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Collaborative Search on the Plane without Communication
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Abstract

We generalize the classical cow-path problem [7, 14, 38, 39] into a question that is relevant for col-
lective foraging in animal groups. Specifically, we consider a setting in which k identical (probabilistic)
agents, initially placed at some central location, collectively search for a treasure in the two-dimensional
plane. The treasure is placed at a target location by an adversary and the goal is to find it as fast as pos-
sible as a function of both k and D, where D is the distance between the central location and the target.
This is biologically motivated by cooperative, central place foraging such as performed by ants around
their nest. In this type of search there is a strong preference to locate nearby food sources before those
that are further away. Our focus is on trying to find what can be achieved if communication is limited
or altogether absent. Indeed, to avoid overlaps agents must be highly dispersed making communication
difficult. Furthermore, if agents do not commence the search in synchrony then even initial communi-
cation is problematic. This holds, in particular, with respect to the question of whether the agents can
communicate and conclude their total number, k. It turns out that the knowledge of k by the individual
agents is crucial for performance. Indeed, it is a straightforward observation that the time required for
finding the treasure is Ω(D +D2/k), and we show in this paper that this bound can be matched if the
agents have knowledge of k up to some constant approximation.

We present an almost tight bound for the competitive penalty that must be paid, in the running time,
if agents have no information about k. Specifically, on the negative side, we show that in such a case,
there is no algorithm whose competitiveness is O(log k). On the other hand, we show that for every
constant ϵ > 0, there exists a rather simple uniform search algorithm which is O(log1+ϵ k)-competitive.
In addition, we give a lower bound for the setting in which agents are given some estimation of k. As a
special case, this lower bound implies that for any constant ϵ > 0, if each agent is given a (one-sided)
kϵ-approximation to k, then the competitiveness is Ω(log k). Informally, our results imply that the agents
can potentially perform well without any knowledge of their total number k, however, to further improve,
they must be given a relatively good approximation of k. Finally, we propose a uniform algorithm that
is both efficient and extremely simple suggesting its relevance for actual biological scenarios.
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1 Introduction

Background and Motivation: The universality of search behaviors is reflected in multitudes of studies in
different fields including control systems, distributed computing and biology. We use tools from distributed
computing to study a biologically inspired scenario in which a group of agents, initially located at one
central location, cooperatively search for treasures in the plane. The goal of the search is to locate nearby
treasures as fast as possible and at a rate that scales well with the number of participating agents.

A variety of animal species search for food around a central location that serves the search’s initial point,
final destination or both [43]. This central location could be a food storage area, a nest where offspring are
reared or simply a sheltered or familiar environment. Central place foraging holds a strong preference to
locating nearby food sources before those that are further away. Possible reasons for that are, for example:
(1) decreasing predation risk [28], (2) increasing the rate of food collection once a large quantity of food is
found [43], (3) holding a territory without the need to reclaim it [20, 28, 42], and (4) the ease of navigating
back after collecting the food using familiar landmarks [11].

Searching in groups can increase foraging efficiency [26]. In some extreme cases, food is so scarce that
group searching is believed to be required for survival [12, 27]. Proximity of the food source to the central
location is again important in this case. For example, in the case of recruitment, a nearby food source
would be beneficial not only to the individual that located the source but also increase the subsequential
retrieval rate for many other collaborators [56]. Foraging in groups can also facilitate the defense of larger
territories [52]. Eusocial insects (e.g., bees and ants) engage in highly cooperative foraging, this can be
expected as these insects reduce competition between individuals to a minimum and share any food that is
found. Social insects often live in a single nest or hive which naturally makes their foraging patterns central.

Little is known about the communication between the foragers, but it is believed that in some scenarios
communication may become impractical [24]. This holds, for example, if the foragers start the search at
different times and remain far apart (which may be necessary to avoid unnecessary overlaps). Hence, the
question of how efficient can the search be if the communication is limited, or altogether absent, is of great
importance.

In this paper, we theoretically address general questions of collective searches in the particular natural
setting described above. More precisely, our setting consists of k identical (probabilistic) agents, initially
placed at some central location, which collectively search for a treasure in the two-dimensional plane. The
treasure is placed by an adversary at some target location at a distance D from the central location, where
D is unknown to the agents. The goal of the agents is to find the treasure as fast as possible, where the time
complexity is evaluated as a function of both k and D.

