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Abstract
We introduce the cache-adaptive model, which generalizes
the external-memory model to apply to environments in
which the amount of memory available to an algorithm can
fluctuate. The cache-adaptive model applies to operating
systems, databases, and other systems where the allocation
of memory to processes changes over time.

We prove that if an optimal cache-oblivious algorithm
has a particular recursive structure, then it is also an opti-
mal cache-adaptive algorithm. Cache-oblivious algorithms
having this form include Floyd-Warshall all pairs shortest
paths, naı̈ve recursive matrix multiplication, matrix trans-
pose, and Gaussian elimination. While the cache-oblivious
sorting algorithm Lazy Funnel Sort does not have this re-
cursive structure, we prove that it is nonetheless optimally
cache-adaptive. We also establish that if a cache-oblivious
algorithm is optimal on “square” (well-behaved) memory
profiles then, given resource augmentation it is optimal on
all memory profiles.

We give paging algorithms for the case where the cache
size changes dynamically. We prove that LRU with 4-
memory and 4-speed augmentation is competitive with op-
timal. Moreover, Belady’s algorithm remains optimal even
when the cache size changes.

Cache-obliviousness is distinct from cache-adaptivity.
We exhibit a cache-oblivious algorithm that is not cache-
adaptive and a cache-adaptive algorithm for a problem hav-
ing no optimal cache-oblivious solution.
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1 Introduction
For over two decades, practitioners have recognized the
desirability of algorithms that adapt as the availability of
RAM changes [3,4,15,34,35]. Such changes naturally occur
as processes come and go on the same system and compete
with each other for memory resources. Database researchers,
in particular, have published empirically efficient adaptive
sorting and join algorithms [24, 36, 37, 47–49].

There exists a theoretical framework for designing al-
gorithms that adapt to memory fluctuations [3, 4], but there
has been essentially no theoretical followup work. Moreover,
the empirically efficient adaptive algorithms do not have the-
oretical performance bounds and are not commonly used in
today DBMSs, even though the practical need for such algo-
rithms has, if anything, increased. We attribute this lacuna
to the difficulty of designing, analyzing, and implementing
adaptive algorithms.

One of the main goals of this paper is to show that adap-
tivity is sometimes achievable via more manageable algo-
rithms, by leveraging cache-oblivious technology [23, 40].
Cache-oblivious algorithms are not parameterized by the
memory hierarchy, yet they often achieve provably optimal
performance for any static hierarchy. The question is how
these algorithms adapt when the memory changes dynam-
ically. We prove that there exist a general class of cache-
oblivious algorithms that are optimally cache-adaptive.1

We define the cache-adaptive (CA) model, an extension
of the DAM [1]2 and ideal cache [23, 40] models. The CA
model describes systems in which the available memory can
change dynamically.

Barve and Vitter [3] write, “Allowing an algorithm to
be aware of its internal memory allocation is obviously
necessary to develop MA [memory adaptive] algorithms. . . .”
This quote rings true if the algorithm and page-replacement
policies are inextricably linked. But if we can separate the
algorithm and the page replacement, as is typical with cache-
oblivious analysis [23], this claim no longer holds.

The cache-adaptive model does, in fact, untangle the
paging policy from the algorithm. We assume an automatic

1We use “cache” to refer to the smaller level in any two-level hierarchy.
Because this paper emphasizes RAM and disk, we use the terms “internal
memory,” “RAM,” and “cache” interchangeably.

2Also called the external-memory (EM) or I/O model.



optimal page replacement and justify it by proving compet-
itiveness of LRU in the CA model. This separation helps us
achieve CA optimality for CO algorithms, which are unaware
of their memory allocations.

Memory Models. In the DAM model [1], the system con-
sists of a two-level memory hierarchy, comprising an internal
memory of sizeM and an external memory that is arbitrarily
large. Data is transferred between the memory and disk in
chunks of fixed size B. A DAM algorithm manages its own
page replacement, and the internal memory is fully associa-
tive. In the DAM model, in-memory computation comes for
free, and performance is measured by the number of I/Os or
block transfers, which serves as a proxy for running time.
Thus, in each time step3 of the algorithm one block is trans-
ferred between memory and disk.

Barve and Vitter generalize the DAM model to allow the
memory size M to change periodically.4 Their optimal algo-
rithms (sorting, FFT, matrix multiplication, LU decomposi-
tion, permutation, and Buffer trees) are impressive and tech-
nically sophisticated. The present paper considers a similar
model, although we allow M to change more rapidly and
unpredictably.

A cache-oblivious algorithm [23] is analyzed using the
ideal-cache model [23, 40], which is the DAM model aug-
mented to include automatic, optimal page replacement. The
algorithm is not parameterized by M or B, but it is analyzed
in terms of M and B. The beauty of this restriction is that an
optimal cache-oblivious algorithm is simultaneously optimal
for any fixed choice of M and B.

Automatic replacement is necessary because the algo-
rithm has no knowledge of B or M . The optimality assump-
tion is justified since the Least Recently Used (LRU) page re-
placement policy is constant-competitive with optimal with
resource augmentation [43].

Results. We prove that a class of recursive cache-oblivious
algorithms are optimally cache-adaptive (Section 4). This
class includes cache-oblivious naı̈ve matrix multiplication,
matrix transpose, Gaussian elimination, and Floyd-Warshall
all-pairs shortest paths algorithms. We also establish that
the lazy funnel sort algorithm [12], which falls outside this
class, is optimally cache-adaptive (Subsection 4.4).

We prove that LRU with 4-memory and 4-speed aug-
mentation is competitive with the optimal page replacement
policy in the cache-adaptive model (Section 5). We show
that Belady’s Longest Forward Distance policy is an optimal

3Often when we write external-memory and cache-oblivious algorithms,
we avoid the word “time” and express performance in terms of I/Os. In the
cache-adaptive context, we prefer to use the word ”time step” explicitly.

4They require that memory stays constant for enough I/Os to refill the
cache, after which it can change arbitrarily.

offline page replacement policy in the cache-adaptive model
(Section 5).

We establish a separation between cache-adaptivity and
cache-obliviousness by showing that: (1) There exists a
cache-adaptive algorithm for permutation, for which no
cache-oblivious algorithm can be devised [13], and (2) there
exist cache-oblivious algorithms that are not cache-adaptive
(Section 6).

2 Cache-Adaptive Model
The cache-adaptive (CA) model extends the DAM and ideal-
cache models. As with the DAM model, computation is free
and the performance of algorithms is measured in terms of
I/Os. As in the ideal-cache model, the system manages the
content of the cache automatically and optimally. But in the
CA model, the cache size is not fixed; it can change during
an algorithm’s execution.

The memory profile is the function m : N→ N, which
indicates the size, in blocks, of the cache at the time of
the tth I/O.5 The memory profile in bytes is the function
M(t) = Bm(t).

We place no restrictions on how the memory-size
changes from one I/O to the next (unlike previous ap-
proaches [3]). However, since at most one block can be
transferred at each step, we assume without loss of gener-
ality that the increases are bounded by

(2.1) m(t+ 1) ≤ m(t) + 1.

