
Task Allocation in Ant Colonies

Alejandro Cornejo1, Anna Dornhaus2, Nancy Lynch3, and Radhika Nagpal1

1 Harvard University
School of Engineering and Applied Sciences

2 University of Arizona
Ecology and Evolutionary Biology

3 Massachusetts Institute of Technology
CSAIL

Abstract. In this paper we propose a mathematical model for studying
the phenomenon of division of labor in ant colonies. Inside this model
we investigate how simple task allocation mechanisms can be used to
achieve an optimal division of labor.

We believe the proposed model captures the essential biological features
of division of labor in ant colonies and is general enough to study a
variety of di↵erent task allocation mechanisms. Within this model we
propose a distributed randomized algorithm for task allocation that im-
poses only minimal requirements on the ants; it uses a constant amount
of memory and relies solely on a primitive binary feedback function to
sense the current labor allocation. We show that with high probability
the proposed algorithm converges to a near-optimal division of labor in
time which is proportional to the logarithm of the colony size.

1 Introduction

Task allocation in ant colonies is the process used by individual ant workers in
a colony to select which task to perform in order to ensure the survival of the
colony. Depending on the species the tasks typically include things like collecting
food, feeding and caring for the o↵spring and defending the nest against intruders
or parasites. The number of individuals allocated to each task varies over time
in response to changes in the demand for di↵erent tasks.

From a biology perspective, there is an extensive body of empirical work
studying the phenomenon of division of labor in ant colonies across di↵erent ant
species [1–5]. Biologists have also proposed a number of individual behaviors
that could produce the collective division of labor [1, 6–9]. It has been suggested
that ant workers might select tasks based on di↵erent features, including their
age [10, 11], body size [12, 13], genetic background [14], position in the nest
[13, 15, 16], nutrition [17], in response to signals from other ants [10, 18], or
by comparing internal response thresholds to the need to perform a particular
task [19–21].

Most of these works were born out of a desire to understand what are the
algorithms that may be used by ants, and not to compare the performance of



di↵erent algorithms. In addition, although in biology there is much work on op-
timization, there is not a tradition of explicitly separating the system model, the
problem statement, and the algorithm being considered. This has made it di�-
cult to generalize the results across di↵erent insect species. Most of the modeling
studies do not attempt to compare how well di↵erent strategies perform, and ob-
taining any empirical observations for this purpose would be extremely hard (if
not impossible). As a result, despite the wealth of empirical results, the trade-o↵s
between di↵erent division of labor strategies remain poorly understood.

Our contributions are twofold. First, we describe a very general mathematical
formulation for the problem of task allocation in ant colonies. Second, we propose
a distributed algorithm that solves the task allocation problem e�ciently and
imposing only minimal assumptions on the capabilities of the individual ants.
The algorithm we propose is modeled after a common strategy thought to be
used by ants.

The model for task allocation proposed in this paper is meant to provide
a rigorous theoretical framework under which new and existing mechanisms for
division of labor can be formulated, studied and compared. In particular it allows
modeling ant colonies consisting of workers that have di↵erent characteristics and
formulate strategies that have di↵erent notions about of what is an optimal task
allocation.

The randomized distributed algorithm for task allocation we propose requires
constant memory with respect to the colony size, and assumes that ants can only
sense the need for a particular task through a primitive binary feedback function.
In more detail, we assume that each ant can use the information available in the
environment (including sensing pheromones or other signaling methods between
ants) to determine whether a particular task requires more workers or not. We
show that using only this information and a constant amount of memory, ants
can converge to a near-optimal task allocation with high probability, in a number
of steps which is logarithmic in the size of the colony.

1.1 Related Work

As we argued before, from a biology standpoint there is a large body of work
studying division of labor in ant colonies [1–5]. However existing models do not
address the question of how well task allocation performs, and it is di�cult to
quantitatively compare the di↵erent proposed strategies.

