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Abstract—Finding a maximal independent set (MIS) is a
classic problem in graph theory that has been widely studied
in the context of distributed algorithms. Standard distributed
solutions to the MIS problem focus on time complexity. In this
paper, we also consider fairness. For a given MIS algorithm
A and graph G, we define the inequality factor for A on G
to be the largest ratio between the probabilities of the nodes
joining an MIS in the graph. We say an algorithm is fair
with respect to a family of graphs if it achieves a constant
inequality factor for all graphs in the family. In this paper, we
seek efficient and fair algorithms for common graph families.
We begin by describing an algorithm that is fair and runs in
O(log∗ n)-time in rooted trees of size n. Moving to unrooted
trees, we describe a fair algorithm that runs in O(logn) time.
Generalizing further to bipartite graphs, we describe a third
fair algorithm that requires O(log2 n) rounds. We also show a
fair algorithm for planar graphs that runs in O(log2 n) rounds,
and describe an algorithm that can be run in any graph,
yielding good bounds on inequality in regions that can be
efficiently colored with a small number of colors. We conclude
our theoretical analysis with a lower bound that identifies a
graph where all MIS algorithms achieve an inequality bound
in Ω(n)—eliminating the possibility of an MIS algorithm that
is fair in all graphs. Finally, to motivate the need for provable
fairness guarantees, we simulate both our tree algorithm and
Luby’s MIS algorithm [13] in a variety of different tree
topologies—some synthetic and some derived from real world
data. Whereas our algorithm always yield an inequality factor
≤ 3.25 in these simulations, Luby’s algorithms yields factors
as large as 168.
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I. INTRODUCTION

In graph theory, an independent set of an undirected graph
G = (V,E) is a subset of nodes I ⊆ V such that no two
nodes in I neighbor each other in E. An independent set I
is considered a maximal independent set (MIS) if all vertices
in V \ I neighbor a node in I . Distributed solutions to the
MIS problem provide a key symmetry-breaking function.
Accordingly, these algorithm are often used as subroutines
in higher-level applications, including the construction of
network backbones [6, 9], leader election [4], resource
allocation [19], key exchange [7], and image processing [15].

Existing work on distributed MIS algorithms focuses on
optimizing time complexity. This paper, by contrast, studies
a novel attribute of such solutions: fairness. For a given
randomized MIS algorithm A and graph G, we define the
inequality factor for A on G to be the largest ratio between

the join probabilities of the nodes in the graph. Consider, for
example, Luby’s classic MIS algorithm [13] executed in a
star graph over nodes V = {u1, u2, ..., un} centered on u1.
It is not hard to show that the nodes in V \{u1} are roughly
n times more likely to join the MIS than u1. We would
say, therefore, that Luby’s algorithm in the star graph has an
inequality factor of Θ(n), which, from a fairness perspective,
is poor performance. (In Section IX, we simulate Luby’s in
a large variety of network topologies—both synthetic and
real—and show that Luby’s lack of fairness is not confined
to contrived examples like the above star graph, but is in
fact common in practice.)

The best possible inequality factor for an algorithm in a
given setting is 1, indicating that all nodes join with exactly
the same probability. In this paper, we consider any constant
value to be sufficient to consider an algorithm fair. In more
detail, we say that an MIS algorithm is fair with respect to
a family of graphs if there exists some constant such that
the algorithm’s inequality is upper bounded by this constant
for all graphs in that family. Though fairness is non-trivial
in both the centralized and distributed setting, we focus here
on distributed MIS solutions.

A. Motivation

Our study of fairness has both practical and theoretical
motivations. From a practical perspective, we note that MIS
algorithms are often used as subroutines by higher-level
applications [6, 7, 9, 15, 19]. It follows that joining (or not
joining) the MIS might have a consequence in terms of a
node’s expected work. In constructing a network backbone,
for example, joining the MIS consigns a node to processing
much more traffic than a non-MIS node in the same network.
Similarly, in a network monitoring application that has MIS
nodes log behavior of their neighbors, being in the MIS
consigns a node to filling up its storage at a higher rate
than its non-MIS neighbors. In both cases, using a fair MIS
algorithm as a subroutine can ensure that the corresponding
workload is more evenly distributed.

From a theoretical perspective, we are motivated by the
fact that the problem is interesting. The fairness of an
MIS algorithm captures something fundamental about the
relationship between the underlying graph structure and the
possible behavior of symmetry-breaking strategies.



B. Results

Our goal is to find efficient and fair randomized dis-
tributed MIS algorithms for common graph families. We
begin, in Section IV, by describing a fair algorithm that runs
in O(log∗ n) time in rooted trees of size n. In Section V,
we move to unrooted trees and describe a fair algorithm
that runs in O(log n) time. Generalizing further to bipar-
tite graphs, we describe, in Section VI, a third algorithm
(leveraging the network decomposition strategy of Linial and
Saks [12]) that maintains fairness at the cost of a slightly
worse O(log2 n) time complexity. Our final upper bound,
described in Section VII, guarantees an inequality factor
bounded by O(k) in any k-colorable graph with a runtime of
O(log2 n+f(n, k)) rounds, where f(n, k) is the complexity
of the relevant distributed k-coloring algorithm. Combining
this result with known coloring algorithms for planar [1]
graphs and more generally low-arboricity graphs, we obtain
fair MIS algorithms for these graphs families that run in
O(log2 n) time. We emphasize that this algorithm can be
executed in any graph without needing advance knowledge
of the colorability, yielding good inequality factors in regions
of the network that can efficiently be colored with a small
number of colors. Section VIII concludes our theoretical
results with a lower bound that identifies a graph in which all
MIS algorithms have an inequality factor in Θ(n)—proving
the impossibility of an algorithm that is fair in all graphs.

We next turn our attention, in Section IX, to simulation-
based evaluation. Though our algorithms are provably fair
in the relevant graph families, these results are only useful
if existing algorithms are unfair in these same graphs. To
investigate this question we simulate Luby’s O(log n)-time
MIS algorithm [13]1 in a variety of different tree topologies:
some synthetic and some derived from real-world data. We
then compare its performance—with respect to inequality
factor—to our provably fair tree algorithm from Section V.

