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ABSTRACT
In this paper, we study upper and lower bounds for con-
tention resolution on a single hop fading channel; i.e., a
channel where receive behavior is determined by a signal
to interference and noise ratio (SINR) equation. The best
known previous solution solves the problem in this setting
in O(log2 n/ log logn) rounds, with high probability in the
system size n. We describe and analyze an algorithm that
solves the problem in O(logn + logR) rounds, where R is
the ratio between the longest and shortest link, and is a
value upper bounded by a polynomial in n for most feasible
deployments. We complement this result with an Ω(log n)
lower bound that proves the bound tight for reasonable R.
We note that in the classical radio network model (which
does not include signal fading), high probability contention
resolution requires Ω(log2 n) rounds. Our algorithm, there-
fore, affirms the conjecture that the spectrum reuse enabled
by fading should allow distributed algorithms to achieve a
significant improvement on this log2 n speed limit. In ad-
dition, we argue that the new techniques required to prove
our upper and lower bounds are of general use for analyzing
other distributed algorithms in this increasingly well-studied
fading channel setting.

CCS Concepts
•Networks → Network algorithms; •Theory of com-
putation → Distributed algorithms;
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1. INTRODUCTION
Contention resolution is one of the oldest and most impor-

tant problems in distributed computing. In its basic form,
an unknown set of nodes are activated and connected to a
shared multiple-access channel (MAC). The protocol com-
pletes when any active node transmits alone on the chan-
nel. This problem (also, in some contexts, called wake-up
or leader election) was introduced in the seminal 1970 pa-
per on the ALOHA radio network [1]. In the decades that
followed, researchers have studied it under a wide variety of
assumptions concerning the MAC model and algorithm con-
straints; e.g., [2, 5, 7, 9, 10, 15, 17, 18, 20, 21, 23]. This interest
in contention resolution is well-deserved. From a theoretical
perspective, the problem reduces to most non-trivial tasks
in MAC models, and therefore lower bounds provide fun-
damental speed limits for distributed computation in these
settings. And from a practical perspective, algorithms for
contention resolution have been integrated into link-layer
implementations for numerous real world systems, includ-
ing Ethernet, fiber optic, packet-switch radio, and satellite
networks.

Our Results. We study contention resolution in a fad-
ing MAC model—i.e., a model in which radio signal recep-
tion is determined by a signal to interference and noise ratio
(SINR) equation [19] (see Section 2). Signal fading is a char-
acteristic behavior of radio communication. Therefore, by
studying contention resolution on a fading MAC, we can
probe the possibility of leveraging this property to speed-up
distributed computation in the increasingly important radio
network setting.

We study randomized algorithms using a fixed transmis-
sion power. We develop an algorithm that solves the prob-
lem in O(logn + logR) rounds, where n is the number of
participating nodes, and R describes the ratio between the
longest and shortest link in the network. In most feasible
deployments, R is upper bounded by a polynomial in n,1

yielding performance in O(logn). Our algorithm solves the
problem with high probability in n, and does not require
any advance knowledge of n. By contrast, the best exist-
ing bound requires just under log2 n rounds (specifically,

1It is, of course, mathematically possible for R to be super-
polynomial in n—say, exponential in n—which would cause the
log2 n bound to dominate. In practice, however, once n grows
beyond relatively small numbers, to maintain such a large gap
between link distances becomes increasingly infeasible. Even a
network size of only 20 nodes, for example, would require that
the longest link be on the order of a million times longer than the
shortest link.
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O(log2 n/ log logn) rounds), and assumes advance knowl-
edge of n [16] (see the related work below).

We then match this upper bound with an Ω(log n) lower
bound that establishes our result’s optimality in most net-
works. Our lower bound reduces a basic two-player sym-
metry breaking problem to contention resolution in a care-
fully constructed large fading network. This technique is
potentially applicable to other lower bounds for distributed
computation in fading models and is therefore of standalone
interest.

Finally, we note that in the standard non-fading radio net-
work model [2,3], the lower bound for contention resolution—
and therefore for many problems—is Ω(log2 n) rounds. Our
result improves this time by a square root, and therefore re-
solves the long-standing conjecture that the ability to lever-
age spatial reuse in fading models should allow distributed
algorithms to significantly improve on this Ω(log2 n) speed
limit.

Our Algorithm. A surprising attribute of our result is the
simplicity of the algorithm from which it derives:

Each participating node starts in an active state;
at the beginning of each round, each node that is
still active broadcasts with a constant probability
p (that we fix in our analysis); if an active node
receives a message, it becomes inactive.

Arguably, this algorithm represents the simplest possible
strategy for reducing contention, and yet it nonetheless im-
plicitly leverages spectrum reuse to provide a time bound
that is optimal in a fading model and beats the lower bounds
for non-fading models. This outcome was unexpected when
we began this investigation, and it is something we find to
be pleasingly elegant.

Our Techniques. The simplicity of our algorithm is coun-
terbalanced by the complexity of its analysis. The bulk
of this paper is dedicated to showing that it terminates in
O(logn+logR) rounds. In more detail, a standard approach
for analyzing algorithms in a fading model is to divide nodes
into link classes based on the distance to their nearest neigh-
bors. Existing techniques based on packing arguments prove
that nodes in the smallest non-empty link class have limited
contention. Our algorithm should then “knock out” a con-
stant fraction of these nodes. These observations yield an
O(logn logR) bound, i.e., in the worst-case, we spend log n
rounds emptying each of the ≤ logR link classes, in order
of smallest to largest.

To break past the log n logR threshold, however, we must
show that many link classes can concurrently experience lim-
ited contention. To show this fact requires two analytical
innovations that we argue are of general use for the study of
distributed algorithms on fading channels. First, we prove
that a larger (in terms of link length) link class can have
many (though not all) nodes enjoying low contention if there
are not too many nodes in smaller link classes. We show this
in Section 3.2, fully exploiting the geometry of the fading
model. Among other tactics, when studying the interfer-
ence at a receiver from the same (and larger) link classes,
we take advantage of the small—but non-trivial—gap be-
tween the quadratic growth of interfering nodes as we move
away from the receiver, and the super-quadratic fading of
signals, as captured by the standard assumption that the
fading exponent α is greater than 2. In the space created by

this gap, we are able, in some sense, to fit the interference
from the bounded number of smaller link class nodes.