In the context of search algorithms, evaluating the time as a function of D was first introduced in the
classical paper [7] by Baeza-Yates et al., which studied the cow-path problem (studied also in [14, 38, 39]).
Our setting generalizes the one used for the cow-path problem as we consider multiple identical agents
instead of a single agent (a cow in their terminology). Indeed, in this distributed setting, we are concerned
with the speed-up measure (see also, [3, 4, 31, 36]), which aims to capture the impact of using k searchers
in comparison to using a single one. Note that the objectives of quickly finding nearby treasures and having
significant speed-up may be at conflict. That is, in order to ensure that nearby treasures are quickly found, a
large enough fraction of the search force must be deployed near the central location. In turn, this crowding
can potentially lead to overlapping searches that decrease individual efficiency.

It is a rather straightforward observation that the time required for finding the treasure is Ω(D+D2/k).
Our focus is on the question of how agents can approach this bound if their communication is limited or

1



even completely absent. In particular, as information of foraging group size may not be available to the
individual searchers, we concentrate our attention on the question of how important it is for agents to know
(or estimate) of their total number. As we later show, the lack of such knowledge may have a non-negligible
impact on the performance.

Our Results: We first show that if the agents have a constant approximation of their total number k then
there exists a rather simple search algorithm whose expected running time is O(D+D2/k), making it O(1)-
competitive. We then turn our attention to uniform searching algorithms, in which agents are not assumed
to have any information regarding k. We prove that the speed-up penalty for using uniform algorithms
is slightly more than logarithmic in the number of agents. Specifically, we show that, for every constant
ϵ > 0, there exists a uniform search algorithm that is O(log1+ϵ k)-competitive. On the other hand, we show
that there is no uniform search algorithm that is O(log k)-competitive. In addition, we give a lower bound
for the intermediate setting in which agents are given some estimation of k. As a special case, this lower
bound implies that for any constant ϵ > 0, if each agent is given a (one-sided) kϵ-approximation to k, then
the competitiveness is Ω(log k). Informally, our results imply that the agents can potentially perform well
without any knowledge of their total number k, however, to further improve they must be given a relatively
good approximation of k. Finally, we propose a uniform search algorithm that is concurrently efficient and
extremely simple which may imply some relevance for actual biological scenarios.

Related Work: Collective search is a classical problem that has been extensively studied in different fields
of science. Group living and food sources that have to be actively sought after make collective foraging a
widespread biological phenomenon. Social foraging theory [22] makes use of economic and game theory
to optimize food exploitation as a function of group size and degree of cooperativity between agents in
different environmental settings. Social foraging theory has been extensively compared to experimental
data (see, e.g., [5, 23]) but does not typically account for the spatial characteristics of resource abundance.
Central place foraging theory [43] assumes a situation in which food is collected from a patchy resource
and is returned to a particular location such as a nest. This theory is used to calculate optimal durations
for exploiting food patches at different distances from the central location and has also been tested against
experimental observations [20, 25]. Collective foraging around a central location is particularly interesting in
the case of social insects where large groups forage cooperatively with, practically, no competition between
individuals. Harkness and Mardouras [24] have conducted a joint experimental and modeling research into
the collective search behavior of non-communicating desert ants. Modeling the ants’ trajectories using
biased random walks, they reproduce some of the experimental findings and demonstrate significant speed-
up with group size. In bold contrast to these random walks, Reynolds [46] argues that Lévy flights with
a power law that approaches unity is the optimal search strategy for cooperative foragers as traveling in
straight lines tends to decrease overlaps between searchers.

From an engineering perspective, the distributed cooperation of a team of autonomous agents (often
referred to as robots or UAVs - Unmanned Aerial Vehicles) is a problem that has been extensively studied.
These models extend single agent searches in which an agent with limited sensing abilities attempts to
locate one or several mobile or immobile targets [45]. The memory and computational capacities of the
agent are typically large and many algorithms rely on the construction of cognitive maps of the search area
that includes current estimates that the target resides in each point [61]. The agent then plans an optimal path
within this map with the intent, for example, of optimizing the rate of uncertainty decrease [37]. Cooperative
searches typically include communication between the agents that can be transmitted up to a given distance,
or even without any restriction. Models have been suggested where agents can communicate by altering
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the environment to which other agent then react [58]. Cooperation without communication has also been
explored to some extent [50] but the analysis puts no emphasis on the speed-up of the search process. In
addition, to the best of our knowledge, no works exist in this context that put emphasis on finding nearby
targets faster than faraway one. Similar problems studied in this context are pattern formation [15, 53],
rendezvous [6, 19], and flocking [21]. It is important to stress, that in all those engineering works, the issue
of whether robots know their total number is typically not addressed, as obtaining such information does not
seem to be problematic. Furthermore, in many works, robots are not identical and have unique identities.