When the size of memory decreases, a large number of
blocks may need to be written back to disk, depending on
whether the blocks are dirty. In this paper, we do not charge
these write-backs to the application, but we believe that the
model can be extended to do so.

Optimality in the CA Model. Analyses in the DAM and
ideal cache models often use the notion of competitiveness.
Roughly speaking, algorithmA is competitive withA′ ifA’s
running time is always within a constant factor of A′’s [43].
In the DAM model, memory cannot change in size. So to
achieve competitiveness, it is equivalent to give algorithm A
extra time to complete or extra speed, so that it can complete
at the same time as A′.

In contrast, in the CA model, not all timesteps have the
same memory size, which means that we need to refine what
we mean by competitive. We disambiguate by giving extra
speed. That is, if A has c-speed augmentation compared
to A′, then when A performs its ctth I/O, A′ performs its tth
I/O. (The alternative notion of givingA extra time appears to
be a dead end. If the available memory drops precipitously
right after A′ completes, then A may finish arbitrarily later
than A′; see Lemma 5.2.)

5Throughout, we use the terms block and page interchangeably.



DEFINITION 2.1. (speed augmented profiles) If m is any
memory profile, under c1-speed augmentation m is scaled
into the profile m′(t) = m(bt/c1c).

DEFINITION 2.2. An algorithm A that solves problem P is
optimal in the cache-adaptive model if there exist a constant
c such that on all memory profiles and all sufficiently large
input size N , the worst-case running time of a c-speed
augmented A is better than the worst-case running time of
any other (non-augmented) algorithm.

An algorithm with c2-memory augmentation compared
to A′ has c2 times more memory than A′.

DEFINITION 2.3. (memory augmented profiles) If m is
any memory profile, under c2-memory augmentation m is
scaled into the profile m′(t) = c2m(t).

Justification for the CA Model. The CA model is intended
to capture performance on systems in which memory size
changes asynchronously in response to external events, such
as the start or end of other tasks. Since these events are
asynchronous, changes in memory size should be pegged to
wall-clock time.

We construct the CA model as an extension of the DAM
model, i.e., the DAM model is the special case that m(t) is
static. The DAM model, however, has no explicit notion of
time. Instead, performance is measured by the number of
I/Os. This I/O counting can be reinterpreted as time, with an
I/O taking unit time and computation taking 0 time. On real
systems, I/Os dominate computation, so the number of I/Os
is a good approximation to wall-clock time for I/O-bound
algorithms.

In the CA model, we explicitly measure time in terms
of I/Os. This is the same approach adopted by Barve and
Vitter [3]. For example, the arrival of a new process at a
particular time can be modeled by having memory drop after
a certain number of I/O steps.

Peserico [39] uses an alternative model for a cache
whose size changes dynamically. In this model, the changes
to memory size are specified by ‘+’ or ‘-’ symbols in a
page-request sequence, representing an increase or decrease
to cache size, respectively. In contrast to our model, these
changes are not linked to time, but to specific page requests.
For example, in Peserico’s model, one can specify that the
cache size should change after instruction 52 of the program,
whereas in our model, one can specify that the cache size
should change after time step 10. While both models are
natural, the CA model is more applicable to our motivating
application, i.e., size changing due to external events.

Optimal Page Replacement in the CA Model. Analogous
to the justification of optimal page replacement in the ideal-
cache model [23], we show that LRU in the CA model

can simulate OPT. We prove that LRU with 4-memory
and 4-speed augmentation always completes sooner than
OPT (Theorem 5.1). Although Peserico [39] proves similar
results, the model is drastically different, and hence those
results do not apply here.

3 Toolbox for Cache-Adaptive Analysis
We first introduce a class of memory profiles called square
profiles. Proving cache-adaptive optimality on square pro-
files is cleaner. Moreover, optimality on square profiles is
extendable to all profiles.

DEFINITION 3.1. A memory profile m is square if there
exist boundaries 0 = t0 < t1 < . . . such that for all
t ∈ [ti, ti+1), m(t) = ti+1 − ti. In other words, a square
memory profile is a step function where each step is exactly
as long as it is tall (see Figure 1).

t

m(t)

ti ti+1 ti+2t∗i t∗i+1

ti+1 − ti

ti+2 − ti+1

2(ti+1 − ti)

(ti+1 − ti) + (ti+2 − ti)

m′(t)

4(ti+1 − ti)

Figure 1: The inner square profile of the memory profile
m(t). The inner square boundaries comprise ti, ti+1, and
ti+2. The figure also illustrates the proof of Lemma 3.1.

We define an inner square profile m′ for a profile m by
placing maximal squares below m, proceeding left to right,
as illustrated in Figure 1. The inner square boundaries are
the left/right boundaries of the squares in m′.

DEFINITION 3.2. For a memory profilem, the inner square
boundaries t0 < t1 < t2 < . . . of m are defined as
follows: Let t0 = 0. Recursively define ti+1 as the largest
integer such that ti+1 − ti ≤ m(t) for all t ∈ [ti, ti+1).
The inner square profile of m is the profile m′ defined by
m′(t) = ti+1 − ti for all t ∈ [ti, ti+1).

The following lemma enables us to analyze algorithms
even in profiles where the memory size drops precipitously.
Intuitively, the lemma states that the (i + 1)st interval in
the inner square profile is at most twice as long as the ith
interval, and the available memory in the original memory



profile during the (i + 1)st interval is at most four times
the available memory in the ith interval of the inner square
profile.

LEMMA 3.1. Let m be a memory profile where m(t+ 1) ≤
m(t) + 1 for all t. Let t0 < t1 < . . . be the inner square
boundaries of m, and let m′ be the inner square profile of
m.

1. For all t, m′(t) ≤ m(t).
2. For all i, ti+2 − ti+1 ≤ 2(ti+1 − ti).
3. For all i and t ∈ [ti+1, ti+2), m(t) ≤ 4(ti+1 − ti).

Proof.
1. By construction of m′ in Definition 3.2.
2. By construction of the inner square boundaries in Defi-
nition 3.2, for each i there exists a t∗i ∈ [ti, ti+1] such that
m(t∗i ) = m′(ti) = ti+1 − ti. Since m can only increase
by one in each time step, m(ti+1) ≤ m(t∗i ) + (ti+1 − t∗i ).
Substituting for m(t∗i ) and because t∗i ≥ ti, we obtain
m(ti+1) ≤ 2(ti+1 − ti). Also by construction the inner
square boundaries, ti+2 − ti+1 ≤ m(ti+1), we must have
ti+2 − ti+1 ≤ 2(ti+1 − ti).
3. Similarly, for all t ∈ [ti+1, ti+2), m(t) ≤ m(t∗i ) + (t −
t∗i ) ≤ (ti+1−ti)+(ti+2−ti) = (ti+1−ti)+(ti+2−ti+1)+
(ti+1 − ti). Hence we get m(t) ≤ 4(ti+1 − ti). �

3.1 Lower Bounds in Cache-Adaptive Model. The fol-
lowing definition explains how we treat lower bounds in the
CA model.

DEFINITION 3.3. (piecewise lower bound for problem P )
A problem P has a piecewise lower bound if there exists
work function W and progress bound U as follows:
1. Work function W (N) : N → N is the minimum amount
of work needed to solve a worst case instance of size N on
problem P , where work is a problem-specific notion of what
it means for P to be solved.
2. Progress function U(M,B,N) : N3 → N is an upper
bound on the amount of work that can be completed using a
memory of size M and M/B I/Os.
3. Let m be any square profile with interval boundaries
t0 < t1 < . . . < tn. If

n−1∑
i=0

U(M(ti), B,N) < W (N),(3.2)

then there does not exist an algorithm that solves all in-
stances of P of size at most N under profile m.