In regular trees, Luby’s inequality factors were bounded
from above by 6.42. For non-regular trees this inequality
factor grew to as large as 36. For trees extracted from real-
world traces, the factor jumped to a maximum of 168—
indicating significant inequality. In all cases, by contrast, our
fair algorithm had inequality factors of at most 3.25. These
results motivate the need for MIS algorithms with explicit
fairness guarantees for scenarios where this property matters.

C. Contributions

This paper offers the following contributions to both the
theory and practice of distributed graph algorithms: (1) it
introduces the notion of fairness as a practically-motivated,
tractable but non-trivial property of MIS algorithms; (2)
it establish by simulation that Luby’s algorithm can be

1This is arguably the most commonly used distributed MIS solution as
it is simple and offers a near-optimal time complexity. As of the writing of
this introduction, for example, the journal version of this result has been
cited over 875 times, according to Google Scholar.

(perhaps surprisingly) unfair in practice—even in trees; and
(3) it provides new MIS algorithms that are both efficient
and provably fair in a variety of common graph families.

II. RELATED WORK

Luby’s oft-cited distributed MIS algorithm [13] computes
an MIS in O(log n) time in general graphs. There are faster
known algorithms for restricted graph classes, including an
O(
√

log n log log n) algorithm for trees [11] (which nearly
matches an Ω(

√
log n) lower bound [10]), an O(log∗ n)

algorithm for growth-bounded graphs [17], and multiple
o(log n)-time algorithms for low-degree graphs (e.g., [2]).
In general graphs, the MIS problem can also be solved
deterministically in 2O(

√
logn) rounds [16]. For a fixed

assignment of IDs and graph our definition of fairness is not
useful for deterministic algorithms (any connected graph of
size n > 1 will have an infinite inequality factor). If we
assume, however, that the unique IDs used by the determin-
istic algorithm are assigned according to some probability
distribution, its fairness becomes once again non-trivial.

Harris et al. [5] study the average degree of the MIS
nodes in the graph. This complementary study supports our
argument that distributed symmetry breaking is interesting
beyond just the time complexity perspective. Métivier et
al. [14] consider the correlation between nodes joining the
MIS: they show that for bounded-degree graphs, the correla-
tion degrades quickly as the distance increases, but also that
this relationship does not hold in general. Uncorrelated join
probabilities, however, is neither necessary nor sufficient to
imply fairness.

III. MODEL

We assume the standard synchronous message-passing
model defined with respect to some undirected graph G =
(V,E), where n = |V | denotes the number of nodes. With-
out loss of generality, assume that each vertex is assigned
a unique identifier. Each vertex knows its own ID and its
immediate neighbors’ IDs, as well as n. It has no other a
priori topology information. As is standard for local graph
algorithms, we assume that the maximum message size is
bounded at O(log n) bits (i.e., enough for a constant number
of IDs). Our lower bound (Section VIII), however, holds
even for unbounded message size.

In the following, for U ⊆ V , we use G(U) to refer to the
subgraph of G induced by vertex set U , which comprises
the vertices U and the edges of G whose endpoints are both
in U . We use N(u), for vertex u, to denote the neighbors of
u in G. We also use D(G) = maxu,v∈V dG(u, v) to denote
the diameter of G, where dG(u, v), or d(u, v) for simplicity,
denotes the length of the shortest path from u to v in G.

A maximal independent set (MIS) algorithm, executed
in G = (V,E), must satisfy: termination, meaning that
every node output a 1 (to indicate it joins the set) or
a 0 (to indicate it does not), independence, meaning the



subset I ⊆ V of nodes that output 1 is independent
(u, v ∈ I, u 6= v =⇒ (u, v) 6∈ E), and maximality,
meaning every node in V \I neighbors at least one node in I.
We consider randomized distributed algorithms and require
that termination hold with high probability (i.e., probability
at least 1 − 1/nc, for constant c ≥ 1) while independence
and maximality always hold. For a given MIS algorithm A,
graph G = (V,E), and node u ∈ V , PA,G(u) denotes the
probability that u joins the MIS when executing A in G.
We use this property to formalize fairness as follows. (We
define division-by-zero to evaluate to infinity.)

Definition 1. The inequality factor of an MIS algorithm A
w.r.t. a graph G is defined as

FA(G) = max
u,v∈V

{
PA,G(u)

PA,G(v)

}
.

We also use FA(G) = maxG∈G FA(G), to denote the worst-
case inequality factor of A w.r.t. a graph family G.

Definition 2. For a graph family G, we say an MIS al-
gorithm A is fair w.r.t. G if there exists a constant c s.t.
FA(G) ≤ c.

Informally, FA(G) quantifies the worst-case ratio of join
probabilities for any two nodes when running A in any
graph drawn from G. The lowest possible value of FA = 1
indicates that an algorithm is perfectly fair (i.e., all nodes
have an equal chance of entering the MIS).

IV. FAIR ALGORITHM FOR ROOTED TREES

This section describes a fair MIS algorithm for rooted
trees that runs in O(log∗ n) time. This straightforward result
provides a nice primer for our later results and highlights the
general strategy we deploy throughout this paper: build an
initial independent set with strong fairness guarantees, then
refine it (using a potentially unfair MIS algorithm on the
remaining uncovered nodes) to guarantee maximality.

A. Algorithm

The algorithm FAIRROOTED runs in a rooted tree T =
(V,E), where each internal node is provided a pointer to its
parent in the tree. (It is trivial to extend this algorithm to
operate on a forest of rooted trees.) We will prove each node
enters the MIS with probability ≥ 1/4, implying fairness.

The algorithm proceeds in two stages, as shown by pseu-
docode in Figure 1. During the first stage, which consists
of a single round of communication, each node tags itself
with a single bit chosen uniformly at random. We associate
with the root a virtual sentinel node v0 to act as its parent,
and have the root also choose the tag of its (virtual) parent.
Each node then shares its tag with its children and compares
its own tag to that of its parent. Any node with a tag of 0
whose parent has a tag of 1 enters the set I.

