
has priority. The priority update, however, can also be used
when values do not fit in a hardware“word”. For example the
values could be character strings represented as pointers to
the string stored in a memory word, or complex structures
where a subfield is compared. The operation is therefore
more general than what could be reasonably expected to be
implemented in hardware.

We provide evidence that the priority update operation
serves as a good abstraction for programmers of shared mem-
ory machines because it is useful in many applications on
shared data (often in a way that is deterministic, guarantees
progress, and avoids serial bottlenecks), and when imple-
mented appropriately (see below) performs reasonably well
under any degree of sharing. This latter point is illustrated
in Figure 1. Each data point represents the time for 5 runs of
108 operations each on a 40-core machine. The x-axis gives
the number of distinct locations being operated on—hence
the leftmost point is when all operations are on the same
location and at the right the graph approaches no sharing.
(More details on the setup and further experimental com-
parisons are described in Section 3.1.) As can be seen, when
there is a high degree of sharing (e.g., only 8 locations) the
read, the test-and-set, and the priority update (with ran-
dom values) are all over two orders of magnitude faster than
the other operations. One would expect the read to do well
because the cache lines can be shared. Similarly the test-
and-set does well because it can be implemented using a test
and test-and-set (as described above) so that under a high
degree of sharing only the early operations will attempt to
set a location, and the rest will access the already set loca-
tion in shared mode.

The priority update can be implemented in software with
a read, a local comparison, and a compare-and-swap. The
compare-and-swap is needed only when the value being writ-
ten is smaller than the existing value. Thus, when applied
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Figure 1. Impact of sharing on a variety of operations.
Times are for 5 runs of 100 million operations to varying
number of memory locations on a 40-core Intel Nehalem
(log-log scale). Since the number of operations is fixed, fewer
locations implies more operations sharing those locations.

with random values (or in a random order) most invocations
of priority update only read shared data, which is why the
running time nearly matches the read curve, and is effec-
tively the same as the test-and-set curve. The curve shows
that the high sharing case is actually the best case for a pri-
ority update. This implies the user need not worry about
contention, although, as with reads, the user might still need
to worry about the memory footprint and whether it fits in
cache—the steps in the curve arise each time the number of
locations no longer fits within a cache at a particular level.

Applications of Priority Updates. Priority updates
have many applications. Here we outline several such ap-
plications and go into significantly more detail in Sections 4
and 5. The operation can be used directly within an algo-
rithm to take the minimum or maximum of a set of values,
but it also has several other important properties. Due to
the fact that the operation is commutative [25, 24] (order
does not matter) in the common case when >p is a total
order, it can often be used to avoid non-determinism when
sharing data. By assigning threads unique priorities it can
also be used to guarantee (good) progress by making sure at
least the highest priority thread for each location succeeds
in a protocol.

Priority updates are used in a recently introduced tech-
nique called deterministic reservations to implement a spec-
ulative for-loop [1]. The idea is to give each iteration of the
loop a priority based on its iteration number (earlier iterates
have higher priority). Then any prefix of the iteration space
can be executed in parallel such that when accessing any
data that might be shared by other iterations, the iteration
“reserves” the shared data using a priority update. A sec-
ond “commit” phase is used to check whether the iteration
has “won” on all the data it shares and if so proceeds with
any updates to the global shared state. The approach has
the advantage that it guarantees the same order of execu-
tion of the iterates as in the sequential order. Furthermore,
it guarantees progress since at least the earliest iterate will
always succeed (and often many iterates succeed in parallel,
if different locations are used).

Priority updates have applications in many graph algo-
rithms. They can be used in parallel versions of both Boru-
vka’s and Kruskal’s minimum spanning forest algorithms to



select minimum-weight edges. They can be used in single-
source shortest paths to update the neighbors of a vertex
with the potentially shorter path. They can also be used in
certain graph algorithms to guarantee determinism. In par-
ticular any conflicts can be broken using priorities so that
they are always broken in the same way. For example, in
breadth-first search (BFS), it can be used to deterministi-
cally generate a BFS tree.

Priority updates on locations can also be used to efficiently
implement a more general dictionary-based priority update
where the“locations”are based on keys. Each insert consists
of a key-value pair, and updates the data associated with the
key if either the key does not appear in the dictionary or the
new value has higher priority.

In this paper we describe these algorithms and present ex-
perimental results. We study the performance of several of
these algorithms including BFS, Kruskal’s minimum span-
ning forest algorithm, a maximal matching algorithm and a
dictionary-based remove duplicates algorithm. We present
timing results for inputs with high sharing, and for BFS
and remove duplicates, we compare timings with versions
that use writes instead of priority updates.

Contributions. In summary, the main contributions of this
paper are as follows. First, this paper generalizes and unifies
special cases of priority update operations from the litera-
ture, and is the first to call out priority update as a key prim-
itive in ensuring that having many threads updating a few
locations does not result in cache/memory system perfor-
mance problems. Second, we provide the first comprehensive
experimental study of priority update vs. other widely-used
operations under varying degrees of sharing, demonstrating
up to orders of magnitude differences on modern multicores
from both Intel and AMD. We also present the first analytic
justification for priority update’s good performance. Third,
we present several examples of algorithms for a number of
important problems that demonstrate a variety of ways to
benefit from priority updates. Finally, we present the first
experimental study demonstrating the (good) performance
of priority update algorithms on inputs that result in a high
degree of write sharing, extending the study in [1] by consid-
ering a wider range of degrees of sharing, running on more
cores, and providing a comparison to implementations using
alternative primitives.

2. PRIORITY UPDATES
A priority update takes as arguments a memory location
containing a value of type T , a new value of type T to write,
and a binary comparison function >p : T × T → bool that
enforces a partial order over values. The priority update
atomically compares the two values and replaces the cur-
rent value with the new value if the new value has higher
priority according to >p. It does not return a value. In
the simplest form, called a write-with-min (or write-with-
max), T is a number type, and the comparison function is
standard numeric less-than (or greater-than). Our imple-
mentation below, however, allows T to be an arbitrary type
with an arbitrary comparison function. When >p defines a
total order over T , priority updates commute—i.e., the value
ending up in the location will be the same independent of
the ordering of the updates.