In the theory of computer science, the exploration of graphs using mobile agents is a central question.
Most of the research for graph exploration is concerned with the case of a single deterministic agent ex-
ploring a finite graph (typically, with some restrictions on the resources of the agent and/or on the graph
structure). For example, in [1, 9, 16, 30] the agent explores strongly connected directed finite graphs, and
in [32, 33, 34, 35, 44, 48] the agent explores undirected finite graphs. When it comes to probabilistic
searching, the random walk is a natural candidate, as it is extremely simple, uses no memory, and trivially
self-stabilizes. Unfortunately, however, the random walk turns out to be inefficient in a two-dimensional
infinite grid. Specifically, in this case, the expected hitting time is infinite, even if the treasure is nearby.

Evaluating the time to find the treasure as a function of D, the initial distance to the treasure, was studied
in the context of the cow-path problem. One of the first papers that studied the cow-path problem is the paper
by Baeza-Yates et al. [7], which shows that the competitive ratio for deterministically finding a point on the
real line is nine. Considering the two-dimensional case, Baeza-Yates et al. prove that the spiral search
algorithm is optimal up to lower order terms. Randomized algorithms for the problem were studied by Kao
et al. [38], for the infinite star topology. Karp et al. [39] studied an early variant of the cow-path problem on
a binary tree. Recently, Demaine et al. [14] has considered the cow-path problem with a double component
price: the first is distance and the second is turn cost. In [40], López-Ortiz and Sweet extended the cow-
path problem by considering k agents. However, in contrast to our setting, the agents they consider are not
identical, and the goal is achieved by (centrally) designing a different specific path for each of the k agents.

In general, the more complex setting on using multiple identical agents has received much less attention.
Exploration by deterministic multiple agents was studied in, e.g., [3, 4, 31, 36]. To obtain better results when
using several identical deterministic agents, one must assume that the agents are either centrally coordinated
or that they have some means of communication (either explicitly, or implicitly, by being able to detect
the presence of nearby agents). When it comes to probabilistic agents, analyzing the speed-up measure for
k-random walkers has recently gained attention. In a series of papers, initiated by Alon et al.[2], a speed-
up of Ω(k) is established for various finite graph families, including, in particular, expenders and random
graphs [2, 17, 10]. While some graph families enjoy linear speed-up, for many graph classes, to obtain linear
speed-up, k has to be quite small. In particular, this is true for the two-dimensional n-node grid, where a
linear speed up is obtained when k < O(log1−ϵ n). On the other hand, the cover time of 2-dimensional
n-node grid is always Ω(n/ log k), regardless of k. Hence, when k is polynomial in n, the speed up is only
logarithmic in k. The situation with infinite grids is even worse. Specifically, though the k-random walkers
would find the treasure with probability one, the expected time to find the treasure becomes infinite.

The question of how important it is for individual processors to know their total number has recently
been addressed in the context of locality. Generally speaking, it has been observed that for several classical
local computation tasks, knowing the number of processors is not essential [29]. On the other hand, in the
context of local decision, some evidence exist that such knowledge may be crucial for non-deterministic
distributed decision [18].
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2 Preliminaries

We consider the problem where k mobile agents (robots) are searching for a treasure on the two-dimensional
plane. Each agent has a bounded field of view of say ε > 0, hence, for simplicity, we can assume that the
agents are actually walking on the integer two-dimensional infinite grid G = Z2. All k agents starts the
search from a central node s ∈ G, called the source. An adversary locates the treasure at some node τ ∈ G,
referred to as the target node; the agents have no a priori information about the location of τ . The goal of
the agents it to find the treasure– this task is accomplished once at least one of the agents visits the node τ .

The agents are probabilistic machines that can move on the grid, but cannot communicate between
themselves. All k agents are identical (execute the same protocol). An agent can traverse an edge of the grid
in both directions. We do not restrict the internal storage and computational power of agents, nevertheless,
we note that all our upper bounds use simple procedures that can be implemented using relatively short
memory. For example, with respect to navigation, our constructions only assume the ability to perform four
basic procedures, namely: (1) choose a direction uniformly at random, (2) walk in a ”straight” line to a
prescribed distance, (3) perform a spiral search around a node1, and (4) return to the source node. On the
other hand, for our lower bounds to hold, we do not require any restriction on the navigation capabilities.

Regarding the time complexity, we assume that a traversal of an edge it performed in 1 unit of time.
Furthermore, for the simplicity of presentation, we assume that the agents are synchronous, that is, each edge
traversal costs precisely 1 unit of time (and all internal computations are performed in zero time). Indeed,
this assumption can easily be removed if we measure the time according to the slowest edge-traversal. We
also assume that all agents start the search simultaneously at the same time, denoted by t0. This assumption
can also be easily removed by starting to count the time after the last agent initiates the search. We measure
the cost of an algorithm by its expected running time, that is, the expected time (from time t0) until at least
one of the agents finds the treasure. We denote the expected running time of algorithm A by TA(D, k).