Definition 3.3 serves as a tool to port lower bounds in
the DAM model to the CA model. A lower bound in the
DAM model can be used in Definition 3.3 if it is memory-
less, which means that an upper bound on the progress in an

interval does not depend on the progress in previous inter-
vals.

We give an example. The lower bound for naı̈ve matrix
multiplication [42] uses a version of the red-blue pebble
game [26] on the matrix multiplication DAG. There are
W (N) = Θ(N3/2) nodes in the DAG to be pebbled.
Regardless of the progress in the past, the maximum number
of DAG nodes that can be pebbled using M/B I/Os when
memory has size M is U(M,B,N) = O(M3/2). Thus,
naı̈ve matrix multiplication has a piecewise lower-bound in
the CA model.6

3.2 Recursion in the Cache-Adaptive Model. Recursive
cache-oblivious algorithms have base cases of constant size.
In contrast, their I/O complexity is expressed by a recur-
rence, where the base case is a function of M or B.

The recurrence “bottoms out” at nodes in the recursion
tree with input size at most M . This is because once a
subproblem is brought fully into cache, subsequent recursive
calls do not incur I/Os. We refer to such nodes as bottomed-
out nodes; see Figure 2. The number of block transfers
needed to complete a bottomed-out node is usually linear in
the input size of the node.

Bottomed out nodes in a recursion tree are at the same
depth (as long as the tree has a regular structure) since M
is fixed. In contrast, in the CA model, where the cache-
size changes over time, the height of bottomed-out nodes
can vary; see Figure 3. The running time of a recursive
algorithm in the CA model is influenced by the height of
these bottomed-out nodes in different periods of time.

3.3 Fractional Progress. We analyze algorithms in terms
of their progress towards completion. The lower bound
and upper bound on progress often have different units.7

We remove the units from the progress measures and use
fractional progress (denoted by FP) instead, defined as the
percentage of the task completed in a period of time.

Upper bound on fractional progress of any al-
gorithm. We describe the maximum possible fractional
progress of any algorithm on an interval I of length M/B
I/Os using M memory. By Definition 3.3, in M/B I/Os, any
algorithm C can make at most U(M,B,N) progress and the
total work is ≥W (N). Hence,

FPC(I) ≤ U(M,B,N)

W (N)
.(3.3)

Lower bound on fractional progress of a recursive al-
gorithm. We bound the fractional progress of a recursive al-

6Definition 3.3 is stated in additive form, where the progress U should
at least add up to W . If a lower bound is stated in multiplicative form, then
take logarithms.

7For example, the sorting lower bound measures the reduction in permu-
tations in the input. An algorithm, such as merge sort, does not.
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Figure 2: Bottomed-out nodes in the cache-oblivious
analysis.

Bottomed-out Node
Bottomed-out Node

M(t1) = 20 M(t2) = 100

4 4 4 4 4 4 4

16161616

4

64 64

256

Figure 3: Bottomed-out nodes in the cache-adaptive
model.

gorithm in an interval I in terms of completion of bottomed-
out nodes. Let the I/O complexity of the recursive algo-
rithm A be upper bounded by the function T (N,M,B) in
the DAM model. Assume that M(t)t∈I ≥M1 and the exact
cost of a bottomed-out node of size N1 is Cost(N1,M,B).
Hence,

FPA completing N1
(I) ≥ Cost(N1,M1, B)

T (N,M1, B)
.(3.4)

4 A Class of Optimal Cache-Adaptive, Cache-Oblivious
Algorithms

In this section, we define a class of cache-oblivious algo-
rithms that are optimal in the cache-adaptive model. We
present the proof of optimality in two steps. First, we prove
that this class is optimal for all square profiles; then we show
that we can extend the optimality to all memory profiles.

DEFINITION 4.1. A recursive algorithm A is in constant
overhead recursive (COR) form, if there exist monotone
functions f : N → N and g : N → N satisfying f(N) ≥ 2
and 1 ≤ g(N) < N and positive constants α < 1 and LB

(depending on B), such that the following holds:
1. On input of size N , A recursively calls itself f(N) times
on subproblems of size at most g(N). Besides calling itself,
the algorithm accesses only O(1) pages. For sufficiently
small N , the algorithm accesses only O(1) pages.
2. Let M ≥ LB , where LB is a problem-specific function
of B. The I/O complexity of the A in the DAM model can be
bounded by

T (N,M,B) =

{
f(N)T

(
g(N),M,B

)
+O(1) N > αM

Θ (N/B + 1) N ≤ αM.

(4.5)

The term LB captures tall-cache assumptions needed
by some algorithms. For example, for matrix multiply,
LB = B2, but for linear scan, which needs no tall-cache
assumption, LB = 1.

Optimality in the DAM model. In the DAM model,
an algorithm is optimal with respect to work lower bound
W (N) and progress upper bound U(M,B,N) if there exists
a constant c such that for all M ≥ LB and N ≥M ,

(4.6) T (N,M,B) ≤ c
⌈
M

B

⌉⌈
W (N)

U(M,B,N)

⌉
.

To prove that cache-oblivious algorithms in COR form are
optimal in the cache-adaptive model, we first work on square
profiles, where we can apply the above idea on each square
individually.

4.1 COR Optimality on Square Profiles. To prove op-
timality of algorithms in COR form, we use the following
lemma, which is proved in Appendix A.

LEMMA 4.1. Assume a tree T of height H and branching
factor greater than or equal to 2. Given any node x, consider
the set of next z leaves, Sz , that appear after x in the DFS
order of the tree. Let Iz be the set of internal nodes in
the DFS order between x and the last node of Sz . Then
|Iz| ≤ 3H + z.

THEOREM 4.1. Given a problem P and a piecewise lower
bound on P , consider an optimal cache-oblivious algorithm
A in COR form. Let H be the depth of recursion of
T (N,LB , B) and d be the additive O(1) term in Eq. 4.5.
The algorithm A is cache-adaptively optimal on all square
profiles, m(t), that satisfy

∀t, m(t) ≥ max{LB , 3dH}.

Proof. Algorithm A’s I/O complexity can be bounded by
function T in the DAM model. In order to make the analysis
simpler, we assume that the cost of each bottomed-out node
for A is exactly equal to T . More formally, we assume A
is implemented on a machine with a (sub-optimal) paging
policy that flushes the cache before the execution of each
bottomed-out node. Such an assumption would only makeA
slower and would not affect the intended optimality outcome.



Furthermore, let β be the constant in the base case of Eq. 4.5,
i.e. when N ≤ αM , T (N,M,B) ≤ β(N/B + 1).

