
Stably Computable Predicates are Semilinear

Dana Angluin
Department of Computer
Science, Yale University
angluin@cs.yale.edu

James Aspnes
∗

Department of Computer
Science, Yale University
aspnes@cs.yale.edu

David Eisenstat
Department of Computer
Science, University of

Rochester
eisen@cs.rochester.edu

ABSTRACT
We consider the model of population protocols intro-
duced by Angluin et al. [2], in which anonymous finite-state
agents stably compute a predicate of their inputs via two-
way interactions in the all-pairs family of communication
networks. We prove that all predicates stably computable
in this model (and certain generalizations of it) are semilin-
ear, answering a central open question about the power of
the model.

Categories and Subject Descriptors
F.1.1 [Computation by Abstract Devices]: Mod-
els of Computation—Unbounded-action devices; F.1.2
[Computation by Abstract Devices]: Modes of Com-
putation—Parallelism and concurrency

General Terms
Theory

Keywords
Population protocols, semilinear sets, stable computation.

1. INTRODUCTION
In 2004, Angluin et al. [2] proposed a new model of dis-

tributed computation by very limited agents called a popu-
lation protocol. In this model, finite-state agents interact
in pairs chosen by an adversary, with both agents updat-
ing their state according to a joint transition function. For
each such transition function, the resulting population pro-
tocol is said to stably compute a predicate on the initial
states of the agents if, after sufficiently many interactions,
all agents converge to having the correct value of the predi-
cate. Angluin et al. showed that many common predicates
such as parity of the number of agents, whether there were

∗Supported in part by NSF grants CNS-0305258 and CNS-
0435201.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’06, July 22-26, 2006, Denver, Colorado, USA.
Copyright 2006 ACM 1-59593-384-0/06/0007 ...$5.00.

more agents in some particular initial state a than in an-
other initial state b, and so forth, could be stably computed
by simple population protocols. They further showed that
population protocols could in fact compute any semilinear
predicate, which are precisely those predicates definable in
first-order Presburger arithmetic [9]. But it was not known
whether there were other, stronger predicates that could also
be computed by a population protocol, at least in the sim-
plest case where any agent was allowed to interact with any
other.

We show that this is not the case: that the semilinear
predicates are precisely the predicates that can be computed
by a population protocol if there is no restriction on which
agents can interact with each other. This gives an exact
characterization of the predicates stably computable by pop-
ulation protocols, answering the major open question of [2]
as well as giving an exact characterization of the power of
several variants of the model, resolving open problems in [1,
3].

Semilinearity is strongly tied to the notion of stable com-
putation, where a correct and stable output state must al-
ways be reachable at any step of the computation. Mere
reachability of a desired final state is not enough: the reach-
ability sets of population protocols are not in general semi-
linear. An example of this phenomenon may be derived
from the construction given by Hopcroft and Pansiot of a
non-semilinear reachability set for a six-dimensional vector
addition system [5].

1.1 Population protocols and related models
There are now several variants in the literature of the orig-

inal population protocol model, which itself can be viewed as
a special case of previous models of finite-state distributed
systems. The central feature of all of these models is that in-
teractions occur between finite-state agents asynchronously
under the control of an adversary, and the goal in each case
is to reach a global configuration in which every agent cor-
rectly proclaims the desired output of the protocol. To keep
the adversary from blocking progress by partitioning the
agent population or by allowing interactions only at incon-
venient times, a strong global fairness condition is generally
assumed, which requires that any global configuration that
is continuously reachable is eventually reached.

In each of these models, there is a state space Q for in-
dividual agents, an input function that maps some input
alphabet Σ to Q, and an output function that maps Q to
some output alphabet (typically just {0, 1} when comput-
ing predicates). A configuration of the protocol describes
the states of all the individual agents.

There may also be an interaction graph that limits
which agents can interact with each other. Paradoxically,
restricting the interaction graph usually increases the power
of the model, since the main difficulty in a dense graph is
that the finite-state agents can’t distinguish between dif-
ferent neighbors that happen to be in the same state. In
the present work the interaction graph is always a complete
graph, which (as shown in [2]) gives the weakest model.

A protocol stably computes a predicate if it converges to
an output-stable configuration, in which all agents agree
on the correct output and from which any further transitions
do not change the mapped output values (though they may
change the underlying states).

The differences between the various population protocol
models depend on how communication is structured and
when the input is provided:

• In the original model of [2], communication is simul-
taneous and bidirectional: there is joint transition
function δ : Q × Q → Q × Q such that the re-
sult of an interaction between two agents in states
(q1, q2) is to replace them with a pair of agents in states
(q′1, q

′
2) = δ(q1, q2). We give a complete characteriza-

tion of the predicates stably computable in this model,
answering the open question from [2].

• In the stabilizing inputs variant [1], the input is
not provided in the initial configuration; instead, each
agent in the population has an input field that can
change over time, and convergence to a stable com-
mon output value is only required after the inputs stop
changing. In [1], it was shown that all semilinear pred-
icates can be computed with stabilizing inputs, but
left open whether there existed some (necessarily non-
semilinear) predicates that could be computed only
with fixed inputs. Our results show that the semilin-
ear predicates are all that can be computed in either
model, implying that any population protocol for fixed
inputs can be adapted to work with stabilizing inputs.