The distance between two nodes u, v ∈ G, denoted d(u, v), is simply the hop distance between them,
i.e., the number of edges on the shortest path connecting u and v. Let B(r) denote the ball centered at the
source s with radius r, formally, B(r) = {v ∈ G : d(s, v) ≤ r}. Denote the distance between the source
node s and the target node τ by D, i.e., D = d(s, τ). Note that if an agent knows D, then it can potentially
find the treasure in time O(D), by walking to a distance D in some direction, and then performing a circle
around the source of radius D (assuming, of course, that its navigation abilities enable it to perform such a
circle). On the other hand, with the absence of knowledge about D, an agent can find the treasure in time
O(D2) by performing a spiral search around the source. When considering k agents, it is easy to see2 that
the expected running time is Ω(D + D2/k), even if the number of agents k is known to all agents, and
even if we relax the model and allow agents to freely communicate between each other. It follows from
Theorem 3.1 that if k is known to agents then there exists a search algorithm whose expected running time

1The spiral search around a node v is a particular deterministic local search algorithm (see, e.g., [7]) that starts at v and enables
the agent to visit all nodes at distance Ω(

√
x) from v by traversing x edges, for every integer x. For our purposes, since we are

concerned only with asymptotic results, we can replace this atomic navigation procedure with any procedure that guarantees such
a property. For simplicity, in the remaining of the paper, we assume that for every integer x, the spiral search of length x starting at
a node v visits all nodes at distance at most

√
x/2 from v

2To see why, consider a search algorithm A whose expected running time is T . Clearly, T ≥ D, because it takes D time to
merely reach the treasure. Assume, towards contradiction, that T < D2/4k. In any execution of A, by time 2T , the k agents can
visit a total of at most 2Tk < D2/2 nodes. Hence, by time 2T , more than half of the nodes in BD := {u | 1 ≤ d(u) ≤ D} were
not visited. Therefore, there must exist a node u ∈ BD such that the probability that u is visited by time 2T (by at least one of
the agents) is less than 1/2. If the adversary locates the treasure at u then the expected time to find the treasure is strictly greater
than T , which contradicts the assumption.

4



is asymptotically optimal, namely, O(D +D2/k). We evaluate the performance of an algorithm that does
not assume the precise knowledge of k with respect to this aforementioned optimal time. Formally, let φ(k)
be a function of k. An algorithm A is called φ(k)-competitive if

TA(D, k) ≤ φ(k) · (D +D2/k),

for every integers k and D. We shall be particularly interested in the performances of uniform algorithms–
these are algorithms in which no information regarding k is available to agents. (The term uniform is chosen
to stress that agents execute the same algorithm regardless of their number, see, e.g., [29].)

3 Upper Bounds

3.1 Optimal Running Time with Knowledge on k

Our first theorem asserts that agents can obtain asymptotically optimal running time if they know the precise
value of k. As a corollary, it will follow that, in fact, to obtain such a bound, it is sufficient to assume that
agents only know a constant approximation of k. Due to lack of space, the proofs of Theorem 3.1 and
Corollary 3.2 are deferred to the Appendix.

Theorem 3.1 Assume that the agents know the value of k. Then, there exists a (non-uniform) search algo-
rithm running in expected time O(D +D2/k).

Fix a constant ρ ≥ 1. We say that the agents have a ρ-approximation of k, if, initially, each agent a
receives as input a value ka satisfying k/ρ ≤ ka ≤ kρ.

Corollary 3.2 Fix a constant ρ ≥ 1. Assume that the agents have a ρ-approximation of k. Then, there exists
a (non-uniform) search algorithm which is O(1)-competitive.

3.2 Unknown Number of Agents

We now turn our attention to the case of uniform algorithms.

Theorem 3.3 For every positive constant ε, there exists a uniform search algorithm that is O(log1+ε k)-
competitive.

Proof. Consider the uniform search algorithm Auniform described below. Let us analyze the performances
of the algorithm, and show that its expected running time is T (D, k) := φ(k) · (D +D2/k), where φ(k) =
O(log1+ε k). We first note that it suffices to prove the statement when k ≤ D. Indeed, if k > D, then we
may consider only D agents among the k agents and obtain an upper bound on the running time of T (D,D),
which is less than T (D, k).

Assertion 1 For every integer ℓ, the time until all agents complete big-stage ℓ is O(2ℓ).