We compare the fractional progress of algorithm A
(upper bound) with the fractional progress specified by the
lower bound in any given square of the profile m(t). For
simplicity we refer to the fractional progress made by the
lower bound as the actions of an algorithm called OPT.

Let J be any square of the profile m(t) and let m1 =
M1/B be the length of J . By definition, the available
memory in J is M1. Assume that A is (2q + 1)-speed
augmented, where q > dmax(2dc, dαβ, 1)e. By definition,
there are (2q + 1)m1 I/Os available to A in J .

We are going to count the number of bottomed-out
nodes completed by the algorithm A in the interval J . By
the definition of the recursion of A, a node of input size N1

is bottomed-out iff N1 ≤ αM1 < g−1(N1).

LEMMA 4.2. Algorithm A completes at least y =
bqm1/dT (N1,M1, B)c bottomed-out nodes in J . Here,
d ≥ 1 is the O(1) overhead term in Definition 4.1.

Proof. The recursion follows a DFS order to reach and
complete bottomed-out nodes. Assume that at beginning of
J , the algorithms is operating on an arbitrary node in the
recursion tree and completes y bottomed-out nodes by the
end of J . Lemma 4.1 states that in between these bottomed-
out nodes, we visit at most 3H + y internal nodes. Each
internal node incurs at most d I/Os. We refer to the overall
cost of internal nodes as overhead cost.

The algorithm A has (2q + 1)m1 available I/Os in J .
Set y = bqm1/dT (N1,M1, B)c. Since q ≥ dαβ, y ≥ 1.
Sum the overhead cost and the cost of bottomed-out node
completions.

yT (N1,M1, B)︸ ︷︷ ︸
Bottomed-out nodes

+ dy + 3dH︸ ︷︷ ︸
Overhead cost

≤ qm1

d
+

qm1

T (N1,M1, B)

+ m1︸︷︷︸
because 3dH≤m1

≤ (2q + 1)m1 .︸ ︷︷ ︸
because d,T (N1,M1,B)≥1

Since the sum is less (2q + 1)m1, at least y bottomed-out
nodes will be completed by A′ in J . �

Now we show that the fractional progress ofA is bigger than
the fractional progress of OPT in J . The two progress terms
are now as follows:

FPA(J ) ≥ yT (N1,M1, B)

T (N,M1, B)
(using Eq. 3.4)(4.7)

FPOPT(J ) =
U(M1, B,N)

W (N)
(using Eq. 3.3 )(4.8)

We insert Eq. 4.6 in the denominator of Eq. 4.7 to compare
it to Eq. 4.8.

FPA(J ) ≥ yT (N1,M1, B)

T (N,M1, B)

≥ yT (N1,M1, B)

c dM1/Be dW (N)/U(M1, B,N)e

≥ yT (N1,M1, B)U(M1, B,N)

cm1W (N)

≥
⌊

qm1

dT (N1,M1, B)

⌋
T (N1,M1, B)U(M1, B,N)

cm1W (N)

≥ q

2dc

U(M1, B,N)

W (N)
.(4.9)

Since q > max(2dc, 1), algorithm A makes more fractional
progress in J than OPT in J .

Definition 3.3 allows us to sum the maximum progress
of OPT in different squares. Since in each square, A
dominates OPT in terms of fractional progress, we get that
A makes more fractional progress than OPT on the entirety
of m. �

4.2 Inductive Charging and Optimality on All Mem-
ory Profiles. We introduce the inductive charging approach,
which we use to extend Theorem 4.1 to all memory profiles.

THEOREM 4.2. Theorem 4.1 is extendable to all memory
profiles if either of the following is satisfied:

a. T (N,M,B) satisfies the regularity condition [23],
i.e., T (N,M,B) = O(T (N, 2M,B)).8

b. Progress function U(M,B,N) is polynomial in M .

Proof. Consider the inner square profile m′ of memory
profile m. Let [Si] denote the intervals defined by the
boundaries of the squares of m′.

We structure the proof by charging FPOPT(Si+1)
to FPA(Si) inductively. In the base case, we charge
FPOPT(S1 ∪ S2) to that of FPA(S1).

Base Case. In Lemma 3.1 we proved that S2 is at most
twice as long as S1 and that ∀t ∈ S2, m(t) ≤ 4m′(S1) =
4 min{m(t)|t ∈ S1}. Hence, in the worst case, we can
assume that OPT is working with an available memory of
4M in S1 ∪ S2 and A is working with an available memory
of M in S1. Algorithm A is (2p + 1)-speed augmented, so
it has (2p + 1)M/B = (2p + 1)m I/Os in S1. Meanwhile,
in S1 ∪ S2 OPT has ≤ 3M/B = 3m I/Os. In order to be
able to apply the piecewise lower bound easily, we treat OPT
generously and allow it 4m I/Os instead of 3m.

8Frigo et al. [23] showed that cache-oblivious algorithms that satisfy the
regularity condition can be “ported” to systems with LRU page replacement
instead of optimal page replacement. The regularity condition has become
one of underpinnings of the ideal-cache model.



The inequality of the available memory to A and OPT
makes their respective fractional progress terms incompa-
rable if one wants to repeat the argument of Theorem 4.1.
However, when (a) or (b) is true, we can compensate for this
difference in memory by giving A a constant amount of ad-
ditional speed augmentation.

For case (a), there exists a constant e1, such that

T (N,M,B) = O(T (N, 4M,B)) ≤ e1T (N, 4M,B).

We replace T (N,M,B) with e1T (N, 4M,B) in the denom-
inator of the first term in Eq. 4.9. In Eq. 4.9, an additional e1
appears:

FPA(J ) ≥ p

2e1dc
· U(4M1, B,N)

W (N)
.

If p > dmax(2e1dc, dαβ, 1)e, then we get the base case:

FPA(S1) > FPOPT(S1 ∪ S2).

For case (b), there exists a constant e2, such that

U(4M,B,N) = O(U(M,B,N)) ≤ e2U(M,B,N).

We replace U(4M,B,N) with e2U(M,B,N) in the numer-
ator of the last term in Eq. 4.9, and establish the base case
similarly to case (a).

Inductive Step. We charge FPOPT(Si+1) to FPA(Si).
The accounting follows that of the base case.

Using Definition 3.3, we sum the fractional progress
terms in all intervals and show thatA finishes before OPT. �

Alternatively, we can compensate for the difference in
memory between A and OPT by simply giving A more
memory, which yields the following theorem.

THEOREM 4.3. If a cache-oblivious algorithm is optimal on
square profiles then, given 4-memory and 4-speed augmen-
tation, it is optimal on all memory profiles.

4.3 Examples of COR Cache-Oblivious Algorithms. As
a corollary of Theorem 4.2, a number of cache-oblivious
algorithms are optimally cache-adaptive; see Table 1.

COROLLARY 4.1. Cache-oblivious naı̈ve matrix multipli-
cation [23], Gaussian elimination paradigm (GEP) [18],
Floyd-Warshall APSP [38], and matrix transpose [23]
are all optimal cache-adaptive algorithms if m =
Ω (max{B, logN}) (see Table 1).