A priority update can be implemented as shown in Fig-
ure 2 using a compare-and-swap (CAS). Because CAS (on

procedure PriorityUpdate(addr ,newval , >p)
oldval ← ∗addr
while (newval >p oldval) do

if CAS(addr , oldval ,newval) then
return

else
oldval ← ∗addr

Figure 2. Priority Update Implementation.

a single word, or sometimes a double length word) is pro-
vided as a hardware atomic on modern machines, no new
hardware primitives are required. If the value does not “fit”
in a word, one can use a pointer to the actual data being
compared (pointers certainly fit in a word), so the imple-
mentation can easily be applied to a variety of types (e.g.,
structures with one of the fields being compared, variable-
length character strings with lexicographic comparison, or
even more complex structures). One should distinguish the
comparison function >p defining the partial order over the
values from the “compare” in compare-and-swap, which is a
comparison for equality and is applied to the indirect rep-
resentation of the value (e.g., the bits in the pointer) and
not the abstract type. We assume the object is not mutated
during the operation so that equality of the indirect repre-
sentation (pointer) implies equality of the abstract value.

In the best case, the given implementation of priority
update completes immediately after a single application of
the comparison function, determining that the value already
stored in the location has higher priority than the new value.
Otherwise an update attempt occurs with the compare-
and-swap operation. (Because our implementation uses CAS
to attempt an update, we will also refer to this as a CAS
attempt.) If successful, we say that an update occurs. If
not, the priority update retries, completing only when the
value currently stored has an equal or higher priority than
the new value, or when a successful update occurs.

As noted earlier, a test-and-set is a special case of pri-
ority update over two values. A write-once operation is
another special case of a priority update where the contents
of a location starts in an “empty” state and once one value
is written to the location, making it “full”, no future values
will overwrite it. As with test-and-set there are just two
priorities—empty and full. A third special case is the pri-
ority write from the PRAM literature [15]—a synchronous
concurrent write from the processors that resolves writes to
a common location by taking the value from the highest (or
lowest) numbered processor. This can be implemented by
using pointers to (processor number, value) pairs: addr con-
tains a pointer to the current pair, newval is a pointer to
a new pair, and >p chases the two pointers and compares
the processor numbers. We note that both test-and-sets
and PRAM-style priority writes commute because the val-
ues form a total order, but that write-once operations do
not because there are many values with equal priority and
the first one that arrives is written.

Although the version of priority update we described does
not return a value, it is easy to extend it to return the old
value stored in the location. Indeed in one of our applica-
tions we can make use of this feature.



3. CONTENTION IN SHARED MEMORY
OPERATIONS

In this paper we distinguish between sharing and contention.
By sharing we mean operations that share the same mem-
ory location (or possibly other resource)—for example, a set
of instructions reading a single location. By contention
we mean some form of sequential access to a resource that
causes a bottleneck. Contention can be a major source
of performance problems on parallel systems while sharing
need not be. A key motivation for the priority update oper-
ation is to reduce contention under a high degree of sharing.

Although contention can be a problem in any system with
sequential access to a shared resource, the problem is am-
plified for memory updates on cache coherent shared mem-
ory machines because of the need to acquire a cache line in
exclusive mode. In the widely used MESI (Modified, Exclu-
sive, Shared, Invalid) protocol [19] and its variants, a read
can acquire a cache line in shared mode and any number
of other caches can simultaneously acquire the line. Con-
current reads to shared locations therefore tend to be rea-
sonably efficient. In fact since most machines support some
form of snooping, reading a value that is in another cache
can be faster than reading from memory.

On the other hand, in the MESI protocol (and other simi-
lar protocols implemented on current multicores) concurrent
writes can be very inefficient. In particular the protocol re-
quires that a cache line be acquired in exclusive mode be-
fore making an update to a memory location. This involves
invalidating all copies in other caches and waiting for the in-
validates to complete. If a set of caches simultaneously make
an update request for a location (or even different locations
within a line) then the cache line will need to be acquired in
exclusive mode by the caches one at a time, doing a dance
around the machine. The cost of each acquisition is high
because it involves communicating with the cache that has
the line in exclusive or modified state, waiting for it to com-
plete its operation, getting a copy of the newly updated line,
and updating any tables that keep track of ownership. If the
cores make a sequence of requests to a small set of locations
then all requests could be rotating through the caches. Be-
cause of the cost of the protocol, this can be much more
expensive than simply having one core do all the writes. On
a system with just 8 cores this can be a serious performance
bottleneck, and on one with 40 cores it can be crippling, as
the experiments later in this section demonstrate.

If there are a mix of read and write requests to a shared lo-
cation then the efficiency will fall between the all-read and
all-write cases, depending on the ratio of reads to writes
as well as more specifics about how the protocol is imple-
mented. Our experiments show that for this case there is
actually a significant difference in performance between the
protocols implemented on the AMD Opteron and the Intel
Nehalem multicores.

In this section we study the cost of write sharing among
caches (cores) on modern multicores. Along with other oper-
ations, we study the cost of a priority update and give both
experimental evidence (Section 3.1) and theoretical justifi-
cation (Section 3.2) of its efficiency.

3.1 Experimental Measurements of Contention
We study the cost of contention under varying degrees of
sharing on two contemporary shared memory multicores (from

Intel and AMD) for a variety of memory operations—priority
update (using write-with-min), test-and-set, fetch-and-add
using CAS, fetch-and-add using the x86 assembly instruction
xadd, load-and-CAS, (plain) write, and read1. We compare
the performance of priority update (write-with-min) when
values are random versus when values arrive in a decreasing
order (the worst case). We also study the performance of
priority update where the comparison is on character strings.

The Intel machine that we use is a 40-core (with hyper-
threading) Nehalem-EX machine with 4× 2.4GHz Intel 10-
core E7-8870 Xeon processors and 256GB of main memory.
The AMD machine that we use is a 64-core machine with 4×
2.4GHz AMD 16-core Opteron 6278 processors and 188GB
of main memory. The programs on the Intel machine were
compiled with Intel’s icpc compiler (version 12.1.0, which
supports Cilk Plus) with the -O3 flag. The programs on
the AMD machine were compiled using the g++ compiler
(version 4.8.0 which supports Cilk Plus) with the -O2 flag.