Second, we introduce a fitting strategy for bounding the
fluctuations in link class sizes as the execution proceeds. As
described in Section 3.3, we define a sequence of vectors,
q1, q2, ..., where each qt is an upper bound on the link class
sizes. These vectors describe, roughly speaking, how these
link class sizes would decrease in an ideal execution. We then
show that every execution eventually obeys this steady pro-
gression. We note that the process of bounding the link class
sizes is complicated by two factors in particular: (1) nodes
can move between link classes during an execution as their
nearest neighbors are deactivated, so progress is not mono-
tonic; and (2) as link class sizes get small (i.e., o(logn)), we
can no longer make high probability arguments about their
sizes continuing to reduce. We overcome these issues by
carefully defining the q vectors, and a careful treatment of
probabilities in which we show that the higher error proba-
bilities of small link classes are balanced by the geometrically
decreasing error probabilities of the larger classes.

Related Work. The study of contention resolution began
with the random access method introduced in the ALOHA
paper in 1970 [1], and continued in the 1980’s [9, 10, 17, 18,
21, 23] (see [6] for a good survey of early work). Over the
next decade, there was an increasing interest in the so-called
radio network model [2, 3], which assumes concurrent trans-
missions are lost at all receivers due to collision and—in a
break from earlier work—transmitters do not learn the fate
of their transmissions. (Once in this model, the contention
resolution problem is now also sometimes called wake-up [7].)
In this model, high probability contention resolution requires
Θ(log2 n) rounds—a bound that improves to Θ(log n) if you
assume receivers can detect collisions [20]. Given an up-
per bound N on the network size n, the strategy of [2] can
be adapted to yield a solution that solves the problem in
O(logN) expected rounds. (Our algorithm, by contrast,
works without any information about n, and with high prob-
ability.)

Early in the new millennium came a renewed interest in
algorithms for fading models of radio networks (sometimes
called the SINR or physical model) which claim to better
capture the real behavior of radio communication. The
bulk of these initial efforts focused on centralized approx-
imation algorithms for core problems such as link schedul-
ing and capacity maximization. Early on, Moscibroda and
Wattenhofer [19] proved that algorithms for fading mod-
els can achieve better performance than for the radio net-
work model for certain centralized scheduling problems due
to spatial reuse of the spectrum (a capability enabled by
super-quadratic signal fading). This result implies that a
similar advantage should hold for distributed algorithms as
well. As detailed below, although others have studied dis-
tributed algorithms in the fading model, our paper is one
of the first to validate this conjecture by demonstrating a
solution to a fundamental distributed problem that signifi-
cantly outperforms the relevant radio network model lower
bound. (A key caveat to this claim is that we restrict our
attention to the standard model for the distributed setting
where the transmission power is fixed and provided. Under
the assumption of power control, it is sometimes possible
to do better; e.g., [11]. Similarly, under the assumption of
tunable carrier sensing—a generalization of receiver collision
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detection—it it is also possible to do better than the radio
network model without collision detection; e.g., [22].

Specifically, Jurdziński and Kowalski [13] describe how to
create a low-contention backbone in O(∆polylog(n)) rounds,
for local density bound ∆, Daum et al. [4] show how to
solve global broadcast in O(D logn · polylog(R)) rounds,
for network diameter D, while Jurdziński et al. [14] pro-
vide a O(D log2 n) round broadcast solution, which is more
efficient for sufficiently large R. Turning to local commu-
nication, Goussevskaia et al. [8] show how to solve local
broadcast in O(∆ log3 n) nodes, which Halldorsson and Mi-
tra later improved to O(∆ logn+ log2 n) rounds [12]. All of
these results can be used to solve contention resolution in a
single-hop fading MAC. None, however, perform better than
Ω(log2 n) rounds in this context. Moreover, we also note
that each of these distributed algorithms at best matches
the best known result for their problem in the non-fading
radio network model. It follows that none of these previous
results demonstrate the potential to beat these bounds in a
fading setting—a key contribution of our result.

In a recent breakthrough, Jurdziński and Stachowiak [16]
confirmed the permeability of the log2 n barrier by show-
ing how to solve contention resolution on a fading MAC
in O(log2 n/ log logn) rounds. Their algorithm speeds up a
standard O(log2 n) strategy from the radio network model
to now progress a factor of log logn times faster. To compen-
sate for this speed-up, they also add a dampening strategy
that takes advantage of the spatial reuse possible on a fad-
ing channel to slow down the algorithm just enough at the
right phase to allow it to succeed with the needed proba-
bility. Unlike our algorithm, their solution requires advance
knowledge of a (polynomial) upper bound on the network
size. On the other hand, their solution is insensitive to R,
whereas our algorithm slows as R increases. To the best of
our knowledge, our algorithm remains the first to achieve
a significant improvement on the log2 n bound for the con-
tention resolution problem on a fading channel.

2. MODEL AND PROBLEM
We model randomized algorithms in a synchronous sin-

gle hop radio network with fading signals. Let V be a
set of nodes (representing wireless devices) deployed in the
two-dimensional Euclidean plane. Time is divided into syn-
chronous rounds, labeled 1, 2, 3, .... In each round, each node
can either (i) transmit at a fixed power P , or (ii) listen. The
standard signal to interference and noise ratio (SINR) equa-
tion governs which messages are received by listening nodes.
That is, node v ∈ V receives a message transmitted by a
node u ∈ V , in a round where the nodes in I ⊆ V \ {u, v}
also transmit, if and only if v is listening and:

SINR(u, v, I) =

P
d(u,v)α

N +
∑
w∈I

P
d(w,v)α

≥ β, (1)

where P is the constant transmission power, d(x, y) is the
distance between x and y, α > 2 is the path-loss exponent,
and N ≥ 0 is the noise. We refer to P

d(w,v)α
as the interfer-

ence caused by w at v.
Let R be the ratio of the longest to shortest link in the

network. To simplify, we assume that link lengths are nor-
malized so that the shortest is 1 and the longest is R. We
assume that lgR is a whole number.

We assume a single hop network. In the context of fading
models, this means that all node pairs are sufficiently close to

communicate in the absence of interference. Formally, the
power P must be sufficiently large so that, for every pair
u, v ∈ V : P > c ·β ·N ·d(u, v)α, for some constant c > 1 (for
the purposes herein, it is sufficient to assume c ≥ 4). This
assumption that node pairs have a signal strength at least a
constant factor larger than β is standard in defining “single
hop” in the SINR context. (Allowing node pairs to be placed
at distances too near the communication threshold trivially
eliminates the possibility of spatial reuse.)