For the assertion to hold, it is sufficient to prove that stage i in big-stage ℓ takes O(2i) time. To this end,
notice that phase j takes O(Di,j + 2i/j1+ε) ≤ O(2(i+j)/2 + 2i/j1+ε)) time. Therefore, stage i takes time

O

⎛

⎝

i
∑

j=0

(2(i+j)/2 + 2i/j1+ε)

⎞

⎠ = O(2i).
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begin
Each agent performs the following;
for ℓ from 0 to∞ do the big-stage ℓ
for i from 0 to ℓ do the stage i

for j from 0 to i do the phase j

• Set kj ←− 2j and Di,j ←−
√

2(i+j)/j(1+ε);
• Go to node u ∈ B(Di,j) chosen uniformly at random among the nodes in B(Di,j);
• Perform a spiral search starting at u for ti,j = 2i+2/j1+ε time;
• Return to the source

end
end

end
end

Algorithm 1: The uniform algorithm Auniform.

This establishes Assertion 1.

Let s = ⌈log((D2 · log1+ε k)/k)⌉ + 1. Fix an integer i ≥ s. Then, there exists j ∈ {0, . . . , i} such that
2j ≤ k < 2j+1.

Assertion 2 The probability that none of the agents finds the treasure while executing phase j of stage i is
at most c, for some constant c < 1.

To see this, first note that the treasure is inside the ball B(Di,j). Indeed, Di,j =
√

2i+j

j1+ε ≥
√

2s+j

j1+ε > D.
Now, observe that the total number of nodes in B(Di,j) is O(D2

i,j) = O(2i+j/j1+ε). Moreover, at least half
of the ball of radius √ti,j around the treasure is contained in B(Di,j). Consequently, the probability for an
agent a to choose a node u in a ball of radius √ti,j around the treasure in phase j of stage i is

Ω (ti,j/|B(Di,j)|) = Ω

(

2i/j1+ε

2i+j/j1+ε

)

= Ω
(

2−j
)

.

If this event happens, then the treasure is found during the corresponding spiral search of agent a. As a
result, there exists a positive constant c′ such that the probability that none of the k agents finds the treasure
during phase j of stage i is at most (1 − c′ · 2−j)k ≤ (1− c′ · 2−j)2

j ≤ e−c′ . This establishes Assertion 2.

By the time that all agents have completed their respective big-stage s + ℓ, all agents have performed
Ω(ℓ2) stages i with i ≥ s. By Assertion 2, for each such i, the probability that the treasure is not found
during stage i is at most c for some constant c < 1. Hence, the probability that the treasure is not found
during any of those Ω(ℓ2) stages is at most 1/dℓ2 for some constant d > 1. Assertion 1 ensures that all
agents complete big-stage s + ℓ by time O(2s+ℓ), so the expected running time is O(

∑∞
ℓ=0 2

s+ℓ/dℓ
2

) =
O(2s) = O(D2 log1+ε k/k), as desired. !
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4 Lower Bounds

4.1 An Almost Tight Lower Bound for Uniform Algorithms

Theorem 4.1 There is no uniform search algorithm that is O(log k)-competitive.

Proof. Suppose that there exists a uniform search algorithm with running time less than f(D, k) = (D +

D2/k)Φ′(k). Hence, as long as k ≤ D, we have f(D, k) ≤ D2Φ(k)
k , where φ(k) = 2φ′(k). Assume towards

a contradiction that φ(k) = O(log k).

Let T be a (sufficiently large) integer, and let D = 2T + 1. That is, for the purpose of the proof, we
assume that the treasure is actually placed at some far away distance D = 2T +1. This means, in particular,
that by time 2T the treasure has not been found yet.

For every integer i ≤ log T/2, set

ki = 2i and Di =
√

T · ki/φ(ki).

Fix an integer i in [1, log T/2], and consider B(Di), the ball of radius Di around the source node. We
consider now the case where the algorithm is executed with ki agents. For every set S ⊆ B(Di), let χ(S)
be the random variable indicating the number of nodes in S that were visited by at least one of the ki agents
by time 2T . (For a singleton node u, we write χ(u) for χ({u}).)

Note that ki ≤ Di, and therefore, for each node u ∈ B(Di), the expected time to visit u is at most
f(Di, ki) ≤ D2

i φ(ki)/ki = T . Thus, by Markov’s inequality, the probability that u is visited by time 2T is
at least 1/2, i.e., Pr(χ(u) = 1) ≥ 1/2. Hence, E(χ(u)) ≥ 1/2.