• In the one-way variants of [3], the bidirectional tran-
sition function of the original model is replaced by
some form of one-way communication, in which only
one of the two agents involved in an interaction learns
anything about the state of the other. The sim-
plest form of this model is the immediate trans-
mission model, where the joint transition function
δ is required to update the state of only one of the
agents. The more complex delayed transmission
and queued transmission models incorporate ex-
plicit asynchronous message-passing, and allow for the
possibility of increasing the power of the model by us-
ing an unboundedly large buffer of undelivered mes-
sages as extra storage. Our results rule out this possi-
bility: the strongest model (queued transmission) can
compute exactly the semilinear predicates, while the
others can compute precisely the semilinear predicates
with a regular k-core as defined in [3].

In each case, we can represent configurations of the origi-
nal model as nonempty multisets of states (or, equivalently,
as nonzero non-negative vectors indexes by states). The
only requirement that a model must satisfy for our results
to apply is that its reachability relation x → y, which is

true if there is some sequence of transitions that transforms
x to y, must be additive: x → y implies x + z → y + z
for any multiset of sets z. Effectively, this says that a parti-
tioned subpopulation can still run on its own: the agents do
not have any mechanism to detect if additional agents are
present but not interacting.

Other models that have this property include vector ad-
dition systems [5], some forms of Petri nets, and 1-cell cat-
alytic P-systems. In each case our results apply. The re-
lationship between semilinear sets and catalytic P-systems,
which can be represented as population protocols in which
all state-changing interactions occur between an unmodified
catalyst and at most one non-catalyst agent, has previously
been considered by Ibarra et al. [6], who show that the set
accepted by a 1-cell catalytic P-system are semilinear. Our
results extend this fact to predicates stably computable in
this model, even without the catalytic restriction.

1.2 Semilinearity
A set of vectors in Nk is linear if it is of the form {v0 +Pm
i=1 aivi | ai ∈ N} where v0 is some non-negative base

point, the vi are non-negative period vectors, and the ai are
nonnegative integer coefficients on the vi (a more compact
version of this definition using monoid cosets is given in
Section 2). It is possible for the set of vi to be empty, in
which case the set consists of a single point. A set of vectors
is semilinear if it is a finite union of linear sets. Thus a
linear set consists of a single base point with a cone of points
emanating from it, while a semilinear set consists of finitely
many such base points, each with its own (possibly trivial)
cone.

Semilinear sets are also precisely the sets definable by first-
order formulas in Presburger arithmetic [9], which are
formulas in arithmetic that use only <, +, 0, 1, and the
standard logical quantifiers and connectives. Here the set
consists of all satisfying assignments of the free variables; for
example, the semilinear set S = {(1, 0)+a1(1, 0)+a2(0, 2)}∪
{(0, 2)+ a3(2, 0)}, depicted in Figure 1, consists precisely of
the satisfying assignments (x, y) of the formula

(∃z : (x = z + z + 1) ∧ (y ≥ z))

∨ (∃z : (x = z + z) ∧ (y = 1 + 1)) ,
(1)

where a = b abbreviates ¬(a < b ∨ b < a) and a ≥ b abbre-
viates ¬(b < a).

A curious and useful property of Presburger formulas is
that all quantifiers (and their bound variables) can be elim-
inated by the addition of binary relations ≡m that test for
equality modulo m for any integer m [9]. For example, the
formula (1) defining S can be rewritten without quantifiers
as

((x ≡2 1) ∧ (x ≤ y + y + 1)) ∨ ((x ≡2 0) ∧ (y = 1 + 1)).

This provides an easy way to show that some model can
stably compute all semilinear predicates: show that it can
stably compute both < and ≡m for any fixed m, and then
show that conjunctions (or disjunctions) and negations of
stably-computable predicates are also stably computable.
These tasks are not especially difficult in the standard pop-
ulation protocol model; for details the interested reader is
directed to [2].

For the converse claim, that only semilinear predicates
are stably computable in population protocols and similar
models, we require substantially more machinery. Here the

(1,0)

(0,2)

Figure 1: A semilinear set S, equal to the union of the linear set of all points {(1, 0) + a1(1, 0) + a2(0, 2)} (dark
circles) and the linear set {(0, 2) + a3(2, 0)} (shaded circles).

algebraic characterization of semilinear sets turns out to be
more useful.

2. DEFINITIONS
Here we give a formal definition of our model, of stable

computation, and of semilinear sets.

2.1 Model
A protocol is a 4-tuple (Q,− →,−Σ, γ), with the follow-

ing components. Q is a finite set of states, which generalize
both states and messages from previous models. A con-
figuration is a nonempty multiset of states. We identify
C := NQ \ {0}, the set of nonzero |Q|-tuples of nonnegative
integers indexed by Q, with the set of all configurations.
The usual inclusion ordering on C is denoted ≤.

The reachability relation → is an ordering on C.
Specifically, we require that → be a reflexive, transitive re-
lation that respects addition in NQ; that is c → c′ implies
c + d → c′ + d for all c, c′ ∈ C and d ∈ NQ. Intuitively, that
→ respects addition implies that interactions can take place
in the presence of other agents. Note that unlike in the stan-
dard population protocol model, a configuration may reach
configurations with different cardinality.

Σ ⊆ Q is a finite set of input symbols. An input is a
nonempty multiset of input symbols. Analogously, we iden-
tify W := NΣ \ {0} with the set of all inputs. Finally, γ is
an output function, mapping Q to {0, 1}. We extend γ to
map C to nonempty subsets of {0, 1} in the obvious manner
by defining

γ(c) := {j ∈ {0, 1} | ∃q ∈ Q : γ(q) = j and c[q] ≥ 1}.

2.2 Stable computation
We now define what it means for a protocol to stably

compute a predicate. For j = 0, 1 we define

Sj := {c ∈ C | if c → c′ then γ(c′) = {j}}.