By construction, the set I is an independent set, but it may
not be maximal. It is not hard to show that the first stage

Stage 1: (∀v ∈ V )
choose v.tag from {0, 1} uniformly at random
if v is the root then

choose v0.tag from {0, 1} at random
read u.tag from parent node u
if v.tag = 0 and u.tag = 1 then v joins I

Stage 2: (∀v ∈ V )
if v ∈ I then

output “in MIS” and terminate
else if NT (v) ∩ I 6= ∅ then

output “not in MIS” and terminate
else run an (unfair) MIS protocol for rooted trees

Figure 1. The two stages of the algorithm FAIRROOTED.

alone guarantees that each vertex enters I with constant
probability, which implies fairness. In the second stage, each
node communicates once with all its neighbors, and any
node that is in I, or learns that it is covered by a node in
I, terminates the algorithm arriving at its final state. Those
nodes that are not yet covered continue by participating in
a generic MIS algorithm (possibly an unfair one) for rooted
trees to ensure the final set is maximal; e.g., the O(log∗ n)-
round algorithm of [3].

B. Analysis

The following theorem proves the desired fairness and
time complexity results for FAIRROOTED.

Theorem 3. Let R denote the class of rooted trees. When
run on any rooted tree T ∈ R, FAIRROOTED generates a
correct MIS in O(log∗ n) rounds. Moreover, it guarantees
an inequality factor FFAIRROOTED(R) ≤ 4.

Proof of the theorem follows directly from the three
subsequent lemmas, which prove correctness, running time,
and fairness, respectively.

Lemma 4. When run in any rooted tree T = (V,E),
FAIRROOTED generates a correct MIS.

Proof of Lemma 4 is straightforward. The crux of the
proof is that in Stage 1, no two neighbors may join I giving
independence, and in Stage 2, maximality is restored.

Since Stage 1 and 2 use a constant number of rounds
plus Cole and Vishkin’s algorithm for rooted trees [3], it
is straightforward to prove the following lemma. Moreover,
Cole and Vishkin’s algorithm is deterministic, so the bound
holds in the worst case if nodes are given unique IDs in the
range from 0 to nΘ(1). If not, the nodes begin by choosing
random IDs in this range, and the bound holds with high
probability.

Lemma 5. FAIRROOTED completes in O(log∗ n) rounds.

Lemma 6. Let R be the class of rooted trees. FAIRROOTED
has inequality factor FFAIRROOTED(R) ≤ 4.

Proof: Consider any node v ∈ V , and let u be its parent.
Then in the first stage, we have Pr{v ∈ I} = Pr{u.tag =



1 and v.tag = 0} = Pr{u.tag = 1} · Pr{v.tag = 0} =
(1/2)(1/2) = 1/4.

In Stage 2, nodes are only added to the MIS, so we
conclude that the probability that any node enters the MIS
is at least 1/4. Since the maximum probability is 1, the
inequality bound follows.

V. FAIR ALGORITHM FOR UNROOTED TREES

In this section, we describe a fair MIS algorithm for
unrooted trees that runs in O(log n) time. To explain this
algorithm, we first note that it is not difficult to create a cen-
tralized algorithm A′ that guarantees PA′,G(u) = PA′,G(v)
∀u, v ∈ V , for any G ∈ B, where B is the class of
bipartite graphs. The real challenge is to find an efficient
distributed algorithm that can approximate this guarantee.
Here we tackle this challenge for T ⊂ B, where T is the
class of unrooted trees, and we generalize to bipartite graphs
in Section VI, albeit at the cost of a slower algorithm.

More precisely, we describe below a distributed MIS
algorithm FAIRTREE that when run on a graph G ∈ T ,
guarantees a correct MIS such that PFAIRTREE,G(u) ≥
(1 − ε)/4, for every node u and an arbitrarily small ε.
It terminates in O(log n) rounds, with high probability
(matching the running time of Luby’s algorithm [13]).

A. Algorithm

Figure 2 describes FAIRTREE. This algorithm uses, as a
subroutine, CNTRLFAIRBIPART, a distributed algorithm that
can generate a perfectly fair MIS on unrooted trees (or, more
generally, any bipartite graph) in O(D(T )) time, where T
is the tree in which it is executed. At a high level these two
algorithms work together as follows: FAIRTREE starts by
having nodes partition the original tree T , in a distributed
manner, into components of smaller size. They then execute
CNTRLFAIRBIPART in each of these resulting components,
covering them with a fair MIS. Next, a careful stitching pro-
cess (Stages 2–3) is used to resolve MIS conflicts between
neighboring components in a local manner. It is straight-
forward to show that our initial partition breaks T into
components with diameter O(log n), with high probability,
allowing CNTRLFAIRBIPART to run in O(log n) time. It is
more involved to then prove that the stitching step is also
efficient and only increases the inequality of the algorithm
by a small constant factor.

The CNTRLFAIRBIPART Algorithm. The algorithm takes
a single parameter, D̂, which is an estimated upper bound on
the diameter of the bipartite graph in which it is executed.2

The algorithm starts by having each node run a basic flood-
based leader election algorithm for D̂ rounds: each node
in each round broadcasts the largest ID it has received

2Note that we do not assume advance knowledge of diameter information
in our model. The CNTRLFAIRBIPART algorithm described here will
be called as a subroutine by our FAIRTREE algorithm, which will be
responsible for specifying the D̂ parameter.