Proof. We show that all these problems have piece-wise
lower bounds. We have already stated the lower bound of
naı̈ve matrix multiplication from [26]. The matrix multipli-
cation problem can be stated in the form of Gauss Elimina-
tion Paradigm (GEP), so the same piece-wise lower bound

works for GEP as well. In [38] it is shown that the Floyd-
Warshall algorithm reduces to matrix multiplication with re-
spect to the processor-memory traffic. In other words, their
DAGs have similar properties, and the red-blue pebble game
of [26] can be used to derive a piece-wise lower bound. Fi-
nally, the lower bound on matrix transpose comes from the
time required to read the input (W (N) = N,U = 1/B).

Notice that for matrix multiplication, transpose, and
GEP, M = Ω(B2). Therefore, the base case n1 is Ω(M)
and thus O(

√
n1 + n1/B) = O(n1/B). Therefore, all these

algorithms are in COR form. Furthermore, all these algo-
rithms are known to have the regularity condition. Therefore
by Theorem 4.2, we get that all these cache-oblivious algo-
rithms are optimally cache-adaptive. �

4.4 Lazy Funnel Sort is Optimally Cache-Adaptive.
Lazy funnel sort (LFS) [12, 23] is cache oblivious and has a
piecewise lower bound, but its running time cannot be writ-
ten in COR form, so we cannot apply Theorem 4.2. How-
ever, by following the strategy of Theorem 4.1, Theorem 4.2
and the analysis of the LFS algorithm in [12] we prove the
following theorem in Appendix B.

THEOREM 4.4. LFS with k-mergers with output buffers of
size kd is optimally cache-adaptive if d ≥ 2 and M(t) ≥
2B2d/(d−1) for all t.

5 Page Replacement in the Cache-Adaptive Model
This section gives competitive analyses for page replacement
when the size of cache changes over time. Since we measure
time in terms of I/Os, two paging algorithms may become
out-of-sync when one has a cache miss and the other has a
cache hit. Thus, two algorithms may have wildly different
amounts of memory available to them when they service
the same request. This section shows how to deal with this
alignment issue.

5.1 LRU with 4-Memory and 4-Speed Augmentation
is Competitive with OPT. We utilize square profiles,
Lemma 3.1 and an inductive charging approach similar to
Theorem 4.2 to prove competitiveness [43] of LRU with a
variable-sized cache. We show that LRU with 4-memory
and 4-speed augmentation is competitive with the optimal
page replacement algorithm. This shows that, given some
resource augmentation, real LRU-based systems can imple-
ment the CA model.

NOTATION. For a sequence of page accesses σ =
(σ1, . . . , σn), memory profile m(t), and page replacement
algorithm P , let CP (m,σ) be the number of I/Os required
to process σ in m while using page replacement algorithm
P . Let C(m,σ) denote COPT(m,σ).

The following lemma enables us to convert simultane-



Cache-Oblivious Algorithm Lower Bound Recurrence Relation

Floyd-Warshall APSP [38], m = Ω(B) [26] Q(N) =

{
8Q(N/2) +O(1) N > αM
O(N/B) N ≤ αM

Naive Matrix Multiplication [23], m = Ω(B) [26, 28] Q(N) =

{
8Q(N/4) +O(1) N > αM

O(
√
N +N/B) N ≤ αM

Matrix Transposition [40], m = Ω(B) [23] Q(N) =

{
2Q(N/2) +O(1) N > αM

O(
√
N +N/B) N ≤ αM

Gaussian Elimination Paradigm [18], m = Ω(B) [18, 26] Q(N) =

{
8Q(N/4) +O(1) N > αM

O(
√
N +N/B) N ≤ αM

Table 1: Cache-oblivious algorithms in constant-overhead recursive (COR) form (Definition 4.1).

ously between LRU and OPT and square and general pro-
files.

LEMMA 5.1. Let m be any memory profile. Let m′ be the
inner square profile of m. Let σ = (σ1, σ2, . . . , σn) be
any sequence of page accesses. Then CLRU(m′4,4, σ) ≤
4COPT(m,σ).

Proof. Since OPT and LRU can never place more than one
page in cache per time step, we may assume without loss
of generality that m(t + 1) ≤ m(t) + 1 for all t. Let
0 = t0 < t1 < . . . be the inner square boundaries of m.

We show by induction on i that for all σ, if
COPT(m,σ) ∈ [ti+1, ti+2), then CLRU(m′4,4, σ) ≤ 4ti+1.

Base case i = 0. We argue that if OPT can process σ
in the first two intervals of m, then LRU can process it in
the first interval of m′4,4. Suppose COPT(m,σ) < t2. From
Lemma 3.1, t2 = t2 − t0 = (t2 − t1) + (t1 − t0) ≤
2(t1 − t0) + (t1 − t0) = 3(t1 − t0) = 3t1. Since the
cache is empty at time t0 = 0, this implies that σ can refer
to at most t2 ≤ 3t1 distinct pages. Since, during interval
[0, 4t1), profile m′4,4 always has size at least 4t1 pages, LRU
can load all the pages referenced by σ into memory, and this
will require at most 3t1 I/Os. Thereafter, no further I/O will
be required. Thus CLRU(m′4,4, σ) < 4t1.

Inductive step. The inductive assumption is
that for all σ′, if COPT(m,σ′) ∈ [ti+1, ti+2), then
CLRU(m′4,4, σ

′) ≤ 4ti+1. Suppose that COPT(m,σ) ∈
[ti+2, ti+3). Let σ′ be the prefix of σ that OPT services in
[t0, ti+2). Consequently, COPT(m,σ′) < ti+2. By the in-
ductive hypothesis, CLRU(m′4,4, σ

′) ≤ 4ti+1.
Let σ′′ be the remainder of σ, i.e. σ = σ′||σ′′. Observe

that, since OPT can process σ′′ in ti+3 − ti+2 ≤ 2(ti+2 −
ti+1) time steps and with a cache whose initial size is at
most 2(ti+2 − ti+1), σ′′ can contain references to at most
4(ti+2 − ti+1) distinct pages.

We now only need to show that LRU can process any
suffix of σ′′ in interval [4ti+1, 4ti+2). The memory available
during this interval in m′4,4 is 4(ti+2− ti+1). Thus LRU can
load all the distinct pages referenced by σ′′ into memory,

which will require at most 4(ti+2− ti+1) I/Os. Thereafter, it
can serve all the page requests in σ′′ with no further I/O. �

THEOREM 5.1. LRU with 4-memory and 4-speed augmen-
tation always completes sooner than OPT.

Proof. Take σ, m, and m′ as in Lemma 5.1. Since m′4,4
always has less memory than m4,4, CLRU(m4,4, σ) ≤
CLRU(m′4,4, σ). Thus, by Lemma 5.1, CLRU(m4,4, σ) ≤
4COPT(m,σ). �

The following lemma shows that LRU requires speed
augmentation to be competitive (proof deferred to the full
version). LRU requires memory augmentation [43], so
Theorem 5.1 is, up to constants, the best possible.