Then S := S0 ∪ S1 is the set of output stable configura-
tions. Let ψ be a predicate on W , that is, a mapping from
W to {0, 1}. The support of ψ is ψ−1(1), that is, the set of
inputs that ψ maps to 1. The given protocol stably com-
putes ψ if for all x ∈ W and for all c ∈ C, if x → c there
exists c′ ∈ Sψ(x) such that c → c′. That is, if input x reaches

any configuration c, then there is a configuration c′ reach-
able from c that is output stable and has output ψ(x). This
incorporates the notion of a fair computation[2]. A predi-
cate ψ is stably computable if there exists a protocol that
stably computes ψ.

2.3 Monoids, groups, and semilinearity
A subset M of Zd is a monoid if it contains the zero and is

closed under addition; if it is also closed under subtraction,
M is a group. A monoid M ⊆ Zd is finitely generated if
there exists a finite subset A ⊆ M such that every element
of M is a sum of elements from A. It is a classic result in
abstract algebra that every subgroup of Zd is finitely gener-
ated [7], but submonoids are not always finitely generated.
For example, the following monoid is not finitely generated.

M√
2 = {(i, j) ∈ N

2 : i ≤
√

2j}.

A subset H of Zd is a group coset (resp., monoid coset)
if there exists an element v ∈ Zd such that H = v + G and
G is a group (resp., monoid).

A subset L of Zd is linear if it is a coset of a finitely
generated monoid in Zd, and is semilinear if it is a finite
union of linear sets. It follows immediately from the corre-
spondence between semilinear sets and Presburger formulas
that the semilinear sets are closed under complement, finite
intersection and finite union. A predicate ψ on W is semi-
linear if and only if ψ−1(1) is semilinear; by closure under
complement, this is equivalent to ψ−1(0) being semilinear.

3. MAIN RESULT

Theorem 1. Every stably computable predicate is semi-
linear.

The proof is by combining Lemma 15, which states that sta-
bly computable predicates admit finite coset coverings (can
be pumped), and Theorem 18, which states that predicates
that admit finite coset coverings are semilinear. Corollar-
ies give exact characterizations settling some open problems
related to population protocols.

Corollary 2. The predicates stably computable by pop-
ulation protocols are exactly the semilinear predicates.

Proof. The definition of stable computation of a pred-
icate by a population protocol is an instance of the more
general definition above. In [2] it was shown that every
semilinear predicate is stably computable by a population
protocol.

Corollary 3. The predicates stably computable by pop-
ulation protocols with stabilizing inputs are exactly the semi-
linear predicates.

Proof. In [1] it was shown that the semilinear predicates
are stably computable with stabilizing inputs by population
protocols.

Considering the models of 1-way population protocols in-
troduced in [3], we have the following results. (Please refer
to that paper for definitions of the models.)

Corollary 4. Queued transmission protocols stably
compute exactly the semilinear predicates, and are therefore
equal in power to population protocols in the standard 2-way
model.

Proof. The definition of stable computation of a predi-
cate in the queued model is an instance of the more general
definition above. (In fact, this was one of the motivations
for its generality.) The queued model was shown to be at
least as powerful as the standard 2-way model.

Corollary 5. Predicates stably computable by immedi-
ate or by delayed transmission protocols are exactly the semi-
linear predicates that have a regular k-core.

Proof. In [3] it was shown that predicates stably com-
putable by immediate or delayed transmission protocols
have a regular k-core, and are stably computable in the
queued transmission model. It was also shown that semilin-
ear predicates with a regular k-core are stably computable
in the immediate [resp., delayed] transmission model.

Further corollaries for reversible computation, Petri nets
and vector addition systems will appear in the full paper.

4. OVERVIEW OF THE PROOF
To prove the main result, we must show that the support

of any stably-computable predicate is a semilinear set: in
particular, that there is a finite set of base points each at-
tached to a finitely-generated cone such that the support is
precisely the elements of these cones. The first step, which
is requires the development of the machinery of Section 5
and is completed in Section 6, is to show that the support
can be decomposed into a finite collection of monoid cosets
that are not necessarily finitely generated. We then proceed,
in Sections 7 and 8, to show that any such decomposition
can be further decomposed into a finite covering by cosets
of finitely generated monoids, which gives us the full result.

5. GROUNDWORK
We assume ψ is a predicate stably computed by a protocol

(Q,− →,−Σ, γ) and establish some basic results. These will
lead up to the Pumping Lemma of Section 6.

5.1 Higman’s Lemma
We will make extensive use of some corollaries to Higman’s

Lemma [4], a fundamental tool in well-quasi-order theory.

Lemma 6. Every subset of Nd under the inclusion order-
ing ≤ has finitely many minimal elements.

Lemma 7. Every infinite subset of Nd contains an infinite
chain (i.e., an infinite totally ordered sequence).

These both follow from the fact that Higman’s Lemma
implies that Nd is a well-quasi-order, a set in which any
infinite sequence a1, a2, . . . contains elements ai, aj with i <
j and ai ≤ aj .

5.2 Truncation maps and their properties
For each k ≥ 1, we define a map τk from C to C by

τk(c)[q] := min(k, c[q]) for all q ∈ Q.

This map truncates each component of its input to be at
most k; clearly τk(c) ≤ c for all c ∈ C. Two useful properties
of τk are that it respects both inclusion and addition.

Lemma 8. For all c, d ∈ C and k ≥ 1, if c ≤ d then
τk(c) ≤ τk(d).

Proof. For each q ∈ Q, we have c[q] ≤ d[q], so
min(k, c[q]) ≤ min(k, d[q]). Thus τk(c) ≤ τk(d).

