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Introduction - Kernel Smoothing

Previously

Basis expansions and splines.

Use all the data to minimise least squares of a piecewise defined
function with smoothness constraints.

Kernel Smoothing

A different way to do regression.

Not the same inner product kernel we’ve seen previously
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Kernel Smoothing

In Brief

For any query point x0, the value of the function at that point f (x0) is
some combination of the (nearby) observations, s.t., f (x) is smooth.

The contribution of each observation xi , f (xi ) to f (x0) is calculated using
a weighting function or Kernel Kλ(x0, xi ).

λ - the width of the neighborhood
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Kernel Introduction - Question

Question

Sicong 1) Comparing Equa. (6.2) and Equa. (6.1), it is using the Kernel
values as weights on yi to calculate the average. What could be the
underlying reason for using Kernel values as weights?

Answer

By definition, the kernel is the weighting function.
The goal is to give more importance to closer observations without
ignoring observations that are further away.
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K-Nearest-Neighbor Average

Consider a problem in 1 dimension x-
A simple estimate of f (x0) at any point x0 is the mean of the k points
closest to x0.

f̂ (x) = Ave(yi |xi ∈ Nk(x)) (6.1)
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KNN Average Example

True function
KNN average
Observations contributing to f̂ (x0)
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Problem with KNN Average

Problem

Regression function f̂ (x) is discontinuous - “bumpy”.
Neighborhood set changes discontinuously.

Solution

Weigh all points such that their contribution drop off smoothly with
distance.
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Epanechnikov Quadratic Kernel Example

Estimated function is smooth
Yellow area indicates the weight assigned to observations in that region.
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Epanechnikov Quadratic Kernel Equations

f̂ (x0) =

∑N
i=1 Kλ(x0, xi )yi∑N
i=1 Kλ(x0, xi )

(6.2)

Kλ(x0, x) = D(
|x − x0|

λ
) (6.3)

D(t) =

{
3
4(1− t2) if|t| ≤ 1

0 otherwise
(6.4)
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KNN vs Smooth Kernel Comparison
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Other Details

Selection of λ - covered later

Metric window widths vs KNN widths - bias vs variance

Nearest Neigbors - multiple observations with same xi - replace with
single observation with average yi and increase weight of that
observation

Boundary problems - less data at the boundaries (covered soon)
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Popular Kernels

Epanechnikov Compact (only local observations have non-zero weight)

Tri-cube Compact and differentiable at boundary

Gaussian density Non-compact (all observations have non-zero weight)

Georgetown University Kernel Smoothing 12



Popular Kernels - Question

Question

Sicong
2) The presentation in Figure. 6.2 is pretty interesting, it mentions that
“The tri-cube kernel is compact and has two continuous derivatives at the
boundary of its support, while the Epanechnikov kernel has none.” Can
you explain this more in detail in class?

Answer

Tricube Kernel - D(t) =

{
(1− |t|3)3 if|t| ≤ 1;

0 otherwise

D ′(t) = 3 ∗ (−3t2)(1− |t|3)2

Epanechnikov Kernel - D(t) =

{
3
4 (1− t2) if|t| ≤ 1;

0 otherwise
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Problems with the Smooth Weighted Average

Boundary Bias

At some x0 at a boundary, more of the observations are on one side of the x0 -
The estimated value becomes biased (by those observations).
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Local Linear Regression

Constant vs Linear Regression

Technique described previously : equivalent to local constant regression at
each query point.
Local Linear Regression : Fit a line at each query point instead.

Note

The bias problem can exist at an internal query point x0 as well if the
observations local to x0 are not well distributed.
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Local Linear Regression
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Local Linear Regression Equations

min
α(x0),β(x0)

N∑
i=1

Kλ(x0, x1)[yi − α(x0)− β(x0)xi ]
2 (6.7)

Solve a separate weighted least squares problem at each target point (i.e.,
solve the linear regression on a subset of weighted points).

Obtain f̂ (x0) = α̂(x0) + β̂(x0)x0
where α̂, β̂ are the constants of the solution above for the query point x0
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Local Linear Regression Equations 2

f̂ (x0) = b(x0)T (BTW(x0)B)−1BTW(x0)y (6.8)

=
N∑
i=1

li (x0)yi (6.9)

6.8 : General solution to weighted local linear regression
6.9 : Just to highlight that this is a linear model (linear contribution from
each observation).
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Question - Local Linear Regression Matrix

Question

Yifang
1. What is the regression matrix in Equation 6.8? How does not Equation
6.9 derive from 6.8?

Answer

Apparently, for a linear model (i.e., the solution is comprised of a linear
sum of observations), the least squares minimization problem has the
solution as given by Equation 6.8.
Equation 6.9 can be obtained from 6.8 by expansion, but it is
straightforward since y only shows up once.
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Historical (worse) Way of Correcting Kernel Bias

Modifying the kernel based on “theoretical asymptotic mean-square-error
considerations” (don’t know what this means, probably not important).

Linear local regression : Kernel correction to first order (automatic kernel
carpentry)
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Locally Weighted Regression vs Linear Regression -
Question

Question

Grace 2. Compare locally weighted regression and linear regression that we
learned last time. How does the former automatically correct the model
bias?

Answer

Interestingly, simply by solving a linear regression using local weights, the
bias is accounted for (since most functions are approximately linear at the
boundaries).
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Local Linear Equivalent Kernel

Dots are the equivalent kernel weight li (x0) from 6.9
Much more weight are given to boundary points.
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Bias Equation

Using a taylor series expansion on f̂ (x0) =
N∑
i=1

li (x0)f (xi ),

the bias f̂ (x0)− f (x0) is dependent only on superlinear terms.

More generally, polynomial-p regression removes the bias of p-order terms.
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Local Polynomial Regression

Local Polynomial Regression

Similar technique - solve the least squares problem for a polynomial
function.

Trimming the hills and Filling the valleys

Local linear regression tends to flatten regions of curvature.
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Question - Local Polynomial Regression

Question

Brendan 1) Could you use a polynomial fitting function with an asymptote
to fix the boundary variance problem described in 6.1.2?

Answer

Ask for elaboration in class.
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Question - Local Polynomial Regression

Question

Sicong 3) In local polynomial regression, can the parameter d also be a
variable rather than a fixed value? As in Equa. (6.11).

Answer

I don’t think so. It seems that you have to choose the degree of your
polynomial before you can start solving the least squares minimization
problem.
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Local Polynomial Regression - Interior Curvature Bias
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Cost to Polynomial Regression

Variance for Bias

Quadratic regression reduces the bias by allowing for curvature.
Higher order regression also increases variance of the estimated function.
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Variance Comparisons
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Final Details on Polynomial Regression

Local linear removes bias dramatically at boundaries

Local quadratic increases variance at boundaries but doesn’t help
much with bias.

Local quadratic removes interior bias at regions of curvature

Asymptotically, local polynomials of odd degree dominate local
polynomials of even degree.
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Kernel Width λ

Each kernel function Kλ has a parameter which controls the size of the
local neighborhood.

Epanechnikov/Tri-cube Kernel , λ is the fixed size radius around the
target point

Gaussian kernel, λ is the standard deviation of the gaussian function

λ = k for KNN kernels.
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Kernel Width - Bias Variance Tradeoff

Small λ = Narrow Window

Fewer observations, each contribution is closer to x0:
High variance (estimated function will vary a lot.)
Low bias - fewer points to bias function

Large λ = Wide Window

More observations over a larger area:
Low variance - averaging makes the function smoother
Higher bias - observations from further away contribute to the value at x0
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Local Regression in Rp

Previously, we considered problems in 1 dimension.
Local linear regression fits a local hyperplane, by weighted least squares,
with weights from a p-dimensional kernel.

Example : dimensions p = 2, polynomial degree d = 2

b(X ) = (1,X1,X2,X
2
1 ,X

2
2 ,X1X2)

At each query point x0 ∈ Rp, solve

min
β(x0)

N∑
i=1

Kλ(x0, x1)(yi − b(xi )
Tβ(x0))2

to obtain fit f̂ (x0) = b(x0)T β̂(x0)
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Kernels in Rp

Radius based Kernels

Convert distance based kernel to radius based: D( x−x0λ )→ D( ||x−x0||λ )

The Euclidean norm depends on the units in each coordinate - each
predictor variable has to be normalised somehow, e.g., unit standard
deviation, to weigh them properly.
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Question - Local Regression in Rp

Question

Yifang
What is the meaning of “local” in local regression? Equation 6.12 uses a
kernel mixing polynomial kernel and radial kernel?

Answer

I think “local” still means weighing observations based on distance from
the query point.
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Problems with Local Regression in Rp

Boundary problem

More and more points can be found on the boundary as p increases.
Local polynomial regression still helps automatically deal with boundary
issues for any p

Curse of Dimensionality

However, for high dimensions p > 3, local regression still isn’t very useful -
As with the problem with Kernel width,

difficult to maintain localness of observations (for low bias)

sufficient samples (for low variance)

Since the number of samples increases exponentially in p.

Non-visualizable

Goal of getting a smooth fitting function is to visualise the data which is
difficult in high dimensions.
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Structured Local Regression Models in Rp

Structured Kernels

Use a positive semidefinite matrix A to weigh the coordinates (instead of
normalising all of them) -

Kλ,A(x0, x) = D( (x−x0)
TA(x−x0)
λ )

Simplest form is the diagonal matrix which simply weighs the coordinates
without considering correlations.
General forms of A are cumbersome.
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Question - ANOVA Decomposition and Backfitting

Question

Brendan 2. Can you touch a bit on the backfitting described in 6.4.2? I
don’t understand the equation they give for estimating gk .
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Structured Local Regression Models in Rp - 2

Structured Regression Functions

Ignore high order correlations, perform iterative backfitting on each
sub-function.

In more detail

Analysis-of-variance (ANOVA) decomposition form-

f (X1,X2, ...,Xp) = α +
∑
j
gj(Xj) +

∑
k<l

gkl(Xk ,Xl) + ...

Ignore high order cross terms, e.g., gklm(Xk ,Xl ,Xm) (to reduce complexity)

Iterative backfitting -
Assume that all terms are known except for some gk(Xk).
Perform local (polynomial) regression to find ĝk(Xk).
Repeat for all terms, and repeat until convergence.
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Structured Local Regression Models in Rp - 3

Varying Coefficients Model

Perform regression over some variables while keeping others constant.

Select the first p out of q predictor variables from (X1,X2, ...,Xq) and
express the function as
f (X ) = α(Z ) + β1(Z )X1 + ...+ βq(Z )Xq

where for any given z0, the coefficients α, βi are fixed.

This can be solved using the same locally weighted least squares problem.
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Varying Coefficients Model Example

Human Aorta Example

Predictors - (age, gender, depth) , Response - diameter
Let Z be (gender, depth) and model diameter as a function of depth
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Question - Local Regression vs Structured Local Regression

Question

Tavish
1. What is the difference between Local Regression and Structured Local
Regression? And is there any similarity between the “structuring”
described in this chapter to the one described in previous one where the
input are transformed/structured into a different inputs that are fed to
linear models?

Answer

Very similar I think. But the interesting thing is that different methods
have different “natural” ways to perform the transformations or
simplifications.
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Discussion Question

Question

Tavish
3)As a discussion question and also to understand better, this main idea of
this chapter to find the best parameters for kernels keeping in mind the
variance-bias tradeoff. I would like to know more as to how a good
fit/model can be achieved and what are the considerations for trading off
variance for bias and vice-versa? It would be great if we can discuss some
examples.

Starter Answer

As far as the book goes - if you want to examine the boundaries, use a
linear fit for reduced bias. If you care more abount interior points, use a
quadratic fit to reduce internal bias (without as much of a cost in internal
variance).
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