In the experiments, we perform 108 operations on a vary-
ing number of random locations. On each machine we per-
formed two sets of experiments. The first set of experiments
choose the locations randomly in [0, x) where x is the total
number of locations written to and locations 0 through x
appear contiguously in memory. The second set of experi-
ments choose the locations randomly from {h(i) : i ∈ [0, x)}
where h(i) is a hash function that maps i to an integer in
[0, 108). In the first set of experiments, there will be high
false sharing due to concurrent writing to locations on the
same cache line. The second set is supposed to represent
what we view as a more common usage of priority update,
which is a set of writes to a potentially large set of locations
but for which there is heavy load at a few locations. There
is significantly less effect of false sharing in the second set
since the heavily loaded locations are unlikely to be on the
same cache line.

Figure 3(a) shows that with high sharing (low number of
total locations) and high false sharing, priority update out-
performs plain write, both versions of fetch-and-add, and
load-and-CAS by orders of magnitude. Due to an Intel
anomaly (see the Appendix), there is a spike in the running
time for priority update between 256 and 8192 locations, but
even with this anomaly, priority update still outperforms
plain write, fetch-and-add and load-and-CAS by an order of
magnitude. This anomaly disappears when we reduce the
false sharing effect, as shown in Figure 3(b). Figure 3(b),
which is a repeat of Figure 1, also shows that the perfor-
mance of priority update is very close to the performance
of both test-and-set and read. For writing to 108 locations
(the lowest degree of sharing), priority update is slightly
slower than fetch-and-add, and test-and-set is slightly slower
than write (even though intuitively fetch-and-add does more
work than priority update and write does more work than
test-and-set). We conjecture this behavior to be due to the
branch in both priority update and test-and-set obstructing
speculation on the hardware compare-and-swap instruction.
We note that xadd is consistently faster than implementing
a fetch-and-add with a CAS, because the CAS could fail.
Also, we noticed that xadd performs about the same as a
CAS without a load. Preliminary experiments on a new 32-
core Intel Sandy Bridge machine yielded results that were
qualitatively similar to Figures 3(a) and 3(b).
1The read includes a write to local memory to get around compiler
optimizations.
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(a) High false sharing on 40-core Intel machine
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(b) Low false sharing on 40-core Intel machine
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(c) High false sharing on 64-core AMD machine
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(d) Low false sharing on 64-core AMD machine

Figure 3. Impact of sharing. Times are for 5 runs of 100 million operations to varying number of memory locations on Intel
and AMD machines. under high and low degrees of false sharing (log-log scale). Since the number of operations is fixed, fewer
locations implies more operations sharing those locations.
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Figures 3(c) and 3(d) show the same two experiments on
the AMD machine. Note that even with high false sharing,
the anomaly for the priority update operation observed for
the Intel machine does not appear for the AMD machine.
Except for this anomaly, the performance on the Intel ma-
chine is better than the performance on the AMD machine.

Note that for priority update, the relative order of values
over time greatly impacts the number of update attempts
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Figure 5. Priority update on character strings based on
trigram distribution of the English language. Times are for 5
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and hence the cost. In the above experiments, the priority
update uses random values, which is also the setting studied
in our theoretical analysis. The worst case is when the values
have increasing priorities over time, as this incurs the most
update attempts. With write-with-min, for example, this
case arises when values occur in decreasing order. Figure 4
shows that the performance of this case (labeled “priority
update (decreasing)”) is much worse than the random case.



Figure 5 shows the performance of priority update, where
the comparison is on character strings based on the trigram
distribution of the English language (the trigrams input in
Section 5). This uses the more general form of priority up-
date as the comparison function requires dereferencing the
pointers to the strings. We also compare the performance
to using plain writes and write-once to update the values
at the shared locations. Note that no pointer dereferencing
needs to be done in these versions—plain write just over-
writes the pointer at the location, and write-once writes the
pointer to the location only if it is empty. Similar to the
performance on integer values shown in Figure 3, the per-
formance of the version using plain writes is an order of
magnitude worse than the priority update and write-once
versions. The write-once version is faster than the priority
update version, and the gap is more significant here (com-
pared to priority update vs. test-and-set in Figure 3) due to
the cost of pointer dereferencing in the priority update.

3.2 Priority Update Performance Guarantees
As discussed in Section 2, priority update is a further gener-
alization of the test-and-set and write-once operations. Un-
like those operations, in a priority update a value can change
multiple times instead of just once. However, if the ordering
of operations is randomized, then our analysis shows that
the number of updates is small, with most invocations only
reading the shared data. We begin with a straightforward
analysis of sequential updates and then extend the analysis
to a collection of parallel priority updates. There are two
main challenges in the parallel analysis: developing a cost
model that reasonably captures the read/write asymmetry
in the coherence protocol, and coping with the fact that dif-
ferent access delays cause operations to fall out of sync.

In this section we consider priority update operations where
>p defines a total order over the value domain T . Values
can be repeated, so that the number of operations n can be
much larger than the number of priorities or the size of T .
We say that a collection of priority update operations has φ
occurring priorities if the values in those operations fall
into exactly φ distinct priorities according to >p.

We begin with the simplest case of a sequence of priority
updates, performed in random order. Here, all update at-
tempts succeed as there are no concurrent CAS operations.
This simple lemma shows that the value stored in the loca-
tion is updated very few times.

Lemma 1. Consider a random sequential ordering on a
collection of priority update operations to a single location,
with φ occurring priorities. Then Hφ updates occur in ex-
pectation and O(lnφ) updates occur with high probability (in
φ), where Hi ≈ ln i is the ith harmonic number.

Proof. Let S be the subsequence of priority updates that
are the first occurrences in the original sequence of a distinct
priority—these are the only operations that could possibly
perform an update. LetXk be an indicator for the event that
the kth operation in S performs an update. Then Xk = 1
with probability 1

k
, as it updates only if its priority is the

highest among the first k operations in S. The expected
number of updates is then given by E[X1 + · · · + Xφ] =
E[X1] + · · ·+E[Xφ] = 1

1
+ 1

2
+ 1

3
+ · · ·+ 1

φ
= Hφ. Applying

a Chernoff bound gives a high probability result.