LEMMA 5.2. There exists a memory profilem(t) and a page
request sequence σ, such that a non-speed augmented LRU
performs arbitrarily worse than OPT.

5.2 Belady’s Algorithm is Optimal. Belady’s algorithm
(LFD) [5], which evicts the page whose next request is far-
thest in future, is optimal in the DAM model. The following
theorem shows that it remains optimal when the size of cache
changes over time. The complete proof is postponed to the
full version of the paper. We give a summary here.

THEOREM 5.2. LFD is an optimal page replacement algo-
rithm for a variable-sized cache.

First, we prove that one can always convert optimal
paging policies into on-demand policies, i.e., the algorithm
only loads a page when that page has been requested but
is not currently in cache. Then, among all on-demand
optimal policies, we consider the policy, OPT, that matches
the behavior of LFD for the longest time and then diverges.
We modify OPT to have the same cost and match LFD in
one more step and get B. However, the modification might
make B non-on-demand. We then convert the modified B
back to an on-demand policy, while preserving its agreement
with LFD, to arrive at a contradiction.



6 Cache-Adaptive 6= Cache-Oblivious
This section exhibits a separation between cache-adaptivity
and cache-obliviousness by showing that: (1) There exists
a cache-adaptive algorithm for permutation, for which no
cache-oblivious algorithm can be devised [13], and (2) there
exist cache-oblivious algorithms that are not cache-adaptive.

6.1 Cache-Adaptive Permutation. By interleaving the
cache-adaptive sorting algorithm from Subsection 4.4 and
the naı̈ve algorithm that puts each element in the correct
place individually, we obtain a cache-adaptive permutation
algorithm, IA. However, no cache-oblivious algorithm [13]
for permutation can be devised.

In Appendix C, we prove the following theorem. The
proof is similar to that of Theorem 4.4.

THEOREM 6.1. Let d ≥ 2 be the same parameter as in
Theorem 4.4. If for all t, M(t) ≥ 2B

2d
d−1 , the interleaving

algorithm IA, is an optimal cache-adaptive algorithm.

6.2 Not All Optimal Cache-Oblivious Algorithms Are
Optimally Cache-Adaptive.

THEOREM 6.2. There exists an asymptotically optimal
cache-oblivious algorithm that is not optimally cache adap-
tive, even with any constant-factor resource augmentation.

Proof. Consider the following problem: given two
√
N1 ×√

N1 matrices and a size-N2 array of numbers, compute both
the matrix product and the sum of all elements in the array.

An algorithmA that first sums the elements of the array
then computes the matrix product using a cache-oblivious
matrix multiply is an optimal cache-oblivious algorithm for
this problem. Specifically, for fixed memory size M ≥
B2, the number of I/Os performed by this algorithm is

Θ(scan(N2) + matrix-multiply(N1)) = Θ

(
N2

B +
N

3/2
1

B
√
M

)
,

which is asymptotically optimal.
To see that algorithm A is not cache adaptive, we

consider a specific memory profile and input. For the
memory profile, choose any maximum memory size ofm�
c1B blocks (i.e., total space at least M � c1B

2), where c1
is any constant memory augmentation. Use the following
memory profile:

m(t) =


m if t ≤ m5/2

2m5/2 − t if m5/2 < t < 2m5/2 −B
B if t ≥ 2m5/2 −B.

Specifically, the memory profile consists of three phases.
In the first phase, lasting for m5/2 time steps, the memory
contains m blocks. In the second phase, consisting of less
than m5/2 time steps, the memory decreases by one block
per time step. In the third phase, which lasts indefinitely, the
memory consists of the minimum allowed B blocks.

Choose an input with N2/B = 2c2m
5/2, where c2 is

the constant of speed augmentation. Choose
√
N1 such that

the cache-oblivious matrix multiply with memory size mB
would complete in m5/2 I/Os, i.e., with

√
N1 = Θ(m

√
B).

Let us now analyze the algorithm A on this input
and profile. The algorithm takes at least 2c2m

5/2 I/Os to
complete the array scan, ending during third phase even
when sped up by a factor of c2. The matrix multiply must
then continue with fixed memory sizeB, giving an I/O bound
of Θ(N

3/2
1 /B2) = Θ(m3/

√
B). For m � B, the total

number of I/Os is Θ(m3/
√
B).

To see that A is not optimal, consider an algorithm A′
that first performs the matrix multiply then performs the
array sum. Even without memory or speed augmentation,
this algorithm completes the matrix multiply in phase 1
by assumption, and the scan completes during third phase,
for a total of Θ(m5/2) I/Os. Algorithm A thus performs
Θ(
√
m/B) times as many I/Os as algorithm A′, which can

be increased arbitrarily by increasing m� B. �

7 Related Work
Barve and Vitter [3, 4] generalize the DAM model to allow
for fluctuations in memory size. They give optimal sorting,
matrix multiplication, LU decomposition, FFT, and permu-
tation algorithms.

There also exist empirical studies of adaptivity. Zhang
and Larson [48] and Pang, Carey, and Livny [36] both
give memory-adaptive sorting algorithms. Other papers
discussing aspects of adaptivity include [3, 4, 15, 24, 34, 35,
37, 47, 49].

The notion of a cache-oblivious algorithm was proposed
by Frigo et al. [23, 40]. Because cache-oblivious algorithms
can be optimal without resorting to memory parameters, they
can be uniformly optimal on unknown, multilevel memory
hierarchies. See [21, 30] for surveys of cache-oblivous
algorithms. See [8, 9, 14, 16, 17, 19, 22, 23, 31, 44, 45] for
discussions of implementations and performance analysis of
cache-oblivious algorithms. See [6, 7,13] for a discussion of
the limits of cache-obliviousness.

Cache-oblivious programming helps multicore pro-
gramming. Blelloch et al. [10] define a class of recursive
algorithms HR that work well on multicores [10]; this class
is more general than the one defined in Section 4. Cole and
Ramachandran [20] define BP and HBP, two classes of re-
cursive cache-oblivious algorithms that also behave well on
multicores. Blelloch, Gibbons, and Simhadri [11] prove re-
sults for algorithms with low recursive depth.

Peserico [39] considers an alternative model for page
replacement when the cache size fluctuates. Peserico’s page-
replacement model does not apply to the CA model, because
the increases and decreases in the cache size appear at
specific locations in the page-request sequence, rather than
at specific points in times.



Katti and Ramachandran consider page replacement po-
lices for multicore shared-cache environments [29]. Sev-
eral authors have considered other aspects of paging where
the size of internal memory or the pages themselves vary
[2,25,27,32,33,46] e.g., because several processes share the
same cache. For example, [32] considers a model where the
application itself adjusts the cache-size, and [27,46] consider
a model where the page sizes vary.

8 Conclusion
We show how to design cache-adaptive algorithms by start-
ing with cache-oblivious algorithms. Many optimal cache-
oblivious algorithms also have good experimental perfor-
mance [14, 23]. Hence, our results may open up new ways
to design cache-adaptive algorithms that are provably good,
empirically good, and practical to implement.