Problem. The contention resolution problem assumes an
unknown subset of nodes in V are activated. The problem
is solved in the first round in which a participating node
transmits alone among all participating nodes. (We empha-
size that these nodes receive no a priori information about
the number or identity of the other active nodes.) We study
probabilistic solutions that work with high probability, i.e.,
at least 1− 1

n
.

3. UPPER BOUND ANALYSIS
We now analyze the performance of the simple contention

resolution algorithm described in the introduction. Our
goal is to prove that the algorithm solves the problem in
O(logn + logR) rounds. After defining some useful nota-
tion and assumptions in Section 3.1, we split the analysis
into two parts. The first part (Section 3.2) leverages the
geometric properties of the model to analyze conditions un-
der which nodes experience bounded contention. The sec-
ond part (Section 3.3) makes use of this result to bound
the number of rounds required for our algorithm to resolve
contention. All omitted proofs (along with more detailed
calculations) can be found in the full version.

3.1 Preliminaries
For this analysis, we assume R is upper bounded by a

polynomial or a quasipolynomial in n—as this is the inter-
esting case for which our O(logn+logR) bound beats exist-
ing O(log2 n) strategies. (For the case where R is larger, one
can default to existing results. If R is unknown, then our
algorithm can be interleaved with an existing algorithm.)
Accordingly, we use O(logn) and O(logR) interchangeably
in the following.

For a given round, we partition the active nodes into at
most lgR link classes, d0, d1, ..., dlogR−1, where di contains
all nodes whose nearest neighbor is at a distance in the range
[2i, 2i+1). For a given link class di, we define Vi to be the set
of nodes in link class di that are active, and ni to indicate
|Vi|. We can replace subscript i with < i, ≤ i, > i, and ≥ i,
in defining V and n, as needed. When there is only one node
left, it has no closest active neighbor, and therefore it is not
in any link class. Once we have emptied all link classes the
problem is solved: the broadcast that deactivates the final
remaining nodes is a solo broadcast.

3.2 Interference Analysis
Fix a single round of an execution of our contention res-

olution algorithm. All definitions and claims in this section
are defined with respect to this fixed round. In the follow-
ing, for a fixed distance d, let B(u, d) be the set of active
nodes within distance d of u. For two natural numbers i and
t, and node u ∈ V , let the exponential annulus Ait(u) be

the set of active nodes B(u, 2(t+1)2i) \B(u, 2t2i).
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Good Nodes. We use the definition of an exponential an-
nulus to define the notion of a good node. Intuitively, a
good node is one for which each annulus centered on the
node does not contain too many other nodes, for a defini-
tion of “too many” that grows with distance as a function
of α (defined in Equation 1). Formally:

Definition 1. Fix a node u ∈ Vi (i.e., it is active and in
link class di). We say u is good if for every t ∈ {0, . . . , lgR},
|Ait(u)| ≤ 96 · 2t(α−ε), for ε = α/2− 1.

We want to show that a large fraction of the good nodes
have a good probability of receiving a message and becoming
inactive—an event we refer to as being “knocked out.” To
do so, we first identify a subset of the good nodes that are
(at the risk of overusing this word) good candidates to be
knocked out. In more detail, for a given link class Vi and
constant s > 0 (that is fixed in Lemma 4), we define Si ⊆ Vi
to be the largest subset of good nodes in Vi such that for
every u, v ∈ Si, the distance d(u, v) > (s + 1)2i. That is,
every pair of nodes in Si is sufficiently far apart. Applying a
standard circle-packing argument, we note that Si contains
at least a constant fraction of the good nodes in Vi:

Lemma 2. If link class di contains k good nodes, then
|Si| = Θ(k).

Now we bound the expected interference at the nodes in
Si during our fixed round. (It is in this lemma that the
probability of broadcast p is fixed.) We begin by bounding
the interference from nodes not in Si. For a given node
u ∈ Si, let its partner be the closest active node v to u
(breaking ties arbitrarily). We use Ti to be the set of partner
nodes of the nodes in Si. For the purpose of the below
lemma, we define outside interference for u to be the sum
of the signal strengths of all transmitting nodes that are not
in Si ∪ Ti.

Lemma 3. For any constant c > 0, there exists a choice
of constant broadcast probability p > 0 and a constant c′

(depending only on c and α) such that the following holds:
Let di be a non-empty link class. Then with probability at

least 1− e−c
′|Si|, for at least |Si|/2 nodes in Si, the outside

interference at each of these nodes is ≤ cP/2iα.

Proof. The proof proceeds in several steps. We first
observe that the collective interference on nodes in Si is
bounded by cmax|Si|P/2iα, for some constant cmax that de-
pends only on α; similarly, the maximum interference that
any single node outside Si can generate on nodes in Si
is cmax|Si|P/2iα, even if they all broadcast at once. (See
Claims 1 and 2).

We then use a Chernoff bound to show that the total
interference caused by all the nodes outside Si, since they
broadcast with probability p, is at most c|Si|P/2iα+1 with

probability at least 1 − e−c
′|Si|, for some constant c′ that

depends only on c and cmax (i.e., it depends on α). (See
Claim 3.) This then immediately implies the lemma.

Claim 1. The total interference experienced by all the nodes
in Si, collectively, is at most Pmax = cmax|Si|P/2iα, for
some constant cmax.

Proof of Claim 1. Fix a node u ∈ Si. We now bound
the maximum interference at u. In more detail, to sum the

interference at u, we sum the possible outside interference
from the nodes in every (potentially) non-empty annulus de-
fined with respect to u and di; e.g., Ai0(u), Ai1(u), . . . , AilgR(u).

Noting that a node in Ait(u) is of distance at least 2i2t from
u, we bound the maximum interference by:

lgR∑
t=0

|Ait(u)| P

(2i2t)α
=

P

2iα

lgR∑
t=0

|Ait(u)|
2tα

≤ P

2iα

lgR∑
t=0

96 · 2t(α−ε)

2tα

=
96 · P

2iα

lgR∑
t=0

1

2tε

ε>0
<

96 · P
2iα

(
1

1− 1/2ε

)
The final simplification is taken from a geometric series, ob-
serving that 2ε is a constant strictly greater than 1 (because
ε = α/2− 1 > 0 for α > 2).

Setting cmax = 96(1/(1−1/2ε), we conclude that the total
interference at u is at most cmaxP/2

iα, and hence the total
interference experienced by all the nodes in Si, collectively,
is at most cmax|Si|P/2iα.

Notice that if c ≥ cmax, then we are already done, since we
have shown in the proof of Claim 1 that the total interference
at each node u ∈ Si is at most cmaxP/2

iα. For the remainder
of the proof, we assume that c < cmax.

Next, we focus on the nodes broadcasting. For each node
u not in Si, let int(u) be the sum total possible interfer-
ence generated by node u at nodes in Si, i.e., int(u) =∑
v∈Si P/d(u, v)α.

Claim 2. For all u /∈ Si, int(u) ≤ cmaxP/2
iα, for constant

cmax.

Proof of Claim 2. Notice that this is actually almost
identical to Claim 1, except the symmetric opposite: we are
quantifying the interference caused by u instead of the inter-
ference caused at u. This claim again follows by summing
the possible interference by u in each of the exponential an-
nuli, as before.

However, we cannot depend on node u being good. In-
stead, we conclude that there cannot be too many nodes in
Si in an annulus because the nodes in Si are at least distance
2i apart.

More specifically, for each node in Si, we can draw a circle
of radius 2i−1 around it such that no two circles intersect.
That is, each point occupies an area of π22(i−1). The annulus
Ait has outer radius 2t+12i and inner radius 2t2i. Some of
the circles drawn around points in Si may be near the edge
of the annulus, and hence we increase its outer radius and
decrease its inner radius by 2i−1 to account for this. Thus,
all the points in Si in Ait are contained in area:

π(2t+12i + 2i−1)2 − π(2t2i − 2i−1)2 ≤ π(2t+12i + 2i−1)2

≤ π(2t+12i+1)2

≤ π22(t+i+2)

(Note that this is a loose approximation that ignores the
inner part that is subtracted off, but it is sufficient.) Since
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each point occupies π22(i−1) space, we conclude that there
are at most 22(t+3) points in Si in the annulus Ait.

lgR∑
t=0

|Ait(u) ∩ Si|
P

(2i2t)α
=

P

2iα

lgR∑
t=0

|Ait(u) ∩ Si|
2tα

≤ P

2iα

lgR∑
t=0

22t+6

2tα

=
64P

2iα

lgR∑
t=0

1

2t(α−2)

α−2>0
<

64 · P
2iα

(
1

1− 1/2α−2

)
Since (α − 2) ≥ (α/2 − 1) = ε (and 64 < 96), we conclude
that the maximum interference by any node not in Si is
bounded by cmaxP/2

iα.

We now proceed to show that, with high probability (with
respect to |Si|), the total interference when nodes broadcast
with some probability p is not too large, i.e., is no greater
than c|Si|P/2iα+1.

Claim 3. The total interference caused by outside nodes is

c|Si|P/2iα+1 with probability at least 1− e−c
′|Si|, for some

constant c′ that depends only on c and cmax.

Proof of Claim 3. First, if the total interference, even
if all the outside nodes broadcast, is already ≤ c|Si|P/2iα+1,
then we are done. For the remainder of the proof, we as-
sume the maximum total interference created by outside
nodes is at least c|Si|P/2iα+1, that is,

∑
u/∈Si∪Ti int(u) ≥

c|Si|P/2iα+1.
We have shown in Claim 2 that for all u /∈ Si, int(u) ≤

cmaxP/2
iα. We define the random variable xu that equals

int(u)2iα/(cmaxP ) when u broadcasts with probability p,
and 0 otherwise. Notice that xu ∈ [0, 1].

We now fix the probability p that a node broadcasts:
choose p = c/(4cmax) (where the constant c is that given
in the statement of Lemma 3). Recall that c < cmax (or we
would have been done after Claim 1), and so we know that
p ∈ [0, 1/4].

Recall, from Claim 1, we know that
∑
u/∈Si∪Ti int(u) ≤

cmax|Si|P/2iα. Hence, we can bound the expected value of
the sum of xu as follows:

E

 ∑
u/∈Si∪Ti

xu

 =
∑
u/∈Si

p · int(u)2iα/(cmaxP )

= p
∑

u/∈Si∪Ti

int(u)2iα/(cmaxP )

≤ p · (cmax|Si|P/2iα)(2iα)/(cmaxP )

≤ p|Si|
≤ c|Si|/(4cmax) .

By the same logic, since we have assumed that
∑
u/∈Si int(u) ≥

c|Si|P/2iα+1, we can lower bound the expected value of the

sum of xu:

E

 ∑
u/∈Si∪Ti

xu

 =
∑
u/∈Si

p · int(u)2iα/(cmaxP )

= p
∑

u/∈Si∪Ti

int(u)2iα/(cmaxP )

≥ p · (c|Si|P/2iα+1)(2iα)/(cmaxP )

≥ p(c/2cmax)|Si|
≥ (c2/8c2max)|Si| .

We now rely on the standard Chernoff bound which states
that for any set of independent random variables x1, . . . , xn
where xi ∈ [0, 1], we know that Pr(

∑n
i=1 xi ≥ 2µ) ≤ e−µ/3,

where µ = E
[∑n

i=1 xi
]
.

Let µ = E
[∑

u/∈Si∪Ti(xu)
]
. Then we conclude that:

Pr

∑
u/∈Si

xu ≥ 2µ

 ≤ e−µ/3

≤ e
−
(

c2

24c2max

)
|Si|

Here, we set c′ =
(

c2

24c2max

)
, and conclude that the proba-

bility of failure is at most e−c
′|Si|, for some constant c′ that

depends only on c and cmax, as stipulated by the claim.
Finally, we observe that when this failure does not occur,

i.e.,
∑
u/∈Si∪Ti xu < 2µ, this implies that the total interfer-

ence caused by nodes not in Si can be bounded by:∑
u/∈Si∪Ti

xu · cmaxP/2iα ≤ (cmaxP/2
iα) · (2c|Si|/(4cmax))

≤ c|Si|P/2iα+1

This concludes the proof of the claim.

From Claim 3, we immediately derive the desired conclu-
sion for Lemma 3: it cannot be the case that there are |Si|/2
nodes in Si that are subject to more than cP/2iα interference
each from outside nodes, since that requires total interfer-
ence from outside nodes of more than c|Si|P/2iα+1.

We next consider the interference caused by nodes in the
set Si ∪ Ti and show that it too is bounded. By leveraging
the fact that nodes in Si are not too close to each other (by
definition), we can prove the strong bound that even if all
nodes in Si∪Ti transmit, the interference this causes at each
node in the set is low.

Lemma 4. For any constant c > 0, there exists a choice
of constant s > 0 such that the following holds: Let u ∈ Si
be a good node in Si, let v ∈ Ti be u’s partner, and let di be
the link class of u. Then the sum of interference at u from
nodes in Si ∪ Ti \ {v} is no more than cP/2iα.