We generalize Lemma 1 to provide bounds on the runtime
when performing priority updates in parallel under two mod-
els. In either model, we assume that if multiple concurrent
CAS’es are executing an update attempt, the one that“wins”
and successfully updates the value is independent of the data
being written. We also assume that the comparison function
>p takes constant time, although our analysis can be easily
extended to non-constant time comparison functions.

We assume that a collection of n priority updates are or-
dered2 and have values corresponding to a random permu-
tation of the set {1, . . . , n}, with 1 being the highest priority
and each location initialized to a special lowest-priority value
∞. This is equivalent to randomly ordering the priority up-
dates and then assigning each value to its relative rank in
the total order. While we assume the values are distinct, the
bounds can be readily sharpened to take into account the
actual number of occurring priorities, as in Lemma 1. Note
that the actual values of the priority updates do not matter,
as long as the order of the priority updates is randomized.

Our models are based around a simplified cache-coherence
protocol, where a cache line can be in invalid, shared, or ex-
clusive mode. A core performing a CAS requests the relevant
cache line in exclusive mode, thereby invalidating the line in
all other caches, and performs the CAS.3 When reading a
cache line that is invalid in the local cache, the core first re-
quests the line in shared mode then performs the read. We
charge a constant time of c for acquiring the line in either
mode, but some acquisitions may serialize due to conflicts
depending on which model we adopt.

In the fair model, we view outstanding cache-line re-
quests to a particular memory location as ordered in a queue.
New requests are added to the end of the queue. When a
CAS (exclusive request) is serviced, no other operations may
proceed. When a read is processed, all other reads before
the next CAS in the queue may be serviced in parallel, and
if the cache line is modified, c time is charged for acquiring
the line (the first reader puts the line in shared mode).

In the adversarial model, operations are not queued.
Instead, an adversary may arbitrarily order any outstanding
CAS and read operations (e.g., based on the locations being
written), but without considering the values being written.

3.2.1 Bounds for the Fair Model

To analyze priority updates to a single location in the fair
model, we view operations as being processed in rounds in-
duced by the queue ordering. Each round processes p oper-
ations, one per core, which may be either of the two steps of
a priority update: a read or a CAS.4 More precisely, let vj
denote the value stored at the start of round j. For any core
performing the read step, we pessimistically assume that it
observes the value vj . The core then compares its value to
vj , and commits to either performing a CAS in round j + 1
or skipping the CAS attempt step and proceeding to the

2Cores have disjoint subsequences of this ordering, determined at
runtime by the scheduler.
3To clarify, once a core is granted exclusive mode, our model as-
sumes that the CAS completes immediately. A priority update,
however, consists of two steps—a read and a CAS—and while
the line could be invalidated in between those two steps, our ex-
periments on both Intel Nehalem and AMD Opteron multicores
support assuming it is not.
4Here, we assume the type fits in a word. The analysis readily
extends to the more general case where >p must chase pointers.



next operation (i.e., issuing another read). Since a CAS in
round j+ 1 is based on the value observed in round j, there
is at most 1 successful CAS per round. All reads between
consecutive CAS attempts complete in c time, so we can
charge those reads against the preceding CAS attempt. The
goal is to bound the number of unsuccessful CAS attempts.

We have v1 = ∞ initially. Every core issues a read in
round 1, compares its value against ∞, and then issues a
CAS in round 2 comparing against v1 = ∞. Because the
CAS attempts are serialized, the time to complete round
2 is Θ(cp). Exactly one core (the first one in the queue)
succeeds in round 2, so the value v3 observed at the start of
round 3 is one drawn uniformly at random from {1, . . . , n}.

Lemma 2. The expected total time for performing n ran-
domly ordered priority updates to a single location using p
cores under the fair model is O(n

p
+ c lnn+ cp).

Proof. By Lemma 1, there are O(lnn) successful up-
dates, so the goal is to bound the number of unsuccessful
CAS attempts. We start by bounding the number of prior-
ity updates that include at least one failed CAS.

An unsuccessful CAS occurs only if a successful CAS is
made in the same or preceding round (which is bounded by
O(lnn) in Lemma 1). We call phase i the set of rounds
during which a) the value stored in the location falls be-
tween n

2i−1 and n
2i

(recall that we are assuming values are
the relative ranks), and b) a successful CAS occurs. We
want to bound the number of new priority updates during
these rounds that perform a (failed) CAS attempt. First,
observe that phase i consists of O(1) rounds in expectation,
as each successful update has probability 1

2
of reducing the

value below the threshold of n
2i

. Moreover, in each of these

rounds, each core has probability at most 1
2i−1 of performing

a priority update of a value below n
2i−1 . Summing across all

cores and all rounds in the phase, the expected number of
(failed) priority updates during phase i is at most O( p

2i−1 ).
Summing across all phases, the total number of such failed
priority updates is O(p).

A failed priority update may retry several times, but a
random failed update has probability 1

2
of retrying through

each subsequent phase because the value stored at the loca-
tion is halved. Thus, there are an expected O(1) retries per
priority update that make any CAS attempt. Combining
with the above, we get O(p) unsuccessful CAS attempts.

We charge c for each of the O(lnn) successful and O(p)
unsuccessful CAS’es. As for the reads, any of the reads that
must reacquire a cache line (taking c time) can be charged
to the preceding CAS attempt, only doubling the time. The
first read takes c time, and the remaining reads and all local
computation take O(n

p
) time, completing the proof.

The above results are for performing priority updates to a
single location. Now we analyze the time for multiple loca-
tions where cores apply operations to locations chosen uni-
formly at random from {1, . . . ,m}, where m is the number
of locations. Let ni be the number of operations at the ith
location. Here, we assume that all locations can fit simulta-
neously in cache and that there are no false-sharing effects.
The difficulty here is that the round analysis only applies to
each individual location—the model has a separate queue for
each location, and simply multiplying the CAS-components
of the bound by m is too pessimistic.