Many open problems remain, suggesting an area ripe for
further investigation. Can our general theorem be extended
to algorithms with other recursive structures? Could we
prove the optimality of cache-oblivious FFT [23], LCS, and
edit distance [18] in the CA model? There has also been
work in using subclasses of cache-oblivious algorithms to
achieve universal performance bounds for shared-memory
multiprocessors [10, 11, 20]. It is worth exploring additional
links between cache-obliviousness, shared-memory parallel
computing, and cache-adaptivity.
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[32] A. LÓPEZ-ORTIZ AND A. SALINGER, Minimizing cache
usage in paging, in Proc. 10th Workshop on Approximation
and Online Algorithms (WAOA), 2012.
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A Proof of Lemma 4.1

Statement of Lemma 4.1. Assume a tree T of heightH and
branching factor greater than or equal to 2. Given any node
x, consider the set of next z leaves, Sz , that appear after x in
the DFS order of the tree. Let Iz be the set of internal nodes
in the DFS order between x and the last node of Sz . Then
|Iz| ≤ 3H + z.

Proof. Consider the set of maximal complete subtrees, T =
{T1, . . . , Tk}, ordered from left to right, induced by the
leaves in Sz . Let u be the lowest common ancestor of the
nodes in Sz . Let ri be the root of Ti.

As illustrated in Figure 4, the DFS order of the tree will
traverse



• the path Px from x to r1,
• the path P1 between r1 and u,
• the subtrees in T ,
• the path Pk from u to rk.

The paths P1 and Px will have nodes in common, so we
analyze them together. If x is not a descendent of u, then Px

contains P1 and has length at most 2H . If x is a descendent
of u, then Px intersects P1 after at most H steps, and P1

contains at most H additional nodes. In either case, the total
number of distinct nodes in P1 ∪ Px is at most 2H .

The path Pk contains at most H nodes.
Because the branching factor is at least 2, the subtrees

in T contain a total of at most z internal nodes.
Thus the total number of nodes visited by the DFS is at

most 3H + z. �

B Lazy Funnel Sort is Optimally Cache-Adaptive
We start with a short exposition of the lazy funnel sort (LFS)
algorithm [12]. Then, we prove that LFS is an optimal cache-
adaptive algorithm.

At the core of the LFS algorithm lies the concept of
a k-merger, a perfectly balanced binary tree with k leaves
and a binary merger at each internal node. Each leaf has a
sorted input stream, and the root has an output stream with
capacity kd, where d ≥ 2 is a tuning parameter. The size
of buffers between internal nodes are defined recursively:
Consider a horizontal cut in the tree at half its full height:
D0 = dlog(k)/2e. The buffers between nodes of depth D0

and D0 + 1 have size dkd/2e. The subtree above depth D0

is the top tree and all the subtrees rooted below are bottom
trees. The sizes of the buffers in the top and bottom trees are
defined recursively.

Upon each invocation, a k-merger merges kd elements
into its output buffer. We call a complete invocation of a k-
merger, producing kd elements in the output buffer, a round
of execution of that k-merger. A k-merger together with its
internal buffer is linearized in a recursive Van Emde Boas
layout. First, the top subtree is laid out in a contiguous array
and then all the bottom subtrees are laid out in contiguous
arrays. The work flow of a k-merger is based on recursive
calls to the underlying binary merger tree. A call is made to
the root of a k-merger to fill its output stream by merging
its two input buffers. When one of the buffers runs out
of elements, a recursive call is made to the child node to
fill it. For a complete description and analysis we refer the
interested reader to [12].

LFS cannot use a single N -merger to sort the input ar-
ray, since anN -merger would have superlinear size. Instead,
LFS calls itself recursively to produce N1/d sorted streams
of sizeN1−1/d and then merges these using anN1/d-merger.

To analyze the algorithm we need the following lemma
from [12].

u

x

r1

r2

r3

r4

r5

rk

Figure 4: Pattern of nodes of Sz in the DFS order of T .

LEMMA B.1. (FROM [12]) Let d ≥ 2. The size of a k-
merger (excluding its output buffer) is bounded by pk(d+1)/2

for a constant p ≥ 1. Assuming that M(t)/2p ≥
B(d+1)/(d−1) for all t, if a k-merger together with one block
from each of its input buffers fit in memory, it performs
O(kd/B + k) I/Os to output kd elements to its output buffer.

First, we prove optimality of LFS on square profiles.
The inductive charging scheme of Theorem 4.2 can be
performed to extend the optimality to all profiles. The
later part is omitted due to its simplicity and similarity to
Theorem 4.2.

Statement of Theorem 4.4. LFS with k-mergers with
output buffers of size kd is optimally cache-adaptive if d ≥ 2
and M(t) ≥ 2B2d/(d−1) for all t.

Proof. First, we assume that m(t) is a square profile. We
will show there exists a constant q such that LFS with 4q-
speed augmentation is optimal. We prove the optimality of
LFS by comparing the fractional progress of LFS (upper
bound) with the fractional progress specified by the lower
bound in any given square of the profile m(t), which for
simplicity we refer to as actions of an algorithm called OPT.

Let J be any square of the profile m(t) and let m1 =
M1/B be the length of J . By definition, the available
memory in J is M1 and LFS with 4q speed augmentation
has 4qm1 I/Os during J .

Lazy Funnel Sort’s Analysis. In the LFS algorithm,
each input element must pass through dlgNe binary mergers
to reach to the buffer at the root of the tree. As such, the total
task of LFS is for all N elements to climb dlgNe binary
mergers. Let φ(J ) denote the total number of individual
climbs that the LFS algorithm achieves during an interval J .
Thus FPLFS(J ) = φ(J )/NdlgNe.

We are going to argue that certain x-mergers, which we
refer to as active trees , are operational in J . The recursive
definition of buffer sizes also defines recursive subtrees. We
roll out the recursive definition of these subtrees until we
reach an x-merger such that x is the biggest value for which

(B.1) xd ≤M1/2.



We refer to such a subtree as an active tree. Note that since
x is the biggest such value, we have that

(B.2) x2d > M1/2.

An active tree is a little different than the notion of base
tree in [12], because it is not the biggest x-merger that fits in
memory during J , but rather the biggest x-merger that can
perform at least one round during J while fitting in memory.
This difference is essential in our analysis, since we measure
finished rounds of x-mergers in J .

Lemma B.2 follows the strategy of Brodal, et al. [12], to
prove the following properties of active trees.

LEMMA B.2. An active tree with one block from each of its
input buffers fits in a memory of size M1. It takes an active
tree O(xd/B) I/Os to perform one round.

Proof. We show that the x-merger itself and the set of input
buffer blocks both take at most M1/2 memory.

The size of an active tree (an x-merger) is bounded by
px(d+1)/2 by Lemma B.1. We have:

px
d+1
2 ≤ p(M1/2)

d+1
2d B since x ≤ (M1/2)

1
d by Eq. B.1

�M1/2 B since d ≥ 2.