We are not the first to leverage the tools of distributed computation to un-
derstand social insects and model biological processes. In particular the prob-
lem of ants foraging for food was recently studied in the distributed computing
community [22–25]. In more detail, by modeling the environment as an infinite
two-dimensional grid, upper [22] and lower [23] bounds were provided for the
problem of ants collaboratively foraging for food on the environment without
using communication. These bounds were recently generalized and improved
in [25]

In a di↵erent vein, the parallels between the process of sensory organ pre-
cursor selection in the fruit fly and the problem of finding a maximal indepen-



dent set have been used to design novel bio-inspired algorithms for fundamental
problems in distributed computation [26].

The problem of task allocation is an important and well-studied topic in
computer science, particularly in the distributed computing community. One of
the oldest incarnations, is that of multiprocessor scheduling [27, 28], a recent
survey is available in [29]. Another related problem is that of the centralized k-
server problem in which a collection of requests must be assigned to servers [30],
distributed versions of this problem have also been considered [31].

The general formulation of task allocation considers some number p of pro-
cessors that must cooperatively perform n tasks. The existing literature covers
a great number of variants of this problem, processors and tasks might be iden-
tical or di↵erent; tasks might arrive online or may be known to the processors in
advance; all processors may not be able to perform all tasks, or tasks may have
to be performed in a certain order; processors may be susceptible to fail-stop (or
other) failures; processors may communicate through shared memory, message
passing, or may not rely on communication; etc. A recent and thorough review
on the problem of distributed task allocation is available in [32].

There are several subtle di↵erences between existing distributed task alloca-
tion algorithms and the task allocation algorithm for ant colonies that we con-
sider. Namely the algorithm we consider only uses constant memory, does not
require that ants to be capable of sensing the demand of each task or to estimate
global parameters (like the size of the colony). A more fundamental di↵erence
between the problem statements is that the number of tasks we consider is a
small constant with respect to the number of ants, and we are concerned with
the allocation of proportions of workers to di↵erent tasks and not the allocation
of individual workers to specific tasks.

2 System model

We start by describing a mathematical model for the task allocation problem
in ant colonies. For the sake of simplicity, throughout our discussion we use the
term energy loosely without specifying the unit; however, any energy unit can
be used (e.g., Joule) as long as it is used consistently throughout the definitions.

Task allocation problem

The task allocation problem concerns a set A of ants, and a set T of tasks. The
size of an ant colony |A| depends on the species and varies slowly through the
lifetime of the colony, but can be considered fixed during short time intervals.
Depending on the ant species typical colony sizes range from 10 to millions; in
some species, each colony goes through this entire range through its lifetime. The
number of tasks |T | and their typical energy requirements also depend on the
ant species considered. However the number of tasks performed by a particular
species is constant and is not a function of the size of the colony.

For a task ⌧ 2 T , a time t 2 R�0 and an ant a 2 A we define the following
quantities.



– d(⌧, t) is the energy demand for task ⌧ at time t. This ”demand” reflects how
much work is currently needed in this task, and can be determined by envi-
ronmental conditions, the colony size, the fraction of brood (ant o↵spring)
vs workers, etc; although we do not attempt to uncover the relationship
between the demand and these parameters.

– e(⌧, a, t) is the energy that ant a can supply to task ⌧ at time t when it is
engaged in this task. This captures the e↵ectiveness of an ant at a specific
task, and may be determined by its morphological characteristics, as well its
previous experience.

Task assignment

A task assignment is a function y that assigns at each time t and for each ant
a 2 A either one task ⌧ 2 T or no task. Formally y(a, t) 2 T [ {?}.

Given an assignment y we define Y (⌧, t) as the set of ants assigned to task
⌧ 2 T , and I(t) is the set of ants that are not assigned to any task at time t.
Formally that is:

Y (⌧, t) = {a 2 A : y(a, t) = ⌧}
I(t) = {a 2 A : y(a, t) =?}

Thus by definition at any time t we have that A = I(t) [
S

⌧2T Y (⌧, t). We
will say an ant is idle at time t if it belongs to the set I(t)4.

For succinctness we define the energy supply and the energy need at each
task (both are defined in terms of a task assignment).

– w(⌧, t) =
P

a2Y (⌧,t) e(⌧, a, t) is the energy supplied to task ⌧ at time t, and
it is the sum of the energy supplied by the individual ants assigned to task
⌧ at time t.

– q(⌧, t) = d(⌧, t)�w(⌧, t), if negative represents a surplus of energy at task ⌧ ,
if positive represents a deficit of energy at task ⌧ , and if zero then the task
⌧ is in equilibrium.

A satisfying task assignment is one where no task has an energy deficit,
formally at time t a satisfying task assignment is one where q(⌧, t)  0 for all
⌧ 2 T . We say a task allocation problem is satisfiable if it has at least one
satisfying task assignment.

We are mostly interested in satisfiable task allocation problems where the
energy available at the colony far exceeds the energy demands of the tasks.
This is likely consistent with what has been observed in real ant colonies [4],
where even during periods where tasks have a very high demand (such as nest

4 We believe this formulation is superior to the alternative of considering an addi-
tional “idle task”, since task allocation algorithms will need to deal with this task
di↵erently, and it would unnecessarily complicate the definition of the demand and
e↵ectiveness functions to account for the “idle task”.



migration) an important fraction of the ants remain idle where the rest perform
the tasks necessary for the survival of the colony.

Ideally, we would like to find task assignments that achieve equilibrium for
every task (i.e., where the energy demand equals the energy supply). However
due to rounding issues this is not always possible, even when restricted to satis-
fiable task allocation problems. For instance, consider the case where the energy
demand for each task is an odd number and the energy that can be exerted by
each ant on any task is an even number. In this case, regardless of the number
of ants assigned to each task, no task can be at equilibrium.

For this reason, we instead seek task assignments that minimize the squared
di↵erence between the energy demands and the energy supplied. Formally, an
optimal task assignment is one that minimizes

P
⌧2T q(⌧, t)2. Clearly a task

assignment where all tasks are at equilibrium is optimal, but the opposite need
not be true.

3 Restricted system model

The model described in Section 2 was intentionally defined to be as broad as
possible. This decision was made with the purpose of allowing others to study
di↵erent kinds of task allocation algorithms and ant behaviors.

The following sections refine this broad model by imposing some additional
restrictions. The algorithm we describe in Section 4 considers this restricted
version.

Complexity of individual variation. Variation of the individual ant workers in the
colony is captured by the parameter e(⌧, a, t). This parameter can model complex
e↵ects such as a particular ant being worst at a task because of its physical
characteristics, or an ant getting better at a particular task through experience.
Unfortunately capturing even the simplest forms of individual variations in the
colony using this parameter quickly results in an intractable task allocation
formulation.

For instance, consider the case where, for each ant a 2 A, the parameter
e(⌧, a, t) is the same for every task ⌧ 2 T and for every time t 2 R�0. In
other words, the e↵ectiveness of an ant does not depend on the task it performs
and does not vary through time, but di↵erent ants may have di↵erent levels
of e↵ectiveness. This is the simplest form for the parameter e(⌧, a, t) that still
allows each individual in the colony to have a di↵erent level e↵ectiveness.

In this case, even if we assume a centralized full-information setting, the
problem of finding an optimal assignment of ants to tasks can be shown to
be NP-complete. This remains true even if there are only wo tasks with equal
demand since the set partition problem, known to be NP-complete [33], can be
reduced to the task allocation problem. In general this problem is also hard to
approximate and thus finding near-optimal solutions remains NP-hard [34]

The problem can be made tractable by placing additional restrictions, for
instance by limiting the possible values of the demand for each task or the



restricting di↵erent levels of e↵ectiveness of ants. Regardless, real ant colonies
may not converge on optimal or even near-optimal solutions, as long as the
solutions they have arrived at through the evolutionary process allow colonies
to survive and do better than their competitors.

For the above reasons, and in an e↵ort to consider algorithms that more
closely resemble those used by real ant colonies, in this paper we restrict our at-
tention to task allocation problems without individual variation. There is empiri-
cal biological evidence that supports this decision: at least in some ant species [3],
variation in task-specific e�ciency among workers is not utilized by colonies. In
other words, worker allocation to tasks in some cases is unrelated to their ability
to perform them particularly well.

Concretely in the rest of the paper we assume that e(⌧, a, t) is known and
constant for all ⌧ 2 T, a 2 A and t 2 R+. Therefore for simplicity throughout
the rest of the paper we will assume that both the energy demand d(⌧, t) and
energy supply w(⌧, t) are measured in ant units.