Proof. Let Sit(u) = (Si ∪ Ti \ {v}) ∩Ait(u) be the set of
nodes in Si in the annulus Ait(u). We calculate the interfer-
ence from the nodes in Si ∪ Ti \ {v} by summing over each
annulus. Every node in Si is at distance at least (s + 1)2i

away from u; hence every node in Si ∪ Ti is at distance at
least s2i away from u, and the smallest non-empty annulus
Ati(u) is t = log s. Note that nodes in annulus Ait(u) are at
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distance at least 2i2t away from u, we rely on the notion of
“good” to bound the interference from Si ∪ Ti \ {v}:

lgR∑
t=log s

|Ait(u)| P

(2i2t)α
96 · P

2iα

(
1/sε

1− 1/2ε

)

Setting s =
(

96
c(1−1/2ε)

)1/ε
we get our needed total interfer-

ence of cP/2iα.

At this point, we have proved that for each di, the set Si
(consisting of well-spaced good nodes) contains many nodes
that expect low total interference (both internal and exter-
nal). We now leverage this property to prove the key corol-
lary: with high probability in |Si|, a constant fraction of the
nodes in Si are knocked out.

Corollary 5. Let di be a non-empty link class. There
exists a constant broadcast probability p > 0 and constant
c > 0, such that with probability at least 1− e−c|Si|: at least
a constant fraction of the nodes in Si become inactive.

Proof. By Lemmas 3 and 4, for any constant c′, with

probability at least 1− e−|Si|/c
′′

(for some c′′), there exists
a subset of nodes S ⊆ Si such that: S contains at least
|Si|/2 nodes and for each node u ∈ S with partner node
v ∈ Ti, even if all nodes in Si ∪ Ti \ {u, v} broadcast, the
interference at node u is upper bounded by ≤ 2c′P/2iα. For
now, assume these two properties hold for S.

Next, consider a node u ∈ S, and let v be its partner. The
interference bounds derived in Lemmas 3 and 4 are indepen-
dent of whether u and v broadcast. Hence, conditioned on S
satisfying the above two properties, with probability p(1−p),
node v transmits and node u listens.

If this event (v transmits and u listens) occurs, we argue
that node u receives this message and becomes inactive: the
strength of the signal from v at u is at least least P/2α(i+1),
and the total interference at u is at most 2c′P/2iα, for an
arbitrary choice of c′. Thus the condition for u to receive
the message from v is:

P/2α(i+1)

2c′P/2iα +N
> β .

We see that the condition is satisfied as long as: (i) c′ ≤
1/(2α+2β) (as determined in Lemma 3 by choice of the con-

stant), and (ii) P > 4BNd(u, v)α ≥ 2βN2α(i+1) (as re-
quired by the assumption in Section 2 that the network is
connected).

Let S′ ⊆ S be the subset of S that is knocked out. Each
node in S succeeds independently with probability p(1− p)
(since no two nodes share the same partner, by the defini-
tion of Si), and hence the expected number of successes is
p(1 − p)|S|. A standard Chernoff bound then implies that:

P [|S′| < p(1− p)|S|/2] ≤ e−p(1−p)|S|/8 . Thus, with proba-

bility at least 1 − e−|Si|/16, our above two properties on S
hold, and with an additional probability 1 − e−p(1−p)|S|/8

we know that S′ is at least a constant fraction of S (and
therefore is a constant fraction of Si). The corollary follows
from a union bound of these two error probabilities.

Bounding the Number of Good Nodes. So far, we
have shown that a constant fraction of the good nodes in
a given link class will be knocked out with high probability
(w.r.t. the number of such nodes in the class). We now prove

that we expect there to be enough good nodes, in general,
that these knock outs can add up to something significant.
The remainder of this section is dedicated to proving a single
lemma that takes on this challenge. In particular, it argues
that if some link class di has more nodes than all smaller link
classes combined (by some constant factor), then at least a
constant fraction of the nodes in di are good. Combining this
lemma with Corollary 5 implies that big link classes shrink
quickly (see Corollary 7 below). This observation is the club
that Section 3.3 will later wield to subdue our algorithm’s
time complexity.

Lemma 6. There exists a constant fraction δ, 0 < δ < 1,
such that for every link class di, if n<i ≤ δ ·ni, then at least
half the nodes in Vi are good.

Proof. There are two types of nodes found in the annuli
of a node in di those in link classes di or larger, and those
from smaller link classes. We deal with each case separately.
Before doing so, we introduce an extra definition. We define
a node u to be extra good with respect to V≥i (or V<i),
if the number of these nodes that fall within each Ait(u) is
at least a factor of 2 smaller than required simply to be
good (i.e., replace the 96 with a 48 in the earlier definition).
If a node is extra good with respect to both V<i and V≥i
simultaneously, then the node is good as per the original
definition. We will show: (1) every node in Vi is extra good
with respect to V≥i, and (2) at least half the nodes are extra
good with respect to V<i.

Step #1: Nodes in V≥i. Fix any node u ∈ di and any
annulus Ait(u). We will show that the number of nodes from
larger link classes V≥i falling within this annulus satisfies the
definition of extra good. By the definition of the link class,
no disk of radius 2i/4 can contain more than one such node.
A straightforward packing argument bounds the number of
such disks that fit in the annulus, showing that there are
at most 48 · 22t ≤ 48 · 2t(α−ε) node from link classes V≥i in
Ait(u).

Step #2: Nodes in V<i. We now consider the more difficult
case. Fix an annulus distance t. We will sum |Ait(u) ∩
V<i| over every u ∈ Vi. To do so, we leverage the first key
technical insight in this argument:

∑
u∈Vi |A

i
t(u) ∩ V<i| =∑

v∈V<i |A
i
t(v)∩Vi| (i.e., just switch the endpoint from which

we consider each relevant link). This insight is important
because the latter sum is counting nodes from Vi, which
allows us to deploy the same style of density bound that
proved useful in the large link class case. In more detail, let
Γit indicate the above sum. We bound this parameter as:

Γit =
∑
u∈Vi

|Ait(u) ∩ V<i| =
∑
v∈V<i

|Ait(v) ∩ Vi|

≤ n<i · 48 · 22t ≤ ni · δ · 48 · 22t.

This derivation uses the following properties: (1) |Ait(v) ∩
Vi| ≤ 48 · 22t, as we established in our argument above for
larger link classes; and (2) n<i ≤ δ · ni, as assumed by the
lemma statement.