Since an x-merger has x leaves, one block from each input
buffer will occupy a total of x blocks of memory. Therefore

Bx ≤ B(M1/2)
1
d B since x ≤ (M1/2)

1
d

≤ (M1/2)
d−1
2d (M1/2)

1
d B since M1 ≥ 2B

2d
d−1

≤ (M1/2)
d+1
2d

�M1/2 B since d ≥ 2.

which gives us the desired space bound.
To finish one round, an active tree needs to load the x-

merger structure together with one block from each of its
input buffers into memory which takes O(px(d+1)/2/B+x)
I/Os. By definition, the x-merger outputs xd elements to
its output buffer and reading these elements takes O(xd/B)
I/Os.

Hence, an active tree takesO(xd/B+px(d+1)/2/B+x)
I/Os to finish one round. We argue that

O(xd/B + px(d+1)/2/B + x) = O(xd/B).

Since d ≥ 2, we have px(d+1)/2/B = O(xd/B). To get that
x = O(xd/B) too, we prove that xd ≥ Bx.

xd ≥ x
(

(M1/2)
1
2d

)d−1
B since x ≥ (M1/2)

1
2d

≥ x (M1/2)
d−1
2d

≥ xB
2d

d−1
d−1
2d B since M1 ≥ 2B

2d
d−1

≥ xB.

�

Now we measure how many rounds active trees perform
during J .

LEMMA B.3. The number of active trees that start and
finish during J is at least 2Bqm1

c1xd , for some constant c1.

Proof. By Lemma B.2, we have that one round of an active
tree takes O(xd/B) I/Os. We also have that:

O(xd/B) ≤ c1xd/B B For some constant c1

≤ c1m1/2 B since xd ≤M1/2 by Eq. B.1.

Since J contains 4qm1 I/Os, LFS must complete at least
4Bqm1

c1xd − 2 rounds during J (the first and last rounds may
not be contained entirely within J due to alignment). If we
choose q > c1/2, then, since each round takes less than
c1m1/2 I/Os, the number of rounds completed during J will
be at least 2. In this case, 4Bqm1

c1xd − 2 ≥ 2Bqm1

c1xd . �

LEMMA B.4. The fractional progress of LFS during J has
the following lower bound:

FPLFS(J ) ≥ q

2c1d

M1 (lgm1 + lgB − 1)

N lgN
.(B.3)

Proof. During each round, xd elements climb up lg x binary
mergers. Since x > (M1/2)1/2d, we have that lg x ≥
1
2d lg M1

2 . Therefore, the total number of climbs in J by
LFS is at least:

φ(J ) ≥ 2Bqm1

c1xd
xd
(

1

2d
lg
M1

2

)
≥ q

c1d
M1 (lgm1 + lgB − 1) .

This means that

FPLFS(J ) ≥ q

c1d

M1 (lgm1 + lgB − 1)

NdlgNe

≥ q

2c1d

M1 (lgm1 + lgB − 1)

N lgN
.

�

Lower Bound Analysis. We upper bound the maxi-
mum possible fractional progress of OPT in J .

LEMMA B.5.

FPOPT(J ) ≤ 2M1 (lgm1 + lgB + lg 4e)

N lgN
.(B.4)

Proof. We review the piece-wise lower bound of Aggarwal
and Vitter [1]. Each time an algorithm reads in a block,
it can compare every element in that block with every
other element in memory. These comparisons are not all
independent though, so the total number of distinct outcomes



is bounded by
(
M
B

)
B!. Any sorting algorithm must perform

enough page loads to be able to generate all N ! outcomes of
the sort. By taking logs, we obtain a per-I/O progress bound

lg

((
M

B

)
(B!)

)
≤ B (lgm+ lgB + lg e)

and a work lower bound of W (N) = lgN ! ≥ N lgN
2 .

Therefore, in a time interval J with M1 memory and m1

I/Os,

FPOPT(J ) ≤ 2M1 (lgm1 + lgB + lg 4e)

N lgN
.

�

By comparing Eq. B.3 and Eq. B.4, we get that if q ≥
max(4c1d, c1/2), then FPLFS(J ) ≥ FPOPT(J ).

The piecewise lower bound allows us to sum the frac-
tional progress terms over different squares of m. Hence, we
proved that LFS is an optimal cache-adaptive algorithm over
all square profiles.

Applying the inductive charging argument of Theo-
rem 4.2, we can extend the optimality to all profiles. �

C An Optimal Cache-Adaptive Permutation Algorithm
Permutation is very similar to sorting—in fact, permutation
can be performed optimally in the DAM model by sorting
or by moving each element to its final location explicitly,
whichever is faster [1]. However, there can be no optimal
cache-oblivious permutation algorithm [13].

We show that by interleaving the cache-adaptive sorting
algorithm from Subsection 4.4 and the naı̈ve algorithm that
puts each element in the correct place individually, we obtain
a cache-adaptive permutation algorithm. Let IA be the
algorithm that runs cache-adaptive sorting and the naı̈ve
placement algorithm simultaneously, using half of the cache
for each, and doing one I/O for sorting, then one I/O for naı̈ve
placement, alternating until one of the methods is successful.

Statement of Theorem 6.1. Let d ≥ 2 be the same
parameter as in Theorem 4.4. If for all t, M(t) ≥ 2B

2d
d−1 ,

then the interleaving algorithm IA, is an optimal cache-
adaptive algorithm.

Proof. We apply the same technique as in the proof of
Theorem 4.4. Therefore, it suffices to show optimality of
the interleaving algorithm IA on square profiles.

Let J be any square of the profile m(t) and let m1 =
M1/B be the length of J . By definition, the available
memory in J is M1. We show that there exists a constant
q such that IA with 4q-speed augmentation is optimal. By
definition, there are 4qm1 I/Os available to IA in J .

Aggarwal and Vitter [1] showed that, with a cache of
size M , a single I/O could increase the number of permuta-

tions an algorithm could generate by a factor of at most

N(1 + lgN)B!

(
M

B

)
This is a multiplicative piecewise progress bound. The to-
tal number of permutions is N !, so taking logs and apply-
ing Stirling’s approximation yields a bound on fractional
progress:

FPOPT(J ) ≤ 2M1(lgm1+lgB+lg e)
N lgN + 2m1(lgN+lg lgN)

N lgN .

Using the analysis of LFS from Appendix B, the time spent
doing Lazy Funnel Sort on 2qm1 I/Os (half the I/Os in J )
on M1/2 memory gives fractional progress of at least

q

8c1d

M1 (lgm1 + lgB − 3)

N lgN
.

During the I/Os spent on the naı̈ve algorithm, each I/O
writes exactly one element to disk; N items must be written
in total. The fractional progress of one block transfer is 1/N ,
so the total fractional progress in J is 2qm1/N . Then using
half the I/Os in the interval for sorting and half for naı̈ve
placement, we have:

FPIA(J ) ≥ q

8c1d

M1 (lgm1 + lgB − 3)

N lgN
+

2qm1

N

≥ q

8c1d

M1 (lgm1 + lgB − 3)

N lgN
+

2qm1 lgN

N lgN
.

If q ≥ max{16c1d, 2}, then 2q lgN ≥ 2 lgN + lg lgN for
N ≥ 2, and hence FPIA(J ) ≥ FPOPT(J ).

Repeating the strategy from Theorem 4.4 can extend this
result to show that IA is optimally cache-adaptive on all
memory profiles. �


