COSC282

BIG DATA ANALYTICS
FALL 2015
LECTURE 2 - SEP 9

HOW WAS YOUR WEEKEND?

"This weekend was too
long” said nobody, ever.

som@cards , : -

1. Read and Post on Piazza

2. Installed JDK & Spark
3. Submit Your Assignment 1 (Due Today 11:59pm, Blackboard)

4. Office hours: Tue 1-2, 6-7:30, Wed 6-7:30PM

2

PIAZZA

DCOSC 28: X COSC 287 X https://s3. X cs-sys-1.u X O“HelloWo x | WPpwashingtc x M Inbox |

& C' (& https://piazza.com/class/idw3rs25awv7fd

pPl1aZZQ COSC282~ Q&A Resources Statistics Manage Class

[agl polls hwl hw2 hw3 hw4 logistics other

Unread Updated Unresolved Following

Class at a Glance updatec

4 no unread posts

TODAY 4 no unanswered questions

ings

Scala readings, please find the

n 1 unresolved followups

s.com/piazza-resourc

Student Enroliment
Instr submission of assignment 1 1:05PN 31 enrolled

ou submit your screen

ree

Instr Office hours

Class

are running offices since this

Dear Professors:

o Last Fall, we launched a new service cz
ALY connected students with other students
e - . iAo A e — N AGAAR and with potential employers. Many of 1

SCALA CRASH
COURSE

"Stairs” in Italian

Why Scala?

Spark is written in
Scala originally

Quite fun

A comprehensive step-by-step guide

Programming in

Scala

Second Edition

DRt b WA e 4 e)yl NS NP ot
Updated for Scala 2.8

Martin Odersky
Lex Spoon

artima Bill Venners

WHAT DO YOU KNOW ABOUT SCALA?

THINGS ABOUT SCALA

Object-Oriented
classes can be extended
every value is an object
Functional
every function is a value
so, every function is an object
Statically typed
type inference saves us efforts to write explicit types
Interoperates with Java

can use any Java class and can be called by Java

WHAT DO YOU WANT TO LEARN
ABOUT SCALA?

A comprehensive step-by-step guide

SCALA FOR
TODAY

Programming in

Scala

define variables Second Edition

S

Syntax

define functions

closures

collection | Y %

control structures
Compile using sbt Marﬁileg(éi)l;)s(l)(r}ll

artima Bill Venners
A show-and-tell

LET'S WORK IN SCALA
SHELI

VARIABLES

var x: Int =5
var x = 5 // type inferred

val myState = "free fall” // read-only, final, value
cannot be changed

10

DATA TYPES

Byte 8 bit signed value. Range from -128 to 127

Short 16 bit signed value. Range -32768 to 32767

Int 32 bit signed value. Range -2147483648 to 2147483647

Long 64 bit signed value. -9223372036854775808 to 9223372036854775807
Float 32 bit IEEE 754 single-precision float

Double 64 bit IEEE 754 double-precision float

Char 16 bit unsigned Unicode character. Range from U+0000 to U+FFFF
String A sequence of Chars

Boolean Either the literal true or the literal false

All the data types listed above are objects. There are no primitive types like in Java. This
means that you can call methods on an Int, Long, etc.

11

FUNCTIONS

“def” starts a function definition
function name
parameter list in parentheses

function’s result type
/ \ \ ¢equals sign

def max(x: Int, y: Int): Int = {
if (x > vy)

X
o] ge \ function body

v in curly braces

12

FUNCTIONS

first letter in function name needs to be lower case
def square(x: Int): Int = x*x
detf square(x: Int): Int = { x*x}
def announce(text: String) = { printIn(text) }

def addTwo(x: Int): Int = x + 2

13

CLOSURES

a function, whose return value depends on the value of one or more variables
declared outside this function

var =3

* // factor is the variable outside this function

def multiplier = (i:zInt) => |
we could also say
var multiplier = (i:Int) => i *
What will be the output for

multiplier(1)

multiplier(2)

14

CLOSURES

multiplier(1) // 3

multiplier(2) // 6

15

CONTROL STRUCTURES

var x = 30;
it (x<20) {
orintln (“free fall”);
" Semicolon is optional

} elsef

println (“parachute”);

16

CONTROL STRUCTURES

var x = 30;

var myState = “free fall”;

while (x>0) {
it (x< 15) { myState = “parachute”};
println (myState);

x=x-1;

17

CONTROL STRUCTURES

As such there is no built-in break nor continue
statements available in Scala

well, for the later versions of Scala 2.8, there are
objects defined for the purpose.

18

COLLECTIONS IN SCALA

Scala collections have mutable and immutable
collections.

A mutable collection can be updated or extended in
olace.

This means you can change, add, or remove
elements of a collection

Immutable collections, by contrast, never change.

19

COMMON COLLECTIONS

Mutable

Map, HashMap, ListMap, MutablelList, LinkedList,
Seq

Immutable

List, Array, Vector, Set, String, Seq

20

PROCESSING COLLECTIONS

val list = List(1, 2, 3)

list.foreach(x => printIn(x)) // prints 1, 2, 3
list.foreach(println) // same

list.map(x => x + 2) // returns a new List(3, 4, 5)
list. map(_ + 2) // same

list.filter(x => x % 2 == 1)// returns a new List(1, 3)

list.filter(_ % 2 ==1)// same

21

:

KEEP
CALM

AND

EXERCISE

WHAT DO YOU GET?

import scala.collection.mutable

val map = mutable Map.empty[String, Int]
map("hello") =

map('"there") =

map

map.foreach(println)

map("hello")

vVVVVVVVVYVYVYV

map.filter(map(“hello")==1)

map.filter(_==Pair(“hello",1))
map.filter(_==Pair(“there",2))
map.filter(_==Pair("there", 1))

23

import scala.collection.mutable

val map = mutable.Map.empty[String, Int]
map("hello") =1

map("there") 2

map

map.foreach(println)

VVVVYVYV

> map(“hello")
// res25: Int =1

> map.filter(map(“hello”)==1)

// <console>:14: error: type mismatch;
// found : Boolean

// required: ((String, Int)) => Boolean
// map.filter(map("hello")==1)

> map.filter(_==Pair(“hello”,1))
// res27: scala.collection.mutable.Map[String, Int]

> map.filter(_==Pair(“there”,2))
// res29: scala.collection.mutable.Map[String,Int]

> map.filter(_==Pair(“there",1))
// res30: scala.collection.mutable.Map[String,Int]

24

Map(hello —> 1)

Map(there —> 2)

Map ()

PROCESSING COLLECTIONS

map(f: T => U): Seq[U] // Each element is result of {
flatMap(f: T => Seqg[U]): Seg[U] // One to many map
filter(f: T => Boolean): Seq[T] // Keep elements passing f

exists(f: T => Boolean): Boolean // True if one element
passes f

forall(f: T => Boolean): Boolean // True it all elements
0ass

25

LET'S WORK IN SCRIPTS
- USING SBT TO COMPILE

STEP 1: SETUP SBT

From the directory that you copy from the spark thumb
drive

Go to spark_disk/sbt
NOT spark_disk/spark/sbt
chmod a+x sbt

mkdir -p src/main/scala

27

STEP 2: WRITE YOUR
HELLOWORLD.SCALA

Create a file called HelloWord.scala using your text editor

in Mac, you could use emacs, vim or nano; You might want to open another
Terminal window to work on the editor while keep the ./sbt directory active
in one Terminal

in Windows, you could use NotePad or WordPad as the text editor

Put the following line in your file

object HelloWorld {
def main(args: Array [String]) = println ("Hi, cosc 282!'")
s

mv HelloWorld.scala src/main/scala/.

Note: Make sure there is only one .scala file in src/main/scala/. We will talk
about how to build a package later. As for now, just compile one file

28

STEP 3: COMPILE AND RUN

go back to the sbt directory
cd ./spark_disk/sbt
type ./sbt
from the sbt prompt, type “run”
> run
e keep typing “run”, the program will be compiled and run again

> run

29

YOU SHOULD GET SOMETHING LIKE
THIS

cs-ad-d9fyll:sbt gh243$./sbt

[info] Set current project to sbt (in build file:/Users/gh243/Desktop/Teaching/cosc282/spark_disk/sbt/)
> run

[info] Running HelloWorld

Hi, cosc 282!

[success] Total time: @ s, completed Sep 9, 2015 1:55:01 PM
> run

[info] Running HelloWorld

Hi, cosc 282!

[success] Total time: @ s, completed Sep 9, 2015 1:55:03 PM
> run

[info] Running HelloWorld

Hi, cosc 282!

[success] Total time: @ s, completed Sep 9, 2015 1:55:05 PM
>

30

tr"”” w!

FUN TIME

,(.'I

SHOW-AND-TELL

, 'parachute”, "alive", "dead",

val states = List ("blue sky", "crazy”, "jump”,

"cloudy")
var myState =

printin ("l have a friend ")
println ("Sometimes she is " + states(1))
print ("When it is ")

HEEREU

val r = scala.util.Random
var chance = r.nextint(100)

if (chance >=50) {
myState = states(7)
printin(myState)
printin ("She is " + states(5))

}

else {
myState = states(0)
printin(myState)
printin("She " + states(2))

}

32

THE STORY LOOKS LIKE:

S—ad-d® .

[info] Set current project to sbt (in build file:/Users/gh243/Desktop/Teaching/cosc282/spark_disk/sbt/)

> run

[info] Compiling 1 Scala source to /Users/gh243/Desktop/Teaching/cosc282/spark_disk/sbt/target/scala-2.10/class
Sl L

[info]l Running HelloWorld

T have a friend

Sometimes she is crazy

hen it is cloudy

She is alive

[success] Total time: 2 s, completed Sep 9, 2015 2:08:24 PM
> run

[info] Running HelloWorld

I have a friend

Sometimes she is crazy

hen it is cloudy

She is alive

[success] Total time: © s, completed Sep 9, 2015 2:08:29 PM
> run

[info] Running HelloWorld

I have a friend

Sometimes she is crazy

hen it is cloudy

She is alive

[success] Total time: @ s, completed Sep 9, 2015 2:08:30 PM
> run

[info]l Running HelloWorld

I have a friend

Sometimes she is crazy

hen it is blue sky

She jump

[success] Total time: @ s, completed Sep 9, 2015 2:08:31 PM
> run

[info] Running HelloWorld

I have a friend

Sometimes she is crazy

hen it is blue sky

She jump

[success] Total time: @ s, completed Sep 9, 2015 2:08:33 PM

ASSIGNMENT 2 - FINISH THE STORY

* Using control structures
* (Bonus) Using processes for <50 50
collections
* What to submit:
° your codes
* screencapture of at least 4 Ny >=30 5=80
<80
(—

random runs of results

* Due: Next Wed 9/16,
11:59pm

34

HERE COMES THE REAL
SHOW-AND-TELI

COURSE VIDEOS

a few videos are put on piazza. they are the demos
and assignment related procedures that we have
shown in class. Please check them out