Stage 1: Cut (∀v ∈ V )
cooperate with each neighbor u ∈ NT (v),

and set (u, v).cut = 1 with probability 1/2
call CNTRLFAIRBIPART with D̂ = γ,

but ignoring edges with cut = 1
if v joined MIS then add v to I

Stage 2: Resolve (∀v ∈ I)
call CNTRLFAIRBIPART with D̂ = γ
if v joined MIS then keep v in I
else remove v from I

Stage 3: Maximalize (∀v s.t. (NT (v) ∪ {v}) ∩ I = ∅)
call CNTRLFAIRBIPART with D̂ = γ
if v joined MIS then add v to I

Stage 4: Fix (∀v ∈ V )
if v ∈ I and NT (v) ∩ I 6= ∅ then

remove v from I
if v ∈ I then output “in MIS” and terminate
else if NG(v) ∩ I 6= ∅ then

output “not in MIS” and terminate
else call LUBY’S and mimic output

Figure 2. The four stages of FAIRTREE algorithm. In the above, γ =
Θ(logn) and each stage runs for a fixed number of rounds (i.e., nodes
not participating in a stage still wait the fixed number of rounds before
proceeding to the next stage). The sets next to each stage name describe
the nodes that participate in that step.

so far; it accepts the largest ID its seen at the end of D̂
rounds as its leader. After this stage concludes, the leader u
(or, potentially multiple leaders if D̂ is an underestimate),
selects a bit bu with uniform randomness. It then initiates
a breadth-first search, beginning at itself, terminating after
D̂ rounds, even if some nodes have not been reached. The
search message includes the current depth of the search (u
considers itself at level 0) and bu. Each node (including u),
that learns it is in some level i (i hops away from the leader),
joins to the MIS if i+ bu ≡ 0 (mod 2). As a special case,
if the leader is alone (i.e., has degree 0), it always joins the
MIS. It is straightforward to show:

Lemma 7. Assume CNTRLFAIRBIPART is called by every
node in unrooted tree T = (V,E) during the same round
with the same parameter D̂. Let I(T ) be the nodes that join
the MIS. If D̂ ≥ D(T ), then: (a) I(T ) is a correct MIS for
T ; and (b) ∀u ∈ V : PCNTRLFAIRBIPART,T (u) = 1/2 if
|V | > 1, and PCNTRLFAIRBIPART,T (u) ≥ 1/2 in general.

Proof: If D̂ ≥ D(T ), then the leader election correctly
elects a single leader and the breadth-first search reaches all
nodes. Because T is a tree, it is easy to see that (a) holds.
To show (b), fix some node v ∈ T . Let u be the leader in
T . If |V | > 1, then depending on the parity of dT (u, v), one
value for bu will put v in I(T ) and one will keep v out of
I(T ). The fairness follows from the fact that bu is chosen
with uniform probability. If |V | = 1, then the node always
enters the MIS.

The FAIRTREE Algorithm. We now describe the main
result of this section, the FAIRTREE algorithm. This algo-



rithm consists of four stages described in Figure 2. Notice,
not all nodes participate in each stage (the participants are
specified by the set next to the stage name). The first three
stages, however, each run for a fixed number of rounds (the
Θ(log n) time required by the call to CNTRLFAIRBIPART,
plus the constant number of extra rounds needed for local
communication, when relevant), so non-participants simply
wait that number of rounds before proceeding to the next
stage. This ensures all nodes start each of these stages during
the same round.

Stage 1 divides the tree into components by cutting
edges and then attempts to create a fair MIS I in each. If
Stage 1 completes, I covers all nodes, but there may be MIS
conflicts between neighbors in distinct components. Stage 2
resolves these conflicts by running CNTRLFAIRBIPART only
on “MIS” nodes (those in I), causing some nodes to drop out
of I. If both stages complete, then I is an independent set,
albeit not necessarily maximal. Stage 3 restores maximality
by running CNTRLFAIRBIPART on uncovered nodes. The
resulting MIS stitches safely with the existing set I.

We will prove that the components executing CNTRL-
FAIRBIPART in each stage have sufficiently small diameters
for this fixed-time algorithm to succeed, with high probabil-
ity. In this successful case, I is a valid MIS, and we shall
prove that PFAIRTREE,T (u) ≥ 1/4 for every node u. With
low probability, however, we might arrive at Stage 4 with an
invalid MIS due to CNTRLFAIRBIPART failing to complete
on a large diameter component in previous stages. To correct
for this possibility, at the start of Stage 4 we remove all
independence violations, then have uncovered nodes run a
standard MIS algorithm (in this paper, we use the MIS algo-
rithm of Luby [13], which we call LUBY’S). The resulting
MIS will stitch together with the earlier independent set, but
we make no guarantee about its inequality factor. In other
words, LUBY’S is only ever called as a fallback mode in the
low probability event that one of the previous three stages
failed. This ensures that the MIS is always correct, but the
join probability decreases by some ε ≤ 1/n.

B. Analysis

The following theorem proves the desired inequality factor
and time complexity results for FAIRTREE.

Theorem 8. For any unrooted tree T = (V,E), the
FAIRTREE algorithm, when executed in T , constructs a
correct MIS such that PFAIRTREE,T (u) ≥ (1 − ε)/4, for
every u ∈ V and some ε < 1/n. It terminates in O(log n)
rounds with high probability.

To establish this theorem, we have three properties to
prove: the time complexity, correctness, and inequality factor
bound of FAIRTREE. We divide these efforts into the three
lemmas below. To distinguish the value of our set I at the
end of each stage, we use the notation I1, I2, I3 to describe
I at the end of Stages 1, 2 and 3, respectively.

Lemma 9. Algorithm FAIRTREE terminates in O(log n)
rounds with high probability.

Proof: This time complexity follows directly from the
fixed-length of Stages 1 to 3 and the O(log n) bound (w.h.p.)
on LUBY’S proved in [13].

Lemma 10. FAIRTREE generates a correct MIS on T .

Proof: Stage 4 starts by removing any independence
violations, then ensures maximality by running LUBY’S on
the remaining uncovered nodes.

As seen above, efficiency and correctness are straightfor-
ward to prove. Bounding the inequality factor, on the other
hand, requires a more involved argument:

Lemma 11. PFAIRTREE,T (u) ≥ (1 − ε)/4, for all u ∈ V
and some ε ≤ 1/n.

Proof: We consider Stages 1–3 successful if their calls
to CNTRLFAIRBIPART are made with a sufficiently large
value for D̂ (i.e., a value at least as large as the largest
relevant component).

We will first show that if Stages 1–3 are successful, then
no node will call LUBY’S in Stage 4. To see why this is
true, notice that a node calls LUBY’S only if it ends Stage
3 uncovered by I. Every node that is uncovered at the
beginning of Stage 3, however, calls CNTRLFAIRBIPART,
and by our assumption that this call is successful, each of
these nodes ends the stage covered.

We have just established that if the first three stages are
successful then no node will call LUBY’S. In other words,
the MIS defined at the end of Stage 3 will be the final MIS.
We next note that under this assumption of successful stages,
this final MIS is fair. In more detail, the probability that a
given u joins the MIS is at least

Pr{u ∈ I2} = Pr{u ∈ I1} · Pr{u ∈ I2|u ∈ I1}.

(Since Stage 3 only increases the join probability, it may
be omitted when proving a lower bound.) Lemma 7 implies
Stage 1 yields Pr{u ∈ I1} ≥ 1/2. Stage 2 runs CNTRL-
FAIRBIPART again on the nodes I1, giving Pr{u ∈ I2|u ∈
I1} ≥ 1/2. Combining these gives Pr{u ∈ I2} ≥ 1/4.

Our final step is to incorporate the event that the first three
stages are not successful. If this event occurs, for any u, we
can trivially bound u’s probability of joining at 0. Let ε be
the probability that at least one of these stages fails is not
successful. Combined with our result from above, we get
that u joins the MIS with probability at least (1− ε)/4.

We are left to bound ε. Our goal is to show that it is
less than 1/n, which will implies the inequality factor is
upper bounded by a value that approaches 4 as n increases.
To reach this goal, we argue that there exists a constant
c for γ = c log n + Θ(1) such that in all three calls to
CNTRLFAIRBIPART, γ is a sufficiently large estimate of the
maximum component diameter. We start by studying the



calls in the first two stages. In these stages, a given path of
length ` is included in a component with probability 2−` (in
Stage 1, the path must have cut = 0 for every edge, while in
Stage 2, the path must have cut = 1 for every edge, where
the cut decisions are all independent and uniform). Setting
γ = c log n for a sufficiently large constant c, a union bound
over the polynomially-many paths in T shows that for each
of Stages 1 and 2, Pr{length of any path ≥ γ} ≤ 1/(3n).

For Stage 3, we note that for a path u1, u2, ..., u` of length
` consisting of nodes uncovered by I2, each ui was never
previously in I (if it was, it would be covered in this stage),
and, therefore, each ui has a neighbor vi that was in I1

but not I2. Furthermore, because T is a tree, for vi, vj ,
i 6= j, vi and vj are in different components in Stage 2
(they are separated by the path ui, . . . , uj) and therefore
their outcomes in Stage 2 are independent. Lemma 7 thus
implies Pr{vi 6∈ I2} ≤ 1/2 independently for each vi.
The same argument as for Stages 1 and 2 shows that for
sufficiently large γ, the probability that Stage 3 contains a
large-diameter component is at most 1/(3n). A final union
bound over stages gives us the desired ε < 1/n.

VI. ALGORITHM FOR BIPARTITE GRAPHS

This section describes a fair distributed MIS algorithm
for the class of bipartite graphs that runs in O(log2 n) time.
This algorithm generalizes the algorithm of Section V, but
does not subsume it because it is slower by a log-factor. As
with Section V, the main idea of the algorithm is to partition
the graph into low-diameter subgraphs, find an MIS on the
subgraphs using CNTRLFAIRBIPART, and then correct for
maximality by running LUBY’S on the uncovered nodes.
Unfortunately, the Section V’s partitioning algorithm does
not generalize to bipartite graphs, so a more pliable approach
is necessary. Fortunately, such an approach exists in a classic
network decomposition result due to Linial and Saks [12],
which we leverage to quickly produce a useful low weak-
diameter subgraph in O(log2 n) rounds.

Below, we describe and analyze the useful subroutine we
adopt from [12], then describe and analyze our fair MIS
algorithm that makes use of it.

A. Construct Block Routine

Linial and Saks’ network-decomposition algorithm [12]
uses a key subroutine called “Construct Block.” In this
routine, each node v chooses a communication range rv
according to the distribution π, specified as:

π : Pr{rv = k} =

{
pk(1− p) ∀k ∈ 0, 1, · · · , γ − 1
pγ k = γ

where the parameters p and γ represent a probability and
maximum range, respectively. For our purposes, p = 1/2
and γ = Θ(log n) suffice.

Next, each node v broadcasts its ID to all other nodes
within radius rv . After the broadcast completes, node v

Stage 1: block construction (∀v ∈ V )
pick rv according to distribution π
choose bv from {0, 1} uniformly at random
create tables v.L[0 . . γ] and v.B[0 . . γ]
initialize v.L[rv ] = v and v.B[rv ] = bv .
repeat γ times

broadcast leader table v.L and v.B
on receiving leader tables L∗, B∗:

for all i ∈ {0, 1, 2, . . . , γ − 1} do
if v.L[i] > L∗[i+ 1] then

v.L[i] = L∗[i+ 1]
v.B[i] = ¬B∗[i+ 1]

let leader ID = maxi v.L[i] and j = argmaxi v.L[i]
if leader ID 6= v.L[i] for any i > 0 then

v is a boundary node and does not join a block
else v joins leader ID’s block

if v.B[j] = 1 then v joins I
Stage 2: MIS (∀v ∈ V )

if v ∈ I then
output “in MIS” and terminate

else if N(v) ∩ I 6= ∅ then
output “not in MIS” and terminate”

else call LUBY’S and mimic output

Figure 3. Pseudocode of FAIRBIPART

identifies the node u with the largest ID among messages it
has received. It considers u its leader. If the distance between
v and u is strictly less than ru, then v joins u’s block. In
other words, u’s block is the set of nodes that select u as
a leader and join a block. Otherwise, the distance between
v and its leader is exactly ru, in which case v is called a
boundary node. Boundary nodes do not join any block.