Lemma 9. For all c, c′, d ∈ C and k ≥ 1, if τk(c) =
τk(c′), then τk(c + d) = τk(c′ + d).

Proof. For each q ∈ Q, either c[q] = c′[q] or both are at
least k. In either case, min(k, c[q] + d[q]) = min(k, c′[q] +
d[q]), so τk(c + d) = τk(c′ + d).

5.3 Truncation and stability
Truncation is important because membership of a configu-

ration c in S can be determined from a truncate of fixed size.
Let U := C \S, the set of output unstable configurations.

Lemma 10. For all c ≤ c′, if c ∈ U , then c′ ∈ U (U is
closed upward under inclusion).

Proof. Suppose c ∈ U . Then either γ(c) = {0, 1} or
γ(c) = {j} for some j ∈ {0, 1} and there exists c′ ∈ C such
that c → c′ and (1 − j) ∈ γ(c′). In the first case, for all
d ≥ c we have γ(d) = {0, 1} and d ∈ U . In the second
case, for all d ≥ c we have d → d − c + c′ and j ∈ γ(d) and
(1 − j) ∈ γ(d − c + c′), so d ∈ U .

Lemma 11. There exists k ≥ 1 such that c ∈ U if and
only if τk(c) ∈ U .

Proof. By Higman’s lemma, only finitely many elements
u1, . . . , un are minimal in U , and because U is upwards
closed, c ∈ U if and only if ui ≤ c for some i. Let k be
the maximum component ui[q] for all i ∈ {1, . . . , n} and
q ∈ Q. Then τk(ui) = ui for each i.

Suppose c ∈ U . Then ui ≤ c for some i, so ui = τk(ui) ≤
τk(c) by Lemma 8, and thus τk(c) ∈ U . Conversely, if
τk(c) ∈ U , then ui ≤ τk(c) ≤ c for some i, and c ∈ U .

Lemma 12. There exists k ≥ 1 such that for all c ∈ C
and j ∈ {0, 1}, we have c ∈ Sj if and only if τk(c) ∈ Sj.

Proof. By Lemma 11, there exists k ≥ 1 such that for
all c ∈ C, we have c ∈ U if and only if τk(c) ∈ U . Taking the
contrapositive, we have c ∈ S if and only if τk(c) ∈ S. Since
truncation does not affect output, the conclusion follows.

5.4 Extensions
We define a map X from C to subsets of NΣ as follows.

X(c) := {x ∈ NΣ | ∃d ≥ c : c + x → d and τk(c) = τk(d)},

where k is the constant from the conclusion of Lemma 12.
If c ∈ S, then X(c) is the set of inputs by which c can be
pumped. We call such inputs the extensions of c. We first
prove that pumping does not affect stable output.

Lemma 13. If x ∈ W and c ∈ S and x → c, then ψ is
constant on x + X(c).

Proof. If y ∈ X(c), then there exists d ∈ C such that
c + y → d and τk(c) = τk(d). Since c ∈ S, by Lemma 12 we
have d ∈ S, and γ(c) = γ(d). Thus ψ(x) = ψ(x + y).

We now prove that pumping operations can be composed,
i.e. that X(c) is a monoid.

Lemma 14. X(c) is a monoid for all c ∈ C.

Proof. We have 0 ∈ X(c), with d = c as a witness. If
x1, x2 ∈ X(c), then there exist d1, d2 such that c ≤ d1 and
c ≤ d2 and τk(c) = τk(d1) = τk(d2) and c + x1 → d1 and
c + x2 → d2. Thus

c + x1 + x2 → d1 + x2 = (d1 − c) + c + x2 → (d1 − c) + d2.

Taking d := d1 + d2 − c, we have c ≤ d and c + x1 + x2 →
d and τk(c) = τk(d2) = τk(c + d2 − c) and by Lemma 9,
τk(c+d2−c) = τk(d1 +d2−c) = τk(d), since τk(c) = τk(d1).
We conclude that x1 + x2 ∈ X(c).

6. A PUMPING LEMMA
Given a set of inputs Y ⊆ W , a monoid-coset covering

of Y with respect to ψ is a set {(xi, Mi)}i∈I of pairs
of inputs and submonoids of NΣ such that Y ⊆

S
i∈I(xi +

Mi) and for all i ∈ I , we have ψ(xi + Mi) = {ψ(xi)}. We
write ψ admits finite coset coverings if for all Y there
exists a finite monoid-coset covering of Y with respect to ψ.
The following lemma states that every stably computable
predicate admits a finite monoid-coset covering. We show
later (Theorem 18) that any predicate that admits finite
coset coverings is semilinear.

Lemma 15. The (stably computable) predicate ψ admits
finite coset coverings.

Proof. To avoid trivial cases, assume Y ⊆ W is infinite.
Let y1, y2, . . . be any enumeration of Y such that yi ≤ yj

implies i ≤ j. (For example, we might choose some ordering
of Σ and enumerate Y in lexicographic order.) We define a
family of sets Bi ⊆ W × C inductively as follows:

• B0 := ∅.

• If there exists (x, c) ∈ Bi−1 such that yi ∈ x + X(c),
then Bi := Bi−1.

• Otherwise,

Bi :=Bi−1

∪ {(yi,σ(yi))}
∪ {(yi,σ(c + yi − x)) | (x, c) ∈ Bi−1 and x ≤ yi},

where σ(d) ∈ S is any stable configuration reachable
from d.

The existence of each σ(c) is guaranteed by the requirements
of stably computing a predicate. Clearly, each Bi is finite.
We now show that B :=

S
i≥1 Bi is also finite. By Lem-

mas 13 and 14, it follows that {(x, X(c)) | (x, c) ∈ B} is a
finite monoid-covering of Y with respect to ψ.

Assuming to the contrary that B is infinite, infinitely
many different elements of Y appear as first components
of elements of B. By Higman’s lemma, there exists an infi-
nite chain z1 < z2 < . . . of such elements. Our construction
guarantees the existence of associated configurations {di}i≥1

such that (zi, di) ∈ B and di+(zi+1−zi) → di+1 for all i ≥ 1.
By Higman’s lemma again, there exists an increasing func-

tion f such that the sequences (zf(i))i≥1 and (df(i))i≥1 are
nondecreasing. Thus the sequence τk(df(i)) reaches a max-
imum and becomes constant at some index i = j. Conse-
quently, we have zf(j+1) − zf(j) ∈ X(df(j)), which contra-
dicts the membership of (zf(j+1), df(j+1)) in B.

Applying this lemma with Y = ψ−1(1) (the support of ψ)
we obtain a finite family of monoid cosets xi +Mi such that

ψ−1(1) =
[

i

(xi + Mi).

This does not prove semilinearity by itself, since some Mi

might not be finitely generated. However, every submonoid
of Z1 is finitely generated, so in the special case of a unary
alphabet, we have already that ψ is semilinear, and therefore
regular.

Corollary 16. Every stably computable predicate over a
unary alphabet is semilinear. Thus, over a unary alphabet,
the stably computable predicates are exactly the semilinear
(in fact, regular) predicates.

For example, the unary predicate that is true if the num-
ber of input symbols is a power of 2 (or a prime, or any
other non-regular predicate) is not stably computable. An-
other easy corollary suffices to show certain other predicates
over non-unary alphabets are not stably computable.

Corollary 17. Suppose ψ is a stably computable predi-
cate such that L = ψ−1(1) is infinite. Then L contains an
infinite linear subset.

Proof. By Lemma 15 there is a finite monoid-coset cov-
ering of L. If L is infinite, some (x+M) ⊆ L in the covering
must be infinite.

As an application, consider the set of inputs over the al-
phabet {a, b} such that the number b’s is the square of the
number of a’s. This is an infinite set with no infinite linear
subset, and is therefore not stably computable. Using clo-
sure results for stably computable predicates we can then
show that the set of all inputs over alphabet {a, b, c} such
that the number of c’s is the product of the number of a’s
and the number of b’s is not stably computable. The exis-
tence of a pumping lemma and the negative results for these
particular predicates were conjectured in [2].

7. PROOF OF THE MAIN RESULT:
OUTLINE

We are now in a position to describe how we go from the
pumping lemma (Lemma 15) of Section 6 to the main result.

Recall the following set of points in N2.

M√
2 = {(i, j) : i ≤

√
2j}.

This is a monoid but is not stably computable. To see this,
suppose the contrary. By the Pumping Lemma, there exist
pairs (xi, ci) for 1 ≤ i ≤ m such that

M√
2 =

[

1≤i≤m

(xi + X(ci)).

Let v = (−1,
√

2); then x · v > 0 for all x ∈ M√
2. Let ϵ =

mini{xi · v}. Choose some y ∈ M√
2 such that 0 < y · v < ϵ.

Then for some i, y ∈ xi + X(ci), and (y − xi) · v < 0. Thus
for a sufficiently large m ∈ N, (xi + m(y − xi)) · v < 0,
which contradicts the fact that xi + X(ci) is a subset of
M√

2. The issue here is that the line dividing the positive
and negative inputs cannot have an irrational slope if the
predicate is stably computable. One ingredient of our proof
is a generalization of this idea to separating hyperplanes.

However, to be able to use separating hyperplanes, we
first must deal with separating “intermixed” positive and
negative inputs using their images in a finite group. For
example, consider the following set of points in N2.

L = {(i, j) : i < j, (i + j) is odd}.

By first separating the points in N2 by their images (i mod
2, j mod 2) in the group Z2 × Z2, we get four subproblems
in which lines suffice to separate the positive and negative
points.

A further issue is that in the most general case, the sep-
arating hyperplanes (which we can think of as cosets of
finitely-generated groups) may themselves include points
that require further handling. This is dealt with by induc-
tion on the dimension of the hyperplane, but requires careful
handling of the relationship between monoids X(c) and their
cosets x + X(c). We shall prove the following theorem by
induction on the dimension of the group G; it clearly holds
when G has dimension 0, i.e., when G is the trivial group.

Theorem 18. If ψ admits finite coset coverings then for
any group coset H = x0 + G ⊆ ZΣ, we have ψ−1(1) ∩ H is
semilinear.

Note that together with Lemma 15 this implies Theo-
rem 1, as we can take H = ZΣ.

The details of the proof are quite involved and are given
in Section 8. To summarize briefly, the overall strategy is:

1. By dividing the space into residue classes with respect
to appropriately chosen moduli, we can arrange for the
vectors from the monoids associated with the cover
to appear in all-positive and all-negative regions sep-
arated by hyperplanes. In this part of the proof we
extend NΣ to ZΣ to make use of the fact that all sub-
groups of ZΣ are finitely generated. (Section 8.1.)

2. We then further map the problem from ZΣ to RΣ, and
use techniques from convex geometry to show that ap-
propriate hyperplanes separating the monoids indeed
exist. (Section 8.2.) We obtain a (looser) separation
by slabs (the space between two parallel hyperplanes)
on the inputs by observing that each input is displaced
a uniformly bounded amount from its corresponding
extension vector.