Now consider an integer i in [2, log T/2], and set Si = B(Di) \ B(Di−1). By linearity of expectation,
E(χ(Si)) =

∑

u∈Si
E(χ(u)) ≥ |Si|/2. Consequently, by time 2T , the expected number of nodes in Si that

an agent visits is

Ω(|Si|/ki) = Ω

(

Di−1(Di −Di−1)

ki

)

= Ω

(

T

φ(ki−1)
·

(

√

2φ(ki−1)
√

φ(ki)
− 1

))

= Ω

(

T

φ(ki)

)

,

where the second equality follows from the fact that Di = Di−1 ·
√

2φ(ki−1)
φ(ki)

, and the third equality follows
from the fact that φ(ki) = O(i). In other words, for every integer i in [2, log T/2], the expected number
of nodes in Si that each agent visits by time 2T is Ω

(

T
φ(ki)

)

. Since the sets Si are pairwise disjoint, the
linearity of expectation implies that the expected number of nodes that an agent visits by time 2T is

Ω

⎛

⎝

log T/2
∑

i=2

T

φ(ki)

⎞

⎠ = T · Ω

⎛

⎝

log T/2
∑

i=2

1

φ(2i)

⎞

⎠ .

Hence, the sum
∑log T/2

i=2
1

φ(2i) must converge as T goes to infinity. This contradicts the assumption that
φ(k) = O(log k). !

4.2 A Lower Bound for Algorithms using Approximated Knowledge of k

We now present a lower bound for the competitiveness of search algorithms assuming that agents have
approximations for k. As a special case, our lower bound implies that for any constant ϵ > 0, if agents
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are given an estimation k̃ such that k̃1−ϵ ≤ k ≤ k̃, then the competitiveness is Ω(log k). That is, the
competitiveness remains logarithmic even for relatively good approximations of k.

Formally, let ϵ(x) be some function such that 0 < ϵ(x) ≤ 1, for every integer x. We say that the agents
have kϵ-approximation of k if each agent a receives as input an estimation k̃a for k, satisfying:

k̃1−ϵ(k̃a)
a ≤ k ≤ k̃a.

(For example, if ϵ(x) is the constant 1/2 function and if the agents have kϵ-approximation of k, then this
means, in particular, that if all agents receive the same value k̃ then the real number of agents k satisfies
√

k̃ ≤ k ≤ k̃.)

Theorem 4.2 Let ϵ(x) be some function such that 0 < ϵ(x) ≤ 1, for every integer x. Consider the case that
the agents have a kϵ-approximation of k. Suppose that there exists a φ(k)-competitive algorithm, where φ
is non-decreasing. Then, φ(k) = Ω(ϵ(k) log k).

Proof. Assume that there is a search algorithm for this case running in time (D +D2/k)φ(k), where φ is
non-decreasing. Suppose that all agents receive the same value k̃, that should serve as an estimate for k.
Consider a large enough integer W , specifically, such that 4k̃ < W . Set

T = 2W · φ(k̃) and j0 =
logW

2
.

For the purposes of the proof, we assume that the treasure is located at distance D = 2T +1, so that by time
2T + 1 it is guaranteed that no agent finds the treasure.

For i = 1, 2, · · · , define
Si := {u | 2j0+i−1 < d(u, s) ≤ 2j0+i}.

Fix an integer i ∈ {⌈1−ϵ(k̃)
2 log k̃⌉, · · · , ⌊12 log k̃⌋}. Assume for the time being, that the number of agents is

ki = 22i. Note that
k̃1−ϵ(k̃) ≤ ki ≤ k̃,

hence, ki is a possible candidate for being the real number of agents. Observe that all nodes in Si are at
distance at most 2j0+i from the source, and that |Si| = Θ(22j0+2i) = Θ(W · ki). By definition, it follows
that j0 ≥ i + 1. Hence, ki ≤ 2j0+i−1 < d(u, s), and therefore it follows by the required expected time of
the algorithm, that for each node u ∈ Si, the expected time to cover by at least one of the ki agents is at
most

2d(u, s)2

ki
· φ(ki) ≤ 2W · φ(k̃) = T.

Recall that we now consider the case where the algorithm is executed with ki agents. For every set
of nodes S ⊆ G, let χ(S) be the random variable indicating the number of nodes in S that were visited
by at least one of the ki agents by time 2T . (For a singleton node u, we write χ(u) for χ({u}).) By
Markov’s inequality, the probability that u is visited by at least one of the ki agents by time 2T is at least
1/2, i.e., Pr(χ(u) = 1) ≥ 1/2. Hence, E(χ(u)) ≥ 1/2. By linearity of expectation, E(χ(Si)) =
∑

u∈Si
E(χ(u)) ≥ |Si|/2. Consequently, by time 2T , the expected number of nodes in Si that a single

agent visits is Ω(|Si|/ki) = Ω(W ).