As stated in the following lemma, proved in [12], the
Construct Block routine provides some nice structural guar-
antees. Notably for correctness, if a node v joins a block,
then each of its neighbors is either a boundary node or in
the same block.

Lemma 12. Construct Block has the following properties
(i) each vertex belongs to a block with the probability of
at least p(1− pγ)n; (ii) all connected non-boundary nodes
have the same leader.

The implementation of Construct Block described in the
next section requires O(log2 n) rounds. Though this is
slower by a O(log n) factor than our FAIRTREE algorithm
for unrooted trees, the structural properties on the blocks
(as described by Lemma 12) are stronger than what we get
from our FAIRTREE partitioning. In particular, the blocks we
obtain here are separated by non-block boundary nodes (fol-
lows from ii), allowing us to avoid independence conflicts
between neighboring nodes in different blocks.

B. Algorithm

Figure 3 contains pseudocode describing FAIRBIPART,
our fair distributed MIS algorithm for bipartite graphs.
Roughly speaking, the goal of Stage 1 is to run Con-
struct Block to create blocks, and then run CNTRLFAIR-
BIPART on each block. However, each block has only



weak diameter guarantees in the sense that the distance
in G between any two nodes in the same block is small
(by construction), but the distance between those nodes
in the subgraph induced by the block nodes may be ar-
bitrarily large. To compensate for this reality, Stage 1
simulates CNTRLFAIRBIPART along with the execution of
Construct Block by sending the extra random bit selected
by the leader along with each message.

For concreteness, Figure 3 provides full pseudocode for
Stage 1. There are several variants for Construct Block
described in [12]. Here we adopt one with bounded mes-
sage sizes, allowing O(log n) bits per edge per round of
communication (as required by our model). More precisely,
Stage 1 operates as follows. Each node v initially selects a
range or rv ≤ γ = Θ(log n) according to the distribution
π described above. To simulate CNTRLFAIRBIPART, each
node also selects a random bit bv . Each node v constructs
“leader tables” v.L[0 . . γ] and v.B[0 . . γ], where

v.L[i] = maximum ID v has seen with i range remaining,

v.B[i] =

{
bu d(u, v) is even, where u = v.L[i]

¬bu d(u, v) is odd, where u = v.L[i]

This table is initialized with v.L[rv] = v and v.B[rv] = bv ,
and all other entries initialized to null values.

The execution of Stage 1 is then divided into γ super-
rounds. In each superround, a node v sends its full leader
tables to its neighbors—since a leader table has γ entries,
this can be simulated in O(γ) rounds. On receiving a leader
table, v decrements the range of all received entries by 1
and updates the appropriate entries in its own leader tables
to reflect the maximum ID seen.

After completing the γ superrounds of communication,
v selects a leader by looking at the maximum ID stored
in its leader table v.L; i.e., maxi v.L[i]. If that leader’s ID
occurs only in v.L[0] then v becomes a boundary vertex.
Otherwise, it joins a block. To finish the simulation of CN-
TRLFAIRBIPART, if v joins a block, and if the corresponding
bit in v.B is 1, then v joins the MIS I.

At the start of Stage 2, I is an independent set but may not
be maximal. All nodes that are already covered terminate.
Any remaining nodes execute LUBY’S to restore maximality.

C. Analysis

The following theorem proves the desired fairness and
time complexity results for FAIRBIPART. In the following,
assume we fix γ = 2 lg n and p = 1/2. Proof of the theorem
follows directly from the subsequent three lemmas.

Theorem 13. Let B denote the class of bipartite graphs.
When run on any bipartite graph G ∈ B, FAIR-
BIPART generates a correct MIS in O(log2 n) rounds, with
high probability. Moreover, it guarantees inequality factor
FFAIRBIPART,B ≤ 8.

Lemma 14. FAIRBIPART outputs a correct MIS.

Proof: This proof amounts to showing that I produced
at the end of Stage 1 is an independent set. If I is an
independent set, then the fact that Stage 2 yields an MIS
follows from the same style of argument as in Lemma 4.

To prove that I is an independent set, we begin by
applying Lemma 12. Fix some v with leader u at the end of
the Construct Block logic. All of v’s neighbors are either
in u’s block, or they are boundary nodes. Boundary nodes
do not join I, so it is sufficient to show that nodes in the
same block that join I are independent. Below we prove that
this follows from the correctness of the CNTRLFAIRBIPART
logic integrated in this routine.

We begin by stating an important property of bipartite
graphs, which we then use to argue that no neighbors in the
same block read the same v.B[j] value at the end of Stage 1.
Consider any nodes u, v ∈ G. We say that these nodes have
even distance if any path between them has even length,
and odd distance if any path between them has odd length.
Since G is bipartite, the notion of even/odd distance is well
defined—all paths between a particular pair of vertices have
the same parity.

Consider any node v, and let u = v.L[i] be the ith entry in
its leader table. A simple inductive argument over rounds of
Stage 1 shows that v.B[i] = bu if and only if u and v have
even distance (recall that the algorithm negates this value
with each hop). It follows that all of v’s neighbors with u
in their leader table observe the value ¬bu. Hence v joins I
only if its neighbors do not.

Lemma 15. Algorithm FAIRBIPART terminates in
O(log2 n) rounds.

Proof: The communication in Stage 1 consists of γ
superrounds, which each includes γ rounds. Because we
fixed γ = Θ(log n), we get O(log2 n) total rounds. In
addition, Stage 2 comprises one round of communication
to determine if N(v)∩I = ∅, and we then require O(log n)
rounds (with high probability) for LUBY’S.

Lemma 16. If G ∈ B is a bipartite graph, then
PFAIRBIPART,G(u) ≥ 1/8 for all u ∈ V .

Proof: A node v joins I at the end of Stage 1 if 1)
it joins a block, and 2) the bit corresponding to its leader
in v.B is 1. Notice, these two events are independent. It is
easy to see that 2 occurs with probability 1/2.