3. Moving to RΣ allows for the possibility of separating
hyperplanes with irrational coefficients. Applying the
Pumping Lemma as described above, we show that
the resulting separating hyperplanes are normal to a
vector with rational coordinates and thus correspond
to cosets of subgroups of ZΣ. (Section 8.3.)

4. At this stage, we have shown that the positive inputs
to the predicate consist of (a) those inputs in the inte-
rior of the separated regions, which can by identified
first by computing the residue classes of their coordi-
nates and then by identifying which of a finite num-
ber of polytopes (given by intersections of half-spaces
with rational coordinates) they appear within, and (b)
those inputs that lie in some slab. The first class is
semilinear as identification of a residue class and iden-
tification of membership in a particular polytope are
both expressible in Presburger arithmetic. The second
class is then shown to be semilinear by induction on
dimension, with the base case of dimension 0 being the
trivially semilinear case of a single point. (Section 8.4.)

8. PROOF OF THE MAIN RESULT:
DETAILS

The proof of Theorem 18 is delayed to Section 8.4. First
we describe the process of separating inputs in more detail.

8.1 Separating intermixed inputs
Let ψ : W → {0, 1} be a predicate that admits fi-

nite coset coverings. Let G be a subgroup of ZΣ and let
H = h + G be a coset of G. Take {(ai, Mi)}i∈I and
{(bj , Nj)}j∈J to be finite monoid-coset covers of ψ−1(0)∩H
and ψ−1(1) ∩ H respectively. Assume without loss of gen-
erality that Mi, Nj ⊆ G by intersecting with G if necessary.
Define K(i, j) := Z(Mi ∩ Nj), the group generated by the
intersection of Mi and Nj .

Lemma 19. For all i ∈ I and j ∈ J, no coset of K(i, j)
intersects both ai + Mi and bj + Nj .

Proof. If we suppose to the contrary, there exist x ∈
ai+Mi and x′ ∈ bj+Nj such that (x−x′) ∈ K(i, j). Because
Mi ∩ Nj is a monoid, we can rewrite x − x′ as a difference
y′−y where y′ ∈ Mi and y ∈ Nj . Thus x+y = x′ +y′. The
former is in ai + Mi, whereas the latter is in bj + Nj . This
contradicts the fact that ai + Mi and bj + Nj are disjoint
(they have different predicate values).

Define

K :=
\

K(i,j) has finitely many cosets in G

K(i, j).

In addition to having finitely many cosets in G, the group
K inherits the relevant properties of the groups K(i, j) in-
cluded in its defining intersection.

Lemma 20. For all i ∈ I and j ∈ J such that K(i, j)
has finitely many cosets in G, no coset of K intersects both
ai + Mi and bj + Nj .

Proof. Since K(i, j) ⊇ K, each coset of K(i, j) is a union
of cosets of K.

Since all group cosets are semilinear, we can use member-
ship in the cosets of K to separate those pairs of monoid
cosets that are intermixed. For the others, we have to take
another approach.

8.2 Separating with hyperplanes
Let g1 + K, . . . , gn + K be the cosets of K in G. For each

ℓ ∈ {1, . . . , n} define Hℓ := h + gℓ + K and Iℓ := {i ∈ I |
(ai + Mi)∩Hℓ ̸= ∅} and Jℓ := {j ∈ J | (bj + Nj)∩Hℓ ̸= ∅}.
Lemma 20 guarantees that K(i, j) does not have finitely
many cosets in G for all i ∈ Iℓ and j ∈ Jℓ.

At this point we turn to the methods of geometry. We pass
from groups to vector spaces by working in the vector space
closure RG of G in RΣ. Instead of monoids, we consider the
convex cones they generate: the set of nonnegative linear
combinations of monoid elements. We connect the geometry
to the algebra by observing that K(i, j) has finitely many
cosets in G if and only if RK(i, j), the vector space closure
of K(i, j), is all of RG. Thus if two monoid cosets are not
intermixed, their intersection of their associated monoids
has strictly smaller dimension than G. This allows us to
separate these monoids with a hyperplane.

Formally, given sets of vectors U and U ′, a set of nonzero
vectors V distinguishes U and U ′ if for all u ∈ U and
u′ ∈ U ′, there exists v ∈ V such that (u·v)(u′ ·v) ≤ 0; that is,
either one dot product is zero or one is negative and the other
is positive. Define cMℓ :=

S
i∈Iℓ

Mi and bNℓ :=
S

j∈Jℓ
Nj .

The goal of this subsection is to show the existence of a
finite set of vectors V that distinguishes cMℓ from bNℓ. The
main tool we use is the Separating Hyperplane Theorem
from convex geometry. Note that intU denotes the interior
of U .

Theorem 21. (Separating Hyperplane Theorem [8]) If U
and U ′ are convex subsets of Rd with nonempty interiors
such that int U ∩ int U ′ = ∅, then there exists v ∈ Rd such
that u · v ≤ 0 for all u ∈ U and u′ · v ≥ 0 for all u′ ∈ U ′.

Unfortunately, Mi and Nj are not convex. Thus we are
forced to consider the convex cones that they generate. We
need Carathéodory’s theorem, another result from convex
geometry, to verify the seemingly trivial fact that the in-
tersection of these cones lies in a proper vector subspace of
RG.

Theorem 22. (Carathéodory’s Theorem [8]) For any set
of vectors Y ⊆ Rd, if x ∈ R+Y , then there exists a linearly
independent subset Y ′ ⊆ Y such that x ∈ R+Y ′.