Since this holds for any i ∈ {⌈1−ϵ(k̃)
2 log k̃⌉, · · · , ⌊12 log k̃⌋}, and since the Si’s are pairwise disjoint

sets, it follows by linearity of expectation, that the expected number of nodes that a single agent visits by
time 2T is Ω(W · ϵ(k̃) log k̃). Since T = 2W · φ(k̃), this implies that φ(k̃) = Ω(ϵ(k̃) log k̃), as desired.
This concludes the proof of the theorem. !
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5 The Harmonic Search Algorithm

The algorithms described in the Section 3 are relatively simple but still require the use of non trivial it-
erations, which may be complex for simple and tiny agents such as ants. If we relax the requirement of
bounding the expected running time and demand only that the treasure be found with some low constant
probability, then it is possible to avoid one of the loops of the algorithms. However, a sequence of iterations
still needs to be performed.

In this section, we propose an extremely simple algorithm, coined the harmonic search algorithm3,
which does not perform in iterations and is essentially composed of three components: (1) choose a random
direction and walk in this direction for a distance d, chosen randomly according to a distribution in which
the probability of choosing d is roughly inverse proportional to d, (2) perform a local search (e.g., a spiral
search) for roughly d2 time, and (3) return to the source. It turns out that this extremely simple algorithm
has a good probability of quickly finding the treasure, if the number of agents is sufficiently large.

More specifically, the algorithm depends on a positive constant parameter δ that is fixed in advance and
governs the performance of the algorithm. For a node u, let p(u) = c

d(u)2+δ , where c is the normalizing
factor, defined so that

∑

u∈V (G) p(u) = 1. (Note that c depends on δ.)

begin
Each agent performs the following three actions;
1. Go to a node u ∈ V (G) with probability p(u);
2. Perform a spiral search for t(u) = d(u)2+δ time;
3. Return to the source

end
Algorithm 2: The harmonic search algorithm.

Theorem 5.1 Let δ ∈ (0, 0.8]. For every ε > 0, there exists a positive real number α such that if k > αDδ,
then with probability at least 1− ϵ, the expected running time of the harmonic algorithm is O(D + D2+δ

k ).

Proof. Fix a real number β greater than ln(1/ε), so e−β < ϵ. Set α = 12β/c. We assume that the number
of agents k is greater than αDδ and we show that with probability at least 1 − ϵ, the running time of the
harmonic search algorithm is O(D + D2+δ

k ).

Let λ = 4βD1+δ

ck . In particular, λ < D/4 since k > αDδ. Consider the ball Bλ of radius
√
λD/2 around

the treasure. Note that
√
λD < D/2, and hence 3D/4 < d(u) < 5D/4 for every node u ∈ Bλ. Note also

that if u ∈ Bλ, then an agent that performs a spiral search from u finds the treasure by time λD, which is at
most t(u) since d(u) > 3D/4 and D ≥ 2.

In other words, if an agent goes to a node u ∈ Bλ in Step 1 of the algorithm, then this agent finds the
treasure in step 2. Since each node in Bλ is at distance less than 5D/4 from the source, it follows that the
total running time of the algorithms is O(D(5/4 + λ)), which is O(D + D2+δ

k ). Hence, let us analyze the
probability that at least one of the k agents goes to a node in Bλ in Step 1 of the algorithm.

Since d(u) < 5D/4 for each node u ∈ Bλ, the probability p(u) that a single agent goes to u in Step 1
3The name harmonic was chosen because of structure resemblances to the celebrated harmonic algorithm for the k-server

problem — see, e.g., [8].
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is at least c
(5D/4)2+δ ≥ c

2D2+δ as δ ≤ 0.8. Since there are at least λD/2 nodes in Bλ, the probability that a
single agent goes to a node in Bλ in Step 1 is at least

∑

u∈Bλ

p(u) ≥ |Bλ| ·
c

2D2+δ
≥

cλ

4D1+δ
.

It follows that the probability that no agent goes to a node in Bλ in Step 1 of the algorithm is at most

(

1−
cλ

4D1+δ

)k

=

(

1−
cλ

4D1+δ

)β 4D1+δ

cλ

≤ e−β < ε.

The theorem follows. !

6 Conclusion and Discussion

We first presented an algorithm that assumes that agents have a constant approximation of k and runs in
optimal O(D +D2/k) expected time. We then showed that there exists a uniform search algorithm whose
competitiveness is slightly more than logarithmic, specifically, O(log1+ϵ k), for arbitrary small constant
ϵ > 0. We also presented a relatively efficient uniform algorithm, namely, the harmonic algorithm, that has
extremely simple structure. Our constructions imply that, in the absence of any communication, multiple
searchers can still potentially perform rather well. On the other hand, our lower bound results imply that to
achieve better running time, the searchers must either communicate or utilize some information regarding
k. In particular, even if each agent is given a kϵ-approximation to k (for constant ϵ > 0), it would not suffice
for being strictly below O(log k)-competitive.