Theorem 3. The expected total time for performing n
randomly ordered priority updates to m randomly chosen lo-
cations under the fair model is O(n

p
+ cm ln( n

m
) + (cp)2).

Proof. According to the analysis of Lemma 2, there are
at most O(ln(ni) + p) CAS attempts when p cores perform
O(ni) updates to location i. Increasing the number of lo-
cations only decreases the number of CAS failures, since
not all cores choose the same location. So a bound of O(n

p
+

cm ln( n
m

)+cpm) follows by maximizing the logarithmic term
(setting ni = n

m
for all i) and multiplying by m locations.

This bound is pessimistic, so we will improve it for m > p.
The O(cm ln( n

m
)) term seems inherent because each update

invalidates the line in all other caches, so the time to reload
those lines later is O(cpm ln( n

m
)) (which is divided across p

cores). Our goal is to reduce the O(cpm) term.

Consider the round analysis as in Lemma 2 applied to a
single location. The main question is how many (unsuccess-
ful) CAS’es are launched on this location during a round
containing a successful CAS. The maximum duration of a
round is O(cp) if every core performs a CAS attempt. Each
core may thus sample up to O(cp) locations within a round
(each sample is independent from the rest), giving a prob-
ability of O( cp

m
) of choosing this location in any of those

attempts. Summing across all cores, the expected number

of priority updates to this location per round is O( cp
2

m
), only

some of which may actually perform a CAS attempt. As in
Lemma 2, the likelihood of performing a CAS attempt de-
creases geometrically per phase, so the total number of failed

CAS’es on this location is O( cp
2

m
). Summing across all loca-

tions gives O(cp2) failed attempts, each taking c time.

3.2.2 Bounds for the Adversarial Model

We now analyze priority updates under the adversarial model.
Recall that in the adversarial model, an adversary may order
any outstanding CAS and read operations arbitrarily (e.g.,
based on the locations being written), but without consid-
ering the actual values being written.

Lemma 4. The total time for performing n randomly or-
dered priority updates to a single location using p cores under
the adversarial model is O(n

p
+ cp lnn) with high probability.

Proof. By Lemma 1, the number of random updates is
O(lnn) with high probability. We now prove the number of
attempts is at most O(p lnn), which implies the lemma. We
say that a CAS fails due to the ith update if the old value
conditioned on in the CAS is that of the (i − 1)th update.
There can be at most 1 CAS failure due to the ith update
on each core, as any subsequent priority update on the same
core would read the ith update and hence only fail due to a
later update. There can thus be at most p− 1 CAS failures
per update, for a total of O(p lnn) CAS attempts.

In the adversarial model, the bound of Lemma 4 gener-
alizes to O(n

p
+ cpm ln( n

m
))—for n operations the time for

reads is still O(n
p

); now each location i can take O(cp ln(ni))

time, leading to a total contribution of O(Σmi=1cp ln(ni))
which is maximized when ni = n

m
for all i.

Theorem 5. The total time for performing n randomly
ordered priority updates to m randomly chosen locations un-
der the adversarial model is O(n

p
+ cpm ln( n

m
)) with high

probability.



For reasonably sized n, the bounds in this section (under
both models) are much better than the bounds for opera-
tions that always have to access a cache line in exclusive
mode. Such operations will run in O(cn) at best assum-
ing either the fair or adversarial model—all accesses will be
sequentialized and will involve a cache miss.

4. APPLICATIONS OF PRIORITY UPDATE
Priority updates are well-suited to a widely applicable two-
phase programming style, which we call update-and-read in
its general form, and reserve-and-commit in a special case.
An update-and-read program alternates two types of phases.
During an update phase, multiple update attempts occur on
some collection of objects, using either a priority update, a
plain write, or another write primitive. During the subse-
quent read phase, the value that was successfully recorded is
read. Using priority updates or write-once operations during
the update phase is desirable to achieve better performance
(see Section 5). Moreover, the commutative nature of prior-
ity updates implies that the values stored at completion of
the read phase are deterministic.

When operating on a collection of interacting objects (e.g.,
vertices of a graph), where each object seeks to update
a “neighborhood” of objects, a reserve-and-commit style
is more appropriate. In the reserve (update) phase, each
object in parallel attempts to reserve the neighborhood of
objects that it would read from or write to. In the com-
mit (read) phase, each object in parallel checks whether it
holds a reservation on its neighborhood, and if so, performs
the desired operations. There should be a synchronization
point between the reserve and commit phases, guaranteeing
that commits and reserves cannot occur concurrently with
each other. Since reservations are exclusive (indeed reser-
vations are acting as mutual-exclusion locks), this approach
guarantees that each commit behaves atomically. As with
the generic update-and-read, the reservations can be imple-
mented using either a priority update, write-once or plain
write. The priority update is more desirable both for per-
formance and to guarantee forward progress when multiple
objects are reserved.

If used correctly and employing a priority update, this
reserve-and-commit style can be thought of as a special
case of transactional programming, but one in which for-
ward progress guarantees are possible. The reserve phase
essentially speculatively attempts a “transaction,” and the
commit phase commits transactions that do not interfere.
By using priority updates, there is a total order over reser-
vations, guaranteeing that at least one reserver (i.e., the one
with the highest priority) is able to commit. This forward-
progress guarantee does not apply when using a plain write
or a write-once, as it is possible that no reserver “wins” on
all of its neighbors.

The technique of deterministic reservations [1] extends
this reserve-and-commit abstraction to an entire parallel
loop. In this technique, a sequence of iterates are considered
in parallel, and the reservations are made using priority up-
dates according to the iterates’ ranks in the sequence. In
the commit phase, iterates that successfully reserved their
neighborhoods perform their commit operation. All uncom-
mitted iterates are gathered, and this process repeats un-
til no iterates remain. Deterministic reservations has sev-
eral appealing features [1]. First, the behavior is consistent

with a sequential execution of the loop, so the results are
deterministic. Second, the performance can be tuned by
operating on a prefix of the sequence: a smaller prefix de-
creases data sharing thereby decreasing total work, whereas
a larger prefix may allow more parallelism [2]. Third, since
the reservations themselves are based on iterate priorities,
some forward progress is guaranteed in each round.