The second key technical insight in this argument is to
note that the average number of nodes in Ait(u) ∩ V<i for a
node u ∈ Vi is O(22t). This amount is asymptotically less
than the number of nodes allowed in this annulus for the
definition of extra good. (Recall, a good node can tolerate

up to O(2t(α−ε)) nodes in this annulus, and because ε =
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α/2− 1 and α > 2, this simplifies to 2t(α/2+1) = ω(22t)). It
follows the number of nodes in Vi that violate the definition
of (extra) good for this annulus distance must be less than
a constant fraction. To be more precise, suppose that ni ·
γ · 1

2t(α−ε−2) nodes violate the extra good definition for this
annulus, for a constant fraction γ, 0 < γ < 1, which we will
fix later. At a minimum, these nodes contribute more than
the following number of nodes to Γit:

ni·γ·
1

2t(α−ε−2)
·48·2t(α−ε) = ni·γ·48· 2t(α−ε)

2t(α−ε−2)
= ni·γ·48·22t.

If we fix δ < γ, then this sum is already larger than Γit. It
follows, therefore, that the fraction of nodes that are not
extra good in this annulus must be less than γ · 1

2t(α−ε−2) .
We now sum up the total number of nodes that might

violate the definition of extra good over all lgR annulus
distances. We note that:

lgR∑
t=0

ni · γ
1

2t(α−ε−2)
=

lgR∑
t=0

ni · γ
1

2tε
= ni · γ

lgR∑
t=0

1

ct
,

for constant c = 2ε > 1.2 The fact that c > 1 is important
as this casts the sum as a converging geometric series. In
particular, we know that:

∑lgR
t=0

1
ct
<
∑∞
t=0

1
ct
≤ 1

1−(1/c)
.

To achieve our final lemma, however, we need our sum
over all annuli to be upper bounded by ni/2. Unfortunately,
1/(1−1/c) may be much larger than 1/2, i.e., if c is close to
1. Fixing γ = (1−1/c)/2, we recast our above upper bound
sum of the number of not extra good nodes overall as:

lgR∑
t=0

ni · γ
1

2εt
≤ ni · γ ·

1

1− 1/c
= ni/2,

as needed. Having fixed γ, we set δ = γ/2.

Combining the main result of both parts of this analysis
section we conclude with the final corollary:

Corollary 7. There exists a constant broadcast proba-
bility p > 0, constant δ, 0 < δ < 1, and constant c > 0
such that for every link class di, if Vi is non-empty, and
n<i ≤ δ ·ni, then with probability at least 1−e−c|Vi|, at least
a constant fraction of the active nodes in Vi become inactive.

Proof. If we fix δ as required by Lemma 6, we know
by this same lemma that (at least) half the nodes in Vi are
good. By Lemma 2, we know that Si contains at least a
constant fraction of the good nodes in Vi. By Corollary 5,
we know that there exists a broadcast probability p such

that with probability at least 1 − e−c
′|Si|, for a constant

c′ > 0, a constant fraction of the nodes in Si, and therefore
a (smaller) constant fraction of Vi, receive a message and
become inactive. The constant factor c in the probability
in our corollary statement is simply the constant needed to
satisfy the equality c′|Si| = c|Vi|.

3.3 Round Complexity Analysis
We now leverage the analysis of interference in a single

round from Section 3.2 to bound the behavior of our al-
gorithm over multiple rounds. We will conclude with our
main result: our algorithm solves contention resolution in

2To establish that c > 1, note that 2ε = 2α/2−1. Because α > 2,
c is defined as 2 raised to some small value greater than 0, which
implies c > 1.

O(logn + logR) rounds, with high probability. Our strat-
egy is to first define a series of variables that capture the
evolution of link class sizes in an ideal execution. We will
then prove that these size bounds provide an upper bound
(of sorts) on these sizes in all executions.

Definitions. We begin by extracting key constants from
Corollary 7. In the following, assume the algorithm uses
a broadcast probability no larger than the necessary prob-
ability identified by this corollary. Let γ be the constant
fraction, also provided by the corollary, that describes an
upper bound on the fraction of nodes in a link class di that
will remain (i.e., not be knocked out), with high probabil-
ity in the link class size |Vi| = ni, given that the size of
smaller link classes sum to something sufficiently small; i.e.,
n<i ≤ δ · ni.

Building on these values, let γslow, where γ < γslow < 1,
be a constant fraction larger than γ that we will define later.
Let ρ < 1 be another positive constant that we will define
later, and let ` = dlogγslow ρe. In the following, let m = lgR.
Recall, we assumed for simplicity that m is a whole number.

Class Bounds Vectors. We now define a series of m-
vectors, q0, q1, q2, . . ., that we call class bound vectors.
These vectors will later be used to provide a sequence of
upper bounds on the sizes of the link classes. To define
these vectors, we first define a start step si for each i ∈ [m]
as si = i·`. That is, s0 = 0, s1 = `, s2 = 2`, and so on. Prior
to round si, we do not require any progress to be made in
link class di. For each i ∈ [m], we define the corresponding
position in our class bound vector as follows:

∀t ≥ 0 : qt(i) =

{
n if t ≤ si,
bqt−1(i) · γslowc if t > si

In other words, the size of each link class reduces by
a factor of γslow in each phase. The smallest link class,
i = 0, begins this reduction immediately. For each i > 0,
the reduction begins an additional ` rounds later. Viewed
differently, because link class i − 1 has undergone ` more
reductions in size than class i whenever t ≥ si, we have
qt(i− 1) = γ`slowqt(i) ≤ ρqt(i). That is, ρ can be interpreted
as (approximately) the constant ratio in size between two
consecutive link classes. Given that γslow and ` are both
constants, it is straightforward to bound the smallest t for
which all positions in the vector qt are 0:

Claim 8. Let T be the smallest phase number where ∀i ∈
[m], qT (i) = 0. Then T = Θ(log n+ logR).

Link Class Size Behavior. To establish progress, we want
to identify a time when a given link class bound is achieved.
That is, for each position t (equiv., step t) in our sequence
of class bound vectors, we want to find an execution round
such that in this round, for every link class di: ni ≤ qt(i).
This task, however, is complicated by the observation that
a link class can both shrink and grow (i.e., when a node u’s
nearest neighbor is knocked out, u’s next nearest neighbor
might upgrade it to a larger link class). Therefore, we refine
our goal, seeking a round such that for that round, and
all following rounds, the link class sizes are bounded by qt.
With this in mind, we define an auxiliary class bound vector
that captures an important threshold of link size that implies
performance. Specifically, for each step t and class di we
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define:

q̂t+1(i) = qt(i)γslow − qt(i)ρ/(1− ρ).