Although the issue of memory is beyond the scope of this paper, our constructions are simple and can
be implemented using relatively low memory. For example, going in a straight line for a distance of d = 2ℓ

can be implemented using O(log log d) memory bits, by employing a randomized counting technique. In
addition, our lower bounds result gives evidence that in order to achieve a near-optimal running time, agents
must use non-trivial memory size, required merely to store the necessary approximation of k. This may be
useful for obtaining a tradeoff between the running time and the memory size of agents.

From another perspective, it is of course interesting to experimentally verify whether social insects en-
gage in search patterns in the plane which resemble the simple uniform algorithms specified above, and, in
particular, the harmonic algorithm. Two natural candidates are desert ants Cataglyphys and honeybees Apis
mellifera. First, these species seem to face settings which are similar to the one we use. Indeed, they cannot
rely on communication during the search due to the dispersedness of individuals [24] and their inability to
leave chemical trails (this is due to increased pheromone evaporation in the case of the desert ant). Addi-
tionally, the task of finding the treasure is relevant, as food sources in many cases are indeed relatively rare
or patchy. Moreover, due to the reasons mentioned in Section 1, finding nearby sources of food is of great
importance. Second, insects of these species have the behavioral and computational capacity to maintain
a compass-directed vector flight [13, 24], measure distance using an internal odometer [54, 55], travel to
distances taken from a random power law distribution [51], and engage in spiral or quasi-spiral movement
patterns [48, 49, 60]. These are the main ingredients that are needed to perform the algorithms described
in this paper. Finally, the search trajectories of desert ants have been shown to include two distinguishable
sections: a long straight path in a given direction emanating from the nest and a second more tortuous path
within a small confined area [24, 59].
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APPENDIX

A Proof of Theorem 3.1.

For an integer i, let Bi := {u : d(u) ≤ 2i}. Consider the following algorithm.

begin
Each agent performs the following double loop;
for j from 1 to∞ do the stage j defined as follows
for i from 1 to j do the phase i defined as follows

• Go to a node u ∈ Bi chosen uniformly at random among the nodes in Bi

• Perform a spiral search for time ti = 22i+2/k.
• Return to the source s

end
end

end
Algorithm 3: The non-uniform algorithm Ak.

Fix a positive integer ℓ and consider the time Tℓ until each agent completed ℓ phases i with i ≥ logD.
Each time an agent performs phase i, the agent finds the treasure if the chosen node u belongs to the
ball B(τ,

√
ti/2) around τ , the node holding the treasure. Note that at least some constant fraction of

the ball B(τ,
√
ti/2) is contained in Bi. The probability of choosing a node u in that fraction is thus

Ω(|B(τ,
√
ti/2)|/|Bi|), which is at least β/k for some positive constant β. Thus, the probability that by

time Tℓ none of the k agents finds the treasure (while executing their respective ℓ phases i) is at most
(1− β/k)kℓ, which is at most γ−ℓ for some constant γ greater than 1.

For an integer i, let ψ(i) be the time required to execute a phase i. Note that ψ(i) = O(2i + 22i/k).
Hence, the time until all agents complete stage j for the first time is

j
∑

i=1

ψ(i) = O(2j +
j
∑

i=1

22i/k) = O(2j + 22j/k).

Now fix s = ⌈logD⌉. It follows that for any integer ℓ, all agents complete their respective stages s + ℓ by
time T̂ (ℓ) := O(2s+ℓ+22(s+ℓ)/k). Observe that by this time, all agents have completed at least ℓ2/2 phases
i with i ≥ s. Consequently, the probability that none of the k agents finds the treasure by time T̂ (ℓ) is at
most γ−ℓ2/2. Hence, the expected running time is at most

TAk(D, k) = O

(

∞
∑

ℓ=1

2s+ℓ

γℓ2/2
+

22(s+ℓ)

kγℓ2/2

)

= O
(

2s + 22s/k
)

= O(D +D2/k).

This establishes the theorem. !
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B Proof of Corollary 3.2

Each agent a executes Algorithm Ak (see the proof of Theorem 3.1) with the parameter k equal to ka/ρ.
Since k/ρ2 ≤ ka/ρ ≤ k, the only difference between this case and the case where the agents know k, is that
for each agent, the time required to perform each spiral search is multiplied by a constant factor of at most
ρ2. Therefore, the analysis in the proof of Theorem 3.1 remains the same and the running time is increased
by a multiplicative factor of at most ρ2. !
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