Note that because the highest priority update succeeds
for each location, priority updates often enable consider-
able parallel progress in each update-and-read phase, yield-
ing good parallel speed-ups (see Section 5). For example,
with deterministic reservations, often Ω(p) iterates succeed
in parallel.

The remainder of this section describes several algorithms
that use priority update, most of which employ some form of
update-and-read. The exception is connected components,
where a priority update is used to asynchronously update
values. In some of these cases (e.g., breadth-first-search
and maximal matching), several write primitives maintain
correctness of the algorithms and priority updates are just
desirable for performance. In others (e.g., connected compo-
nents, minimum spanning forest, and single-source shortest
paths), the priority update is necessary for correctness of
the given algorithm.

Breadth-First Search. The breadth-first search (BFS)
problem takes as input an undirected graph G and a source
vertex r and returns a breadth-first-search tree represented
by an array of parent pointers. The BFS algorithm proceeds
in rounds, during which all vertices on the frontier (initial-
ized to contain only the source vertex) attempt to place all
of their neighbors on the next frontier. Our experiments use
modifications of the BFS implementations from the publicly
available problem-based benchmark suite (PBBS) [23]. To
guarantee that each vertex is added only once, each round
is implemented with an update-and-read style. During the
update phase, a frontier vertex writes its ID to its neigh-
bors. During the read phase, each frontier vertex checks to
see if successfully reserved its neighbor, and if so it adds
the neighbor to the next frontier. Since only one frontier
vertex will successfully reserve a neighbor, there will be no
duplicates on the next frontier.

This BFS algorithm may be correctly implemented by us-
ing priority updates (write-with-min), write-once, or plain
writes, with plain writes being less efficient (see Section 5)
and priority updates guaranteeing a deterministic BFS-tree
output [1].

We also use a version of deterministic BFS that has only
one phase per round and returns the same BFS tree as
a sequential implementation. This version uses a priority
update on pairs (index , parent), where index is a vertex’s
parent’s order in a sequential BFS traversal, and parent is
the vertex’s parent’s ID. The priority update does a min-
comparison only on the index field of the pair. All fron-
tier vertices perform priority updates to neighbors and if
it successfully updates the neighbor’s location, it adds the
neighbor to the next frontier in the same phase. Since this
implementation only has a single phase, it allows for dupli-
cate vertices on the frontier (multiple priority updates may
succeed on the same neighbor). The form of priority update
used here is more general than write-with-min.

Maximal Matching. The maximal matching (MM)
problem takes an undirected graph G = (V,E) and returns a



subset E′ ⊆ E such that no two edges in E′ have an endpoint
in common (matching) and all edges in E \E′ share at least
one endpoint with an edge in E′ (maximal). The reserve-
and-commit style can be used to solve the MM problem [2].
During the reserve phase, each edge checks if either of its
endpoints have been matched; if so the edge removes itself
from the graph and otherwise it reserves both endpoints
by using a priority update (write-with-min) with the edge’s
unique ID. During the commit phase, every remaining edge
checks if both of its endpoints contain its reservation; if so,
it joins the matching and removes itself from the graph.
The algorithm can also be implemented using write-once or
plain writes, but forward progress is not guaranteed because
it is possible that no edge succeeds in reserving both of its
endpoints in an iteration.

Connected Components. For an undirected graphG =
(V,E), a connected component C ⊆ V is one in which all
vertices in C can reach one another. The connected com-
ponents problem is to find C1, . . . , Ck such that each Ci is
a connected component, there is no path between vertices
belonging to different components, and C1∪· · ·∪Ck = V . A
simple vertex-based algorithm assigns each vertex a unique
ID at the start, and in each iteration every vertex sets its
ID to the minimum ID of all its neighbors. The algorithm
terminates when no vertex’s ID changes in an iteration. In
each iteration, each vertex performs a priority update (write-
with-min) to all of its neighbors’ IDs. This is an example of
using priority update to guarantee the correctness of an al-
gorithm, and where the priority update yields a remarkably
simple solution.

Minimum Spanning Forest. For an undirected graph
G = (V,E), the spanning forest problem returns a set
of edges F ⊆ E such that for each connected component
Ci = (Vi, Ei) of G, a spanning tree of Ci is contained in F
and F contains no cycles. The minimum spanning forest
(MSF) problem takes as input an undirected graph G =
(V,E) with weights w : E → R and returns a spanning
forest with minimum total weight.

Most MSF algorithms begin with an empty spanning for-
est and grow the spanning forest incrementally by adding
“safe” edges (those with minimum weight crossing a cut) [6].
Kruskal’s algorithm considers edges in sorted order by weight
and iteratively adds edges that connect two different compo-
nents, using a union-find data structure to query the com-
ponents. This algorithm can be parallelized by accepting
an edge into the MSF if no earlier edge in the sorted order
is connected to the same component. Boruvka’s algorithm
is similar to Kruskal’s except that Kruskal’s sorts all edges
initially and employs a union-find data structure over con-
nected components, whereas Boruvka’s algorithm uses con-
traction to reduce connected components.

In either case, a reserve-and-commit style is applicable:
During the reserve phase each edge that has endpoints in
separate components writes its weight/ID to the compo-
nent containing each endpoint, and during the commit phase
each edge checks whether its ID was written to at least one
component—if so, it joins the MSF. As with connected com-
ponents, the priority update (write-with-min) is required for
correctness here, otherwise, the edge added may not be a
safe edge. For our experiments, we use the parallel imple-
mentation of Kruskal’s algorithm from PBBS [23].