Lemma 23. For all i ∈ Iℓ and j ∈ Jℓ, the set Z = R+Mi∩
R+Nj is contained in a proper vector subspace of RG.

Proof. Suppose to the contrary. Then the vector sub-
space RZ is all of RG and has a basis z1, . . . , zd ⊆ Z. Since
QZ is dense in RZ, we assume without loss of generality
that zs ∈ Z ∩ QZ for all s ∈ {1, . . . , d}.

By Theorem 22, for each s, there is a linearly independent
set Ys ⊆ Mi such that zs ∈ R+Ys. When we write each zs

as its unique linear combination of elements in Ys, we see
by linear algebra over QG that each coefficient is rational.
Repeating this argument with Nj yields that zs ∈ Q+Mi ∩
Q+Nj . We clear denominators to find numbers ms such
that mszs ∈ Mi ∩ Nj . The set {mszs}, however, is a basis
for RG, which contradicts the fact that RK(i, j) is not all
of RG.

Lemma 24. For all i ∈ Iℓ and j ∈ Jℓ, there exists a
nonzero vector v such that {v} distinguishes Iℓ and Jℓ.

Proof. If either Mi or Nj is contained in a proper vector
subspace of RG, then take v to be normal to that subspace.

Otherwise, consider the sets U := R+Mi and U ′ := R+Nj .
The intersection of their interiors is both open and contained
in a proper vector subspace of RG. Thus U and U ′ have no
interior point in common. Therefore, by Theorem 21 there
exists v ∈ RG such that for all u ∈ U , we have u · v ≤ 0;
and for all u′ ∈ U ′, we have u′ · v ≥ 0. It follows that {v}
distinguishes Mi and Nj .

To obtain a set of vectors that distinguish cMℓ and bNℓ, we
put together all of the individual distinguishing vectors.

Lemma 25. For all 1 ≤ ℓ ≤ n, there exists a finite set of
vectors V that distinguishes cMℓ and bNℓ.

Proof. The set V := {v(i, j) | i ∈ Iℓ and j ∈ Jℓ} dis-

tinguishes cMℓ and bNℓ, where {v(i, j)} is the vector from
Lemma 24 such that {v(i, j)} distinguishes Mi and Nj .

Combining results in this section and the previous one, we
have some powerful criteria for determining the predicate
value of an input.

Lemma 26. Let V be a set of vectors that distinguishes
cMℓ and bNℓ. Suppose x ∈ cMℓ and y ∈ Hℓ are such that for
all j ∈ Jℓ and v ∈ V , we have (x · v)((y − bi) · v) > 0. Then
ψ(y) = 0.

Proof. Suppose to the contrary that ψ(y) = 1. Then
there exists j ∈ Jℓ such that (y − bj) ∈ Nj . The set V ,
however, fails to distinguish x and y− bj , which is a contra-
diction.

Clearly, this lemma has an analogous counterpart that
establishes sufficient conditions for ψ(y) = 1.

8.3 Achieving rationality
The chief obstacle yet to be overcome is that a dis-

tinguishing set of vectors might include vectors with ir-
rational coordinates. In order to rule out predicates like
ψ(r, s) := [r < (

√
2)s], we need to show that we can always

distinguish cMℓ and bNℓ by vectors with integral coordinates.
We must use for a second time the fact that ψ admits finite
coset covers.

Lemma 27. For all ℓ there exists a finite set of vectors
V ⊆ ZΣ that distinguishes cMℓ and bNℓ.

Proof. By clearing denominators, it is enough to find
V ⊆ QΣ. By Lemma 25 there exists a finite set of vectors
V that distinguishes cMℓ and bNℓ. Assume that V \ QΣ has
minimum cardinality, that is, as few vectors in V have irra-
tional components as possible. To avoid a special case later,
we assume without loss of generality that V contains the
standard basis Σ of RΣ.

Suppose to the contrary that there exists v ∈ V \QΣ. By

assumption, the set V ′ := V \ {v} cannot distinguish cMℓ

and bNℓ. Thus there exist i ∈ Iℓ and j ∈ Jℓ and x ∈ Mi and
y ∈ Nj such that for all v′ ∈ V ′ we have (x · v′)(y · v′) > 0.

We consider two cases. In the first case, for all choices of
x and y we have (x ·v)(y ·v) = 0. Then at least one vector in
each problem pair is normal to v. By linear algebra over QΣ,
there exists a vector v′ ∈ QΣ such that if w ∈ G is normal
to v, then w is normal to v′. Thus V ′ ∪ {v′} distinguishes
cMℓ and bNℓ, which is a contradiction, since (V ′ ∪ {v′}) \ QΣ

has fewer elements than V \ QΣ.

In the second case, we have x and y such that (x · v′)(y ·
v′) > 0 for all v′ ∈ V ′ and (x ·v)(y ·v) < 0. Assume without
loss of generality that x · v < 0 < y · v by taking −v instead
of v if necessary. Let Ω := {w ∈ RG | v′ · w > 0 for all v′ ∈
V and w[q] > 0 for all q ∈ Σ}. Clearly Ω is an open set.
Also, y ∈ Ω, since by the assumption that Σ ⊆ V we have
y[q] > 0 for all q ∈ Σ. Given that Ω is a nonempty open set,
we can extend x, y to a basis w1 = x,w2 = y, . . . , wm such
that ws ∈ Ω for all s ≥ 2. By perturbing each ws slightly
to have rational coordinates and clearing denominators, we
assume without loss of generality that ws ∈ Ω ∩ K. There
exists s such that (ws ·v)/(w1 ·v) is irrational, since otherwise
some scalar multiple of v belongs to QΣ.