In other words, q̂t+1(i) is a more aggressive bound on qt+1(i)
that subtracts an additional factor of qt(i)ρ/(1 − ρ) from
the number of nodes allowed in a class. Intuitively, this
bound implies permanence. To make this argument more
precise, we need the following claim about the original class
bound vector definitions, which follows from the fact that
qt(i) decreases geometrically in t:

Lemma 9. If qt+1(i) < n for some step t and link class i,

then qt(< i) =
∑i−1
j=0 qt(j) ≤ qt(i)

(
ρ

1−ρ

)
.

Now assume that in round r, for link class di and step t,
two things are true: (1) for all j < i, nj ≤ qt(j); and (2)

ni ≤ q̂t+1(i). Then ni will remain less than qt+1(i) for all
future rounds. To see why, observe that even if all the at
most qt(< i) nodes in smaller link classes jumped to link

class di, by the definition of q̂t+1(i), the size of di would still
be bounded by qt+1(i). (And no node can join a smaller link
class.)

With our auxiliary definitions in place, we can continue
our effort to bound the evolution of link class sizes with
respect to our class bound vectors. To this end, we define
event r(t), for step t, to be the earliest point in the execution
where, for every size class di, ni ≤ qt(i), and this bound
holds for the remainder of the execution. That is, r(t) is the
point where the link class sizes permanently fall below qt.

To analyze these events, we divide the execution into seg-
ments each consisting of a constant number of rounds (we
will fix the constant in the proof). Conditioned on the fact
that event r(t) occurred by the end of segment k − 1, we
calculate the probability that event r(t+ 1) happens by the
end of segment k. We will show that this probability is con-
stant. To do so, we emphasize that success in each round
(and therefore also each multi-round segment) is indepen-
dent, as they consist of nodes making independent random
choices.

Lemma 10. Consider a segment and assume that by the
beginning of the segment, event r(t) has occurred, for some
step t ≥ 0. Then event r(t + 1) occurs by the end of this
segment, with constant probability.

Proof Sketch. By assumption, at the beginning of the
segment, the vector qt bounds all size classes. We examine
each round in the segment and calculate the probability that
by the end of the round, qt+1 is a permanent upper bound on
all link classes. To do so, we will show the stronger property
that the link classes sizes drop below the q̂t+1 sizes. We
begin by fixing class di and focus on a single round r in the
segment.

One round analysis: There are three cases for this class in
this round. The first two cases are easy to dispose of: if
qt(i) = 0 or if qt+1(i) = n, then it is easily observed that the
condition is satisfied qt+1(i).

The third case is that qt+1(i) < n. First we fix γslow and
ρ. Specifically, we choose: γslow = γ + ρ/(1 − ρ), and we
choose ρ sufficiently small that ρ

1−ρ < γδ, where δ is the
constant derived in Corollary 7.

We now focus on round r in the current segment, and
calculate the probability that ni falls below q̂t+1(i). As-
sume that prior to round r, ni ≥ q̂t+1(i). (Otherwise, we
are already done.) In order to apply Corollary 7, our main
tool for reducing link class sizes, we need that n<i ≤ δni.
By assumption n<i ≤ qt(< i), and by Lemma 9, qt(<
i) ≤ qt(i) (ρ/(1− ρ)). We also assumed: ni > q̂t+1(i) =
qt(i)γslow−qt(i)ρ/(1−ρ). Therefore, solving for qt(i) in the
q̂t+1(i) definition and substituting into our qt(< i) equation,

we get n<i ≤
(

ρ
1−ρ

)
ni

γslow−ρ/(1−ρ)
. To bound n<i, therefore,

we need to show the following inequality:

n<i ≤
(

ρ

1− ρ

)
ni

γslow − ρ/(1− ρ)
< δni .

By the manner in which we fixed γslow and ρ, this inequality
is true.

We can now apply Corollary 7 to class i and obtain the
following result: with probability at least 1 − e−cni , a con-
stant fraction of nodes in ni are knocked out, i.e., after round
r, the number of remaining active nodes (not counting new
nodes that migrate to di from smaller link classes) is at most

γni ≤ (γslow − ρ/(1− ρ))qt(i) = q̂t+1(i) .

That is, with probability at least 1 − e−c|ni|, link class di

falls below q̂t+1(i), and by our above arguments, will there-
fore remain bounded by qt+1(i) permanently—regardless of
migrations from smaller link classes.

Concluding: To this point, we have shown that in every
round in our fixed segment, with probability at least 1 −
e−cni , the size of link class di drops permanently below
the threshold qt+1(i) (i.e., as indicated by dropping below

q̂t+1(i)). Until we meet this threshold, this is true indepen-
dently in each round independently of what happened in
previous rounds, as each round’s outcome is based on the
independent broadcast choices made during the round.

Fix the segment length to max{(2τ)/(c(1−γslow)), 2τ} =
Θ(1) rounds, where τ > 1 is the constant that satisfies
qt+1(i) = τ q̂t+1(i). Notice that

τ ≤ qt+1(i)/ (qt(i) [γslow − ρ/(1− ρ)]) ≤ γslow/γ.

The probability of class di not dropping below the threshold
is therefore at most:

e−2τni/(1−γslow) ≤ (1− γslow)/(2τni)

≤ (1− γslow)/(2τ q̂t+1(i))

= (1− γslow)/(2qt+1(i)).

Since ni has not yet dropped below our target threshold, we
can substitute ni with the value q̂t+1(i).

We then take a union bound over all the link classes dj
where qt(j) > 0 and qt+1(j) < n, calculating the probability
that even one of them does not drop permanently below the
threshold qt+1(·):

∑
(1− γslow)/(2nj) ≤ (1− γslow)

2

j=∞∑
j=0

γjslow ≤ 1

2

This follows from the geometrically decreasing values of qt(·),
which bounds the nj . We conclude that, with probability
≥ 1/2, by the end of the segment, every link class irrevoca-
bly crosses the threshold of qt+1.
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We can now conclude the analysis with our main result:

Theorem 11. Our algorithm solves contention resolution
in O

(
logn+ logR

)
rounds, with high probability.

Proof Sketch. In each segment, with constant proba-
bility, the system advances from r(t) to r(t+1) by Lemma 10.
Since segments are independent, we conclude by a Chernoff
bound that the process completes with high probability in
Θ(T ) segments, that is, (via Claim 8) in Θ(log n + logR)
rounds.