Hash-based Dictionary. Using priority updates to a

Input Num. Num. Sharing
Vertices Directed Edges Level

3D-grid 107 6× 107 Low
random-local 107 108 Low

rMat 224 108 Medium
4-comb 2.5× 107 108 High

exponential 5× 106 1.1× 108 High
4-star 5× 107 108 High

Table 1. Inputs for graph applications.

single location it is possible to implement a dictionary that
supports insertions of (key , value)-pairs such that the val-
ues of multiple insertions of the same key will be combined
with a priority update. This can be thought of as a general-
ization of priority updates in which the “locations” are not
memory addresses or positions in an array, but instead are
indexed by arbitrary (hashable) keys. Applications of such
key-based priority updates include making reservations on
entries in a dictionary instead of locations in memory. An-
other application is to remove duplicates in a prioritized
and/or deterministic way. For example we might have a
large set of documents and want to keep only one copy of
each word, but want it to be the first occurrence of the word
(we assume the work is tagged with some other information
that distinguishes occurrences, such as their location).

Our experiments use modifications of the hash table-based
dictionary from PBBS [23] that supports priority inserts.
The table is based on linear probing and once a location con-
taining the same key or an empty location has been found,
a priority update is used on the location with the priorities
being based on the value associated with the key.

Other Applications. Priority updates are applicable to
other problems whose solutions are implemented using de-
terministic reservations [1]. These problems include Delau-
nay triangulation and refinement [7], maximal independent
set and randomly permuting an array. In most of these cases
(as with maximal matching), write-once and plain write im-
plementations are correct, but because multiple reservations
are required to commit, priority updates are necessary to
guarantee forward progress. Moreover, the priority update
version guarantees a consistent, deterministic output once
the random numbers are fixed. A priority update (write-
with-min) can be naturally applied to a single-source short-
est paths implementation to asynchronously update poten-
tially shorter paths to vertices. A write-once or plain write
implementation would not be correct here, since we must
store the shortest path to each vertex. Priority updates are
also useful in other parallel algorithms that, like determin-
istic reservations, impose a random priority order among
elements [4].

5. EXPERIMENT STUDY: APPLICATIONS
We used the Intel Nehalem machine set-up described in Sec-
tion 3.1. For sequential programs, we used the g++ 4.4.1
compiler with the -O2 flag. For the breadth-first search,
maximal matching, minimum spanning forest, and remove
duplicates applications, we ran experiments on inputs that
exhibit varying degrees of sharing. We describe the experi-
mental setup for each of applications in more detail below.
All times reported are based on the median of three trials.

The inputs used for the graph algorithms are shown in Ta-
ble 1. Because in our algorithms a vertex can only be simul-
taneously processed by its neighbors, graphs with low degree
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Figure 6. k-comb graph (used for BFS experiments).

overall exhibit low sharing while graphs containing some ver-
tices of high degree can exhibit high sharing (depending on
the application). 3D-grid is a grid graph in 3-dimensional
space. Every vertex has six edges, each connecting it to its
two neighbors in each dimension, and thus is a low-sharing
graph. random-local is another low-sharing graph in which
every vertex has five undirected edges to neighbors chosen
randomly where the probability of an edge between two ver-
tices is inversely correlated with their distance in the vertex
array (vertices tend to have edges to other vertices that are
close in memory). The rMat graph is a graph with a power-
law distribution of degrees. We used the algorithm described
in [5] with parameters a = 0.5, b = c = 0.1, d = 0.3 to gen-
erate the rMat graph. The k-comb graph is a three layered
graph (see Figure 6) with the first layer containing only the
source vertex r, second layer containing n − k − 1 vertices
and third layer containing k vertices. The source vertex has
an edge to all vertices in the second layer, and each vertex
in the second layer has an edge to a randomly chosen vertex
in the third layer. There are a total of 4(n− k− 1) directed
edges in this graph. For our experiments we used varying k
to model concurrent operations to k random locations. The
exponential graph has an exponential distribution in ver-
tex degrees, and given a degree, incident edges from each
vertex are chosen uniformly at random. The 4-star graph
is a graph with four “center” vertices and each of the n− 4
remaining vertices is connected to a randomly chosen center
vertex (total of 2(n− 4) directed edges).

In BFS, because many vertices may compete to become
the parent of the same neighbor, there can be high sharing.
The k-comb graph illustrates this: In the first round the
source vertex r explores the n− k− 1 vertices in the second
level, without sharing; in the second round all of the second
level vertices contend on vertices in the third level (see Fig-
ure 6). We chose to model sharing on k-comb graphs with
different k values in order to observe the effect of write shar-
ing that we discussed in Section 3, where a lower k value cor-
responds to higher sharing. We show four versions of parallel
BFS which deal with reserving neighbors and placing them
onto the frontier differently. The first version uses a pri-
ority update with the minimum function (priorityUpdate-
BFS) in a two-phase update-and-read style; the second uses
a priority update in a single phase, produces the sequential
BFS tree but allows for duplicate vertices on the frontier
(seqOrder-BFS); the third uses a test-and-set (testSet-
BFS); and the fourth uses a plain write (write-BFS) (see
Section 4 for details). Figure 7 compares the four BFS imple-
mentations and the sequential BFS implementation (serial-
BFS) as a function of number of cores on the 4-comb graph.
Table 2(a) shows the running times for each of the BFS im-
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plementations on all of our graphs. The (nondeterministic)
test-and-set implementation is the fastest because only one
actual write is done per vertex. However the priority up-
date implementations do not do much worse even on the
high-sharing comb graph while the plain-write implementa-
tion does poorly on it (even worse than serial-BFS). The
two-phase and one-phase priority update implementations
are comparable in performance. Using a family of k-comb
graphs with varying k, we model the effect of write sharing
on k locations for BFS when utilizing all 40 cores. A lower
value of k corresponds to higher sharing. Figure 8 shows
that for values of k up to around 10000, priorityUpdate-
BFS and seqOrder-BFS outperform write-BFS, by nearly
an order of magnitude for small k, and is almost as fast as
testSet-BFS. For higher values of k where there is little shar-
ing, priorityUpdate-BFS and seqOrder-BFS are slower than
writeBFS due to the overhead of the test and compare-and-
swap, however they are deterministic. For values of k less
than 2000 (high sharing), write-BFS is worse than even the
sequential implementation.

For maximal matching and minimum spanning forest, the
4-star and exponential graphs exhibit high sharing. We show
the times for implementations using priority updates and
also serial implementations on the various graphs in Ta-
bles 2(b) and 2(c). We see that even for the high-sharing
graphs the implementations performs well (less than 3 times
worse than the lower-sharing inputs on 80 hyper-threads).