We now turn our attention to the probability of 1. By
Lemma 12, we know that each node joins a block with
probability at least p(1 − pγ)n. As specified above, we
fixed γ = 2 lg n and p = 1/2, which yield a block join
probability of (1/2)(1−1/n2)n. Notice that this function is
monotonically increasing (approaching

√
1/e as n → ∞).

By assuming n ≥ 2, we lower bound the probability as:
(1/2)(1 − 1/4)2 > 1/4. (The n = 1 case can be handled



separately.)
Multiplying the probabilities of events 1 and 2 give us a

result ≥ (1/4)(1/2) = (1/8), completing the proof.
Notice, that in the above calculation we can drive the

inequality bound arbitrarily close to 4 by replacing 2 lg n
with c lg n for increasing values of c (which pushes the
probability joining a block in the above proof toward 1/2
in the limit as c grows). This increased fairness, however,
comes at the expense of time complexity, where γ appears
as a multiplicative factor.

VII. A k-FAIR ALGORITHM FOR k-COLORABLE GRAPHS

This section describes a distributed MIS algorithm that
guarantees an inequality factor bounded by O(k) (what we
can call, k-fairness) in O(f(n, k) + log2 n), rounds for
any graph for which there exists a distributed k-coloring
algorithm that runs in f(n, k) time. Combining this algo-
rithm with a known O(log n)-time distributed O(1)-coloring
algorithm for planar graphs [1], yields a fair distributed
MIS algorithm for planar graphs that runs in O(log2 n)
rounds. More generally, this algorithm can be combined
with a general distributed coloring algorithm and executed
in arbitrary graphs: it is straightforward to show that it will
yield good (i.e., small) inequality factors in regions of the
graph that can be colored with a small number of colors.

A. Algorithm

Our COLORMIS distributed MIS algorithm must be com-
bined with a distributed k-coloring algorithm A. It begins by
having nodes execute A.3 It then has nodes execute a variant
of our augmented Construct Block subroutine described and
analyzed in Section VI. In more detail, the only change is
that we replace the randomly generated bit bu generated by
each node u, with a color cu, selected from the k colors with
uniform randomness. (If nodes do not know k in advance,
then we can add an extra step where the leader in each
block counts the colors before randomly choosing one. For
concision, in the following we assume knowledge of k.)

Unlike with bu, the selected value cu remains unchanged
as it propagates through the network. A node v joins the
MIS at this point only if it joined a block with leader u and
v’s color, from executing the distributed coloring algorithm,
matches the color cu randomly chosen by its leader. As
usual, we conclude by having all uncovered nodes execute
LUBY’S to fix any remaining maximality mistakes.

B. Analysis

The following theorem bounds the fairness and time
complexity of COLORMIS:

Theorem 17. Fix some distributed k-coloring algorithm A
that terminates in f(n, k) rounds in all graphs of size n,

3Nodes can execute A for a fixed number of rounds that describe its
high probability termination bound. In the low probability event that a
node remains uncolored, it just proceeds to next step uncolored.

with probability at least 1 − 1/n2. Let CA be the class
of graphs that can be k-colored by A. When run on any
G ∈ CA, COLORMIS using A generates a correct MIS in
O(f(n, k)+log2 n) rounds, with probability at least 1−1/n.
Moreover, it guarantees an inequality factor O(k).

Proof: The time complexity follows from the running
time of A and the running time of Construct Block, as
established in Section VI.

To show that the resulting MIS is correct, it is enough
to show that there are no independence violations in the
set before the remaining uncovered nodes run LUBY’S
algorithm. Notice two nodes in the same block join the
set only if they share the block leader’s color. And by the
correctness of A, no two neighbors share the same color.

Finally, we consider fairness. The analysis of Con-
struct Block in Section VI established that a node joins a
block with constant probability. If a node joins a block, the
probability that its leader choose its color is 1/k. Therefore,
all nodes join with probability at least Ω(1/k) yielding the
needed O(k) bound on the inequality factor.

We obtain the following corollary by combining this the-
orem with coloring algorithms for low-arboricity graphs [1]
that produce an (b(2 + ε) · a(G)c + 1)-coloring in
O(a(G) log n) time, where a(G) is the “arboricity” of G.
and ε > 0 is an arbitrarily small parameter. Coupled with
the fact that planar graphs have arboricity at most 3 yields
the following corollary. Note that this bound actually holds
for any constant-arboricity graph.

Corollary 18. There exists a fair distributed MIS algorithm
for planar graphs that runs in O(log2 n) time, with high
probability.

VIII. LOWER BOUND

In this section we prove limits on fairness. Consider,
for example, the cone graph C = (V,E), where V =
{u0, u1, ..., u2k}, for some k ≥ 1, and E = {(ui, uj) |
i, j > 0} ∪ {(u0, ui) | 0 < i ≤ k}. That is, C consists of
a clique among the nodes u1 to u2k, as well as an edge
from u0 to every node from u1 to uk. We prove below that
every MIS algorithm has inequality factor Ω(n) when run in
C. This result eliminates the possibility of any universally
fair MIS algorithm (i.e., an algorithm that can guarantee
bounded inequality in all graphs).

An interesting property of C is that the ratio between
the largest and smallest degree is constant. This implies
that inequality is not just caused by disparities in density
in different regions of a graph (e.g., nodes in sparse re-
gions joining with higher probability than nodes in dense
regions), but can also have deeper topological roots. A better
classification of exactly which properties unavoidably yield
inequality remains an intriguing open question.

Theorem 19. For every MIS algorithm A, FA(C) = Ω(n).
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Figure 4. Cumulative distribution of the percentage of runs of Luby’s and FAIRTREE in which nodes were in the MIS for (left) complete trees,
(center) alternating trees, and (right) real-world trees.