4. LOWER BOUND
By leveraging spatial reuse, the algorithm described above

can solve high probability contention resolution in O(logn)
rounds in networks of size n with O(logn) link classes.3 Here
we prove this bound near tight by establishing a Ω(log n)
lower bound for the contention resolution problem under
these assumptions:

Theorem 12. Let A be an algorithm that guarantees to
solve contention resolution in f(n) rounds, with probability
at least 1− 1

n
, when run in a network of size n with O(logn)

link classes. It follows that f(n) ∈ Ω(logn).

We emphasize that our lower bound places no restrictions
on the behavior of the algorithms we lower bound; e.g., as
compared to many lower bounds in the MAC setting that re-
quire the assumption that the algorithm can be described as
a fixed sequence of broadcast probabilities (see [20] for more
discussion). The algorithms we bound, for example, can cor-
relate behavior in one round with the outcome of random
choices in a previous round, or have nodes that have suc-
cessfully communicated correlate their behavior. As noted
in the introduction, there are not many non-trivial lower
bounds known for distributed computing in fading models,
rendering this general strategy—which connects fading to
combinatorial hitting games—of standalone interest.

We now continue with the proof details.

Restricted k-Hitting. We begin by introducing an ab-
stract hitting game that was defined and bounded in [20].
We will use this existing result below to generate our bound
for the related problem of two-player symmetry breaking.
In more detail, the restricted k-hitting game is defined for
an integer k > 1. It is played between a player and a ref-
eree. At the beginning of the game, the referee chooses a
target set T ⊆ {1, 2, ..., k} such that |T | = 2. The game
proceeds in rounds. In each round, the player proposes a set
P ⊆ {1, 2, ..., k}. If |P ∩T | = 1, the player wins. Otherwise,
it moves to the next round, learning no information except
that its proposal did not win. We can lower bound solutions
to this game as follows:

Lemma 13 (from [20]). Fix some player P that guar-
antees, for all k > 1, to solve the restricted k-hitting game
in f(k) rounds, with probability at least 1− 1

k
. It follows that

f(k) ∈ Ω(log k).

3When we say a network has ` link classes, we mean there are
` link classes that contain at least one of the

(n
2

)
possible links

in the network. It is straightforward to show that the algorithm
analyzed in this paper solves contention resolution in O(logn+ `)
rounds.

Two-Player Contention Resolution. Consider a two-
player variant of the contention resolution problem that we
parameterize with an integer k > 1, and that requires the
players to break symmetry with probability at least 1 − 1

k
.

Notice, with two players, the fading behavior of the channel
does not matter as with only two nodes there is no oppor-
tunity for spatial reuse. The game is won the first time
one player transmits while the other listens: in all previous
rounds, no messages are received.

We now lower bound this problem by reducing k-hitting to
it and then applying Lemma 13.

Lemma 14. Let A be an algorithm that solves two-player
contention resolution in f(k) rounds with probability 1− 1

k
,

for every parameter k > 1. It follows that f(k) ∈ Ω(log k).

Proof. Fix some algorithm A that solves two-player con-
tention resolution in f(k) rounds with probability 1− 1

k
, for

every parameter k. We use A to construct a player PA for
the restricted k-hitting game that works in this same time
with this same probability. It will then follow, by the direct
application of Lemma 13, that f(k) ∈ Ω(log k).

In more detail, our player simulates A on k nodes with
unique ids from {1, 2, ..., k}. Each simulated round corre-
sponds to a round of the restricted hitting game as follows:
first, the player proposes the set containing the id of every
node that broadcast in the current simulated round; then
second, the player completes its simulation of the round by
simulating all k nodes receiving nothing.

Let T = {i, j} be the target set (unknown to the player)
chosen for this instance of the restricted hitting game. Al-
though the player is simulating k processes, we only care
about its simulation of the processes with ids i and j. No-
tice, in each round of its simulation, these processes (like all
others in the simulation) receive nothing. We want to ar-
gue that this behavior is consistent with an execution where
only two nodes, with ids i and j, are present in the network.
To see why this is true, notice that there are two relevant
cases for what happens in a given round. The first case
is that exactly one of the pair broadcasts. Here, it would
be incorrect to subsequently simulate both receiving noth-
ing (as in an execution with just i and j, the silent node
would hear from the broadcaster). In this case, however,
the player’s proposal would win the restricted hitting game
before the player is required to simulate the receive behavior
for the current simulated round. The second case is that
both nodes are silent or both broadcast. Here, the player is
correct to simulate them receiving nothing, as this is con-
sistent with what would happen in an execution with just
i and j present, during a round where both did the same
behavior.

Because the states of simulated nodes i and j are con-
sistent with an execution in which only nodes i and j are
present, it follows that A must solve two-player contention
resolution with respect to these two nodes in f(k) rounds,
with probability at least 1− 1

k
. It follows, therefore, that our

player solves the restricted hitting game in this same time
with this same probability—as required by our argument.

Reducing Two-Player to General Contention Res-
olution (sketch). To prove Theorem 12, we will prove
that an algorithm that solves contention resolution in f(n)
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rounds, with probability 1− 1
n

, when executed in a network
of size n (for any n > 1), can be used to solve two-player
contention resolution in f(k) rounds, for any parameter k.
The high-level idea is to have the two players—whom we
will call Alice and Bob in this argument—each simulate the
general contention resolution algorithm on half the nodes in
a network of size k. In each round, if any of Alice’s (resp.
Bob’s) simulated nodes transmit, then Alice (resp. Bob)
transmits. Assuming Alice and Bob keep their local sim-
ulations valid, eventually exactly one node in the full sim-
ulated network transmits, meaning exactly one of the two
simulators transmits—winning the two-player version of the
problem.

The tricky part of this argument is defining the network
simulated by Alice and Bob in such a way that they can keep
their local simulations valid, even though they do not al-
ways know the behavior of the nodes simulated by the other
player. Recall that we need this network to still maintain
the strong assumptions that the network is single hop (for
every (a, b), SINR(a, b, ∅) ≥ c · β, for some fixed constant
c ≥ 1) and that there are only O(logn) link classes (recall,
our theorem statement only makes assumptions about the
algorithm’s behavior when the link class count is bounded,
therefore the network we use in our simulation must bound
the link classes). Our strategy is to carefully construct a net-
work (e.g., identify node positions and valid model param-
eter values) in which interference from Bob cannot change
the outcome of receive behaviors among Alice’s nodes, and
vice versa. The details of this network construction and the
final proof for Theorem 12 are deferred to the full version.
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