(a) Breadth-First 3D-grid random-local rMat 4-comb exponential 4-star
Search (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)

serial-BFS 2.03 – 2.77 – 3.13 – 0.555 – 1.19 – 0.317 –
priorityUpdate-BFS 4.03 0.307 7.02 0.247 8.37 0.306 1.38 0.08 3.18 0.199 0.885 0.066

seqOrder-BFS 3.12 0.339 5.42 0.258 6.28 0.365 1.54 0.081 3.05 0.285 0.849 0.064
testSet-BFS (nd) 2.66 0.25 4.8 0.16 5.45 0.211 1.14 0.066 2.17 0.097 0.664 0.055
write-BFS (nd) 4.3 0.28 6.13 0.246 7.74 0.298 1.2 0.954 3.18 0.224 0.888 0.063

(b) Maximal Matching 3D-grid random-local rMat exponential 4-star
(1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)

serial-Matching 0.527 – 0.764 – 1.0 – 0.674 – 0.823 –
priorityUpdate-Matching 1.41 0.091 1.8 0.113 2.82 0.142 1.27 0.082 0.641 0.062

(c) Minimum Spanning 3D-grid random-local rMat exponential 4-star
Forest (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)

serial-MSF 5.3 – 7.29 – 9.54 – 7.45 – 13.3 –
priorityUpdate-MSF 10.7 0.455 14.1 0.614 19.0 0.816 12.2 0.53 29.4 1.04

(d) Remove Duplicates allDiff
√
n-unique trigrams allEqual

Algorithm (1) (40h) (1) (40h) (1) (40h) (1) (40h)

serial-RemDups 3.25 – 0.364 – 0.975 – 0.255 –
priority-UpdateRemDups 3.31 0.078 0.442 0.021 1.07 0.033 0.318 0.02
writeOnce-RemDups (nd) 2.16 0.072 0.433 0.021 1.03 0.035 0.312 0.021

write-RemDups (nd) 3.3 0.083 0.471 0.028 1.05 0.291 0.386 3.19

Table 2. Running times (seconds) of algorithms over various inputs. (40h) indicates the running time on 40 cores with
hyper-threading and (1) indicates the running time on 1 thread. (nd) indicates a non-deterministic implementation.

Input Size Sharing Level
allDiff 107 Low√
n-unique 107 Medium

trigrams 107 Medium
allEqual 107 High

Table 3. Inputs for Remove Duplicates.

The input to the remove duplicates problem is a se-
quence of (key , value) pairs, and the return value is a se-
quence containing a subset of the input pairs that contains
only one element of any given key from the input. We use
the hash-based dictionary described in Section 4 to solve this
problem. For pairs with equal keys, the pair that is kept is
determined based on the value of the keys. We use the se-
quence inputs from Table 3. The allDiff sequence contains
pairs all with different keys. The

√
n-unique sequence con-

tains
√
n copies of each of

√
n unique keys. The allEqual

sequence contains pairs with all the same key. Finally, the
trigrams sequence contains string keys based on the tri-
gram distribution of the English language. The values of
the pairs are random integers. The level of sharing at a lo-
cation in the hash table is a function of the number of equal
keys inserted at the location. Hence sequences with many
equal keys will exhibit high sharing, whereas sequences with
few equal keys will have low sharing. We show experiments
for three versions of the parallel hash table which deal with
insertions of duplicate keys differently. The first version,
write-RemDups, always performs a write of the value to
the location when encountering a key that has already been
inserted; the second version, writeOnce-RemDups, does
not do anything when encountering an already inserted key;
and the last version, priorityUpdate-RemDups, uses a pri-
ority update with the minimum function on the values as-
sociated with the keys when encountering duplicate keys.

In Figure 9, we compare the performance of the various
parallel implementations, along with a serial implementa-
tion (serial-RemDups) on the sequence of all equal keys,
which exhibits the highest sharing. The priority update and
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Figure 9. Remove Duplicates times on the allEqual se-
quence (log-log scale). (nd) indicates a non-deterministic
implementation.

write-once implementations scale gracefully with an increas-
ing number of threads, while on a large number of threads,
the plain write implementation performs an order of magni-
tude worse. The priority update and write-once implemen-
tations of remove duplicates have similar performance, but
the former also has the advantage that it is deterministic.
The timings for all of the inputs are shown in Table 2(d).

6. CONCLUSION
We have compared the performance of several operations
that are used when threads concurrently write to a small
number of shared memory locations. Operations such as
plain writes, compare-and-swap and fetch-and-add perform
poorly under such high sharing, whereas priority update per-
forms much better and close to the performance of reads.
Using priority updates also has other benefits such as deter-
minism, progress guarantees and correctness guarantees for
certain algorithms. We show experiments for several appli-
cations that use priority update and demonstrate that even



for high-sharing inputs, these applications are efficient and
get good speedup. Given these results, we believe the prior-
ity update operation serves as a useful parallel primitive and
good programming abstraction, and deserves further study.
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APPENDIX
Studying a False Sharing Anomaly. As seen in Fig-
ure 3(a), under false sharing priority update (write-with-
min) performs very poorly at 1024 locations. To hone in on
this problem we studied the two machines under varying ra-
tios of reads to writes to a small set of locations. Figure 10
shows the times for concurrently performing 108 − x reads
and x writes on 1024 randomly chosen (adjacent) memory
locations on each of the two architectures for varying x. Note
that even for low fractions of writes (0.0001), the Intel Ne-
halem performs an order of magnitude worse than the AMD
Opteron (which is a slower machine). This suggests that
on the Intel Nehalem even when the vast majority of opera-
tions on a location are reads, there is still a big performance
penalty from the cache coherence protocol of the very few
writes. This effect is the cause of the hump in Figure 3(a)
around the 1000 location point.
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Figure 10. Studying a false sharing anomaly. Times are
for 5 runs of 100 million concurrent reads/writes to 1024
random locations (with the fraction of writes varying) on
the 40-core Intel Nehalem and the 64-core AMD Opteron
machines (log-log scale).