Proof: For conciseness, let P be a shorthand for the
function PA,C . We first note that if P (ui) = 0 for any ui ∈
V , then the inequality factor is trivially in Ω(n) (it would, in
fact, be infinite). Assume moving forward, therefore, that all
nodes have a join probability strictly greater than 0. We turn
our attention to the relationship between u0 and the k nodes
in S = {uk+1, ..., u2k}. Let pS =

∑
ui∈S P (ui). Notice, if

a node in S joins the MIS then u0 must also join the MIS,
as the MIS node in S would cover {u1, ..., uk}, requiring
u0 to join to preserve maximality. The reverse argument
also holds: if u0 joins then a node in S must also join. It
follows that P (u0) = pS . Because pS is the sum of |S| = k
elements, there must be some u∗ ∈ S such that P (u∗) ≤
pS/k. Pulling together these pieces, it follows that FA(C) ≥
P (u0)
P (u∗) ≥

pS
(pS/k) = k = Ω(|V |) = Ω(n).

IX. EVALUATION

This section presents a simulation-based study showing
that Luby’s algorithm is not fair, and hence a better algorithm
such as in this paper is necessary to achieve fairness. This
study examines the inequality that results when applying
MIS algorithms both to synthetic and real-world topologies.

To conduct our evaluation, we constructed a discrete net-
work simulator that takes as input a tree-structured network
topology. Our simulator runs Luby’s MIS algorithm and
FAIRTREE over the network in synchronous rounds and
measures, for each algorithm, (1) the fraction of runs for
which each node enters the MIS and (2) the inequality factor;
both are computed over 10,000 runs of the randomized
protocols. The source code of the simulator and all tested
network topology data (described next) are available for
download at http://www.cs.georgetown.edu/mis-simulator.

Network topologies. Our simulation study considers three
categories of trees: complete trees (specifically, binary and
5-ary trees); alternating trees where even-depth internal
nodes have c > 1 children and odd-depth nodes have 1
child; and trees based on real-world datasets. The alternating
trees are intended to isolate the impact of local degree

Tree Tree Size Algorithm Ineq.
Factor

Complete trees
Binary tree |V | = 2047 Luby’s 3.07

(Branch=2, Depth=10) |E| = 2046 FAIRTREE 2.22
5-ary tree |V | = 3906 Luby’s 6.42

(Branch=5, Depth=5) |E| = 3905 FAIRTREE 3.09
Alternating trees

Branch=10 (for even depths) |V | = 1221 Luby’s 11.92
Depth=5 |E| = 1220 FAIRTREE 3.15

Branch=30 (for even depths) |V | = 961 Luby’s 36.59
Depth=3 |E| = 960 FAIRTREE 3.09

Real-world traces

Dartmouth |V | = 178 Luby’s 22.75
|E| = 177 FAIRTREE 3.07

New York City |V | = 17834 Luby’s 168.49
|E| = 17833 FAIRTREE 3.25

Table I
INEQUALITY FACTORS FOR REGULAR AND ALTERNATING TREES, AND

TREES FORMED FROM REAL-WORLD TRACE DATA.

variations on the performance of Luby’s algorithm. The two
“real-world” trees, Dartmouth and New York City (NYC),
represent simulated networks respectively comprising 700
wireless access points (WAPs) located on Dartmouth Col-
lege’s campus [8] and approximately 18,000 WAPs located
in NYC (obtained by querying the Wigle.NET wardriving
collection service [18]). The Dartmouth and NYC datasets
contain the physical locations (latitudes and longitudes) of
WAPs in Hanover, NH and NYC, respectively. We build
trees from these datasets by first imposing a maximum
physical distance that may be represented by an edge, and
then forming a minimum spanning tree over the graph. The
parameters of the tested trees are listed in Table I.

Simulation results. Table I summarizes the experimental
results, indicating the inequality factor for each algorithm on
each network. Luby’s algorithm has low inequality factor on
low-degree regular trees, which is not surprising as achieving
fairness in constant-degree graphs is easy. When turning
to the synthetic alternating trees and real-world datasets,
however, Luby’s inequality factor rises to as high as 168



in a real-world graph, indicating that Luby’s is not fair in
practice. In contrast, FAIRTREE has an inequality factor of
at most 3.25 and is hence fair for all of the experiments;
this fact is consistent with Theorem 8.

To break apart the degree of unfairness further, Figure 4
plots the cumulative distribution function (CDF) of the
fraction of the time that each node is in the MIS over all
10,000 simulation runs (that is, the distributions of PA,G(v)
for all nodes v ∈ V , given an MIS algorithm A and a tree
G). In all plots, the distribution exhibited by FAIRTREE
is more compact with no tail extending to low or high
probabilities. In contrast, Luby’s unfairness is exhibited by
a more diffuse distribution. Interestingly, the general shape
of the curves is similar for Luby’s and FAIRTREE, with the
latter being more condensed and hence more fair.

Figure 4 (center) plots data for the algorithms on alter-
nating trees, highlighting a case in which Luby’s produces
high inequality factors. For example, for the alternating
tree with branching factor of B = 10, Luby’s results in
approximately 80% of the nodes being in the MIS 90% of
the time. Moreover, nearly 10% of the nodes enters the MIS
only 10% of the time, and hence the “unfairness” is not
isolated to just a few nodes. Perhaps surprisingly, the trees
based around real-world datasets, shown in Figure 4 (right),
exhibit even more diffuse distributions for Luby’s algorithm.

X. CONCLUSION

Distributed MIS algorithms are well-studied from a time
complexity perspective. In this paper, we introduce and
explore a novel property motivated by both practical and the-
oretical interests: fairness. To improve our understanding of
this property, we produce efficient and fair MIS algorithms
for many classes of graphs, and show that no MIS algorithm
can offer bounded inequality (i.e., o(n)) on all graphs. We
help motivate the need for these provably fair algorithms by
showing, via simulation, that the standard algorithm due to
Luby [13] is not fair in many common topologies.

This work opens up many interesting (and likely tractable)
questions. Perhaps foremost is a better understanding of
when fairness is possible and impossible. It would also
be important to understand the fundamental relationship
between fairness and time complexity. Does a fair solution,
for example, require more rounds than a non-fair solution;
i.e., does the relevant MIS lower bound increase from
Ω(
√

log n) to Ω(log n) when imposing a fairness constraint?
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