In consequence N(x · v) + N(ws · v) is dense in R, so we
can find sequences of positive integers mt and m′

t such that

mt(x · v) + m′
t(ws · v)

is a negative monotone increasing sequence of real numbers
approaching 0 as t approaches infinity. For all v′ ∈ V , the
points (mtx + m′

tws)t≥1 lie on the same side of the hyper-
plane normal to v, and as a sequence they approach the
hyperplane normal to v arbitrarily closely. By another ap-
plication of Higman’s lemma, there is an increasing function
f such that (mf(t), m

′
f(t)) is an increasing sequence.

Let z ∈ (ai + Mi)∩Hℓ. There exists some constant c ≥ 0
such that for each r, the points ((z+(c+mf(t))x+m′

f(t)ws)−
br)t≥1 all lie on the same side of each hyperplane as x. It is
easily verified that each of these points belongs to Hℓ. Thus
by Lemma 26, ψ(z + (c + mf(t))x + m′

f(t)ws) is constantly
0. Apply the pumping lemma (Lemma 15) again to these
inputs to obtain a finite cover. Then there exist t1 < t2 such
that (mt2 −mt1)x + (m′

t2 −m′
t1)ws ∈ P , where the monoid

coset (z+mt1x+mt2ws)+P belongs to the cover. Pumping
z + (c + mt1)x + m′

t1ws by a sufficiently large multiple of
(mt2 − mt1)x + (m′

t2 − m′
t1)ws yields an element z′ such

that ψ(z′) = 0, but for each r, we have that z′ − ar is on
the same side of each hyperplane as ws, which contradicts
Lemma 26.

8.4 Proof of Theorem 18
We can now prove Theorem 18 by induction on the dimen-

sion of G (the cardinality of the largest linearly independent
subset of G.)

Proof. If the dimension of G is zero, then H is a single
point and the result holds. If the dimension of G is greater
than zero, then by Lemmas 20 and 27, there exist a group
K and finite distinguishers Vℓ ⊆ ZΣ for all cosets Hℓ of K
in H .

For each distinguishing vector v ∈ Vℓ, consider the set
of points x ∈ Hℓ such that it is not that the case that the
following numbers are either all negative or all positive: (x−
ai) · v for i ∈ Iℓ and (x − bj) · v for j ∈ Jℓ. This set has
finite width in the direction of v. Thus it can be written
as the union of finitely many cosets of a group of smaller
dimension. The key to the induction is that any point not
in the union of these sets over the different x satisfies the
hypotheses of one of the variants of Lemma 26.

Define the sets

B :=
[

ℓ

ȷ
x ∈ Hℓ | ∃y ∈ bNℓ : ((x − bj) · v)(y · v) > 0

for all j ∈ Jℓ and v ∈ Vℓ

ff

B′ :=
[

ℓ

ȷ
x ∈ Hℓ | ̸ ∃y ∈ cMℓ : ((x − ai) · v)(y · v) > 0

for all i ∈ Iℓ and v ∈ Vℓ

ff
.

By Lemma 26 we have B ⊆ ψ−1(1) ⊆ B′. It is not difficult
to verify that B and B′ are semilinear. Moreover, B′ \ B is
a union of finitely many group cosets of dimension less than
G. It follows by inductive hypothesis that ψ−1(1)∩ (B′ \B)
is semilinear, and thus that ψ itself is semilinear.

9. REFERENCES
[1] Dana Angluin, James Aspnes, Melody Chan, Michael J.

Fischer, Hong Jiang, and René Peralta. Stably
computable properties of network graphs. In Viktor K.
Prasanna, Sitharama Iyengar, Paul Spirakis, and Matt
Welsh, editors, Distributed Computing in Sensor
Systems: First IEEE International Conference, DCOSS
2005, Marina del Rey, CA, USA, June/July, 2005,
Proceedings, volume 3560 of Lecture Notes in Computer
Science, pages 63–74. Springer-Verlag, June 2005.

[2] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J.
Fischer, and René Peralta. Computation in networks of
passively mobile finite-state sensors. In PODC ’04:
Proceedings of the Twenty-Third Annual ACM
Symposium on Principles of Distributed Computing,
pages 290–299. ACM Press, 2004.

[3] Dana Angluin, James Aspnes, David Eisenstat, and
Eric Ruppert. On the power of anonymous one-way
communication. In Ninth International Conference on
Principles of Distributed Systems, pages 307–318,
December 2005.

[4] G. Higman. Ordering by divisibility in abstract
algebras. Proceedings of the London Mathematical
Society, 3(2):326–336, 1952.

[5] J. Hopcroft and J. Pansiot. On the reachability
problem for 5-dimensional vector addition systems.
Theoretical Computer Science, 8(2):135–159, 1978.

[6] Oscar H. Ibarra, Zhe Dang, and Omer Egecioglu.
Catalytic p systems, semilinear sets, and vector
addition systems. Theor. Comput. Sci.,
312(2-3):379–399, 2004.

[7] Serge Lang. Algebra (Revised Third Edition).
Springer-Verlag, 2002.

[8] Steven R. Lay. Convex Sets and their Applications.
Krieger Publishing Company, 1992.

[9] Mojzesz Presburger. Über die Vollständigkeit eines
gewissen Systems der Arithmetik ganzer Zahlen, in
welchem die Addition als einzige Operation hervortritt.
In Comptes-Rendus du I Congrès de Mathématiciens
des Pays Slaves, pages 92–101, Warszawa, 1929.