Synchronous task allocation. For the purposes of this paper we will assume that
time proceeds in synchronous lock-step rounds i = 1, 2, . . .. A task allocation al-
gorithm is a program that runs locally at each ant to produce a task assignment.
During each round i 2 R, every ant a 2 A works at task y(a, i). Before tran-
sitioning to the next round each ant may communicate with other ants, sense
di↵erent parameters of the environment and perform some local computation to
decide on what task to work on at the next round. The next section describes
in detail exactly which environmental parameters are capable of sensing and/or
communicating.

4 Allocation through binary feedback

In this section we propose and analyze a randomized distributed algorithm for
task allocation that requires only a very primitive binary feedback function. In
particular the algorithm we describe does not require that ants know the size of
the colony |A|, the energy demand d(⌧, i) of a task ⌧ 2 T , or the energy supplied
w(⌧, i) to a task ⌧ 2 T .

Instead, we assume that through local communication and by sensing their
environment and their own state, each ant can determine for each round i and
for each task ⌧ 2 T whether ⌧ has too few or too many ants assigned to it. In
other words, ants can determine only whether a task has a deficit or surplus of
energy, but they are not able to quantify it. Specifically we assume that at each
round i and for each task ⌧ 2 T ants can sense only a binary feedback function
f(⌧, i) where:

f(⌧, i) =

(
+1 q(⌧, i) � 0,

�1 q(⌧, i) < 0.



Recall that q(⌧, i) = d(⌧, i) � w(⌧, i) is the di↵erence between the energy
demand for task ⌧ at round i and the energy supplied for task ⌧ at round i.
Therefore the feedback function f is positive when the demand is greater than
or equal to the energy supply, and is negative otherwise. Alternative feedback
functions that do not distinguish sharply between having a surplus or deficit of
energy are discussed in Section 5.

This restricted binary feedback model prevents the colony from trying to
reach a perfect allocation in expectation in a single step, and thus the colony
must rely on a progressive refinement strategy. Moreover, this binary feedback
function does not provide enough information for the colony to determine if the
demand is matched exactly by the energy supplied to that task, and having
oscillations of the energy supply around the demand is inevitable.

4.1 Algorithm description

This subsection describes a randomized distributed algorithm that relies only on
the aforementioned binary feedback function to converge to a near-optimal task
allocation.

Ants executing the algorithm can be in one of the five states Resting,
FirstReserve, SecondReserve, TempWorker and CoreWorker, they
maintain a task currentTask 2 T [ {?} and a table % of potentials for each
task ⌧ 2 T . Initially ants start in the Resting state with currentTask =?
and a potential of zero for every task 8⌧ 2 T, %[⌧ ] = 0. The paragraphs below
describe each state in detail as well as the role of the potential table % and the
task currentTask.

Ants in the Resting state are idle and use the potential table % to choose
a currentTask and to determine when to start working (i.e., transition to a
working state). The potential for every task is a two bit value {0, 1, 2, 3} which
is updated based on the output of the binary feedback function; specifically
tasks with a deficit get their potential increased, and tasks with a surplus get
a potential of zero. The candidateList is defined as those tasks potential of 3,
and with constant probability ants in the Resting state will choose a task from
the candidateList uniformly at random and transition to the TempWorker

state. This is in the same spirit of the response-threshold strategies proposed by
biologists [20].

Ants in the TempWorker state and CoreWorker state work on the task
specified by currentTask (ants in all other states are idle). Specifically, ants in
the TempWorker state transition to the FirstReserve state if there is a sur-
plus of energy in currentTask, and otherwise transition to the CoreWorker

state. Ants in the CoreWorker state transition to the TempWorker state if
there is a surplus of energy in currentTask, and otherwise remain in the Core-

Worker state. The result is that when there is a surplus of energy all ants in
the TempWorker state will become idle before any ants in the CoreWorker

state.
Ants in the FirstReserve state and SecondReserve are state idle, but

unlike ants in the Resting state (which are also idle) if they start working they



Algorithm 1 Binary-Threshold Algorithm
state  Resting, currentTask  ?, %[⌧ ] = 0, 8⌧ 2 T . Initialize
case state = Resting

8⌧ 2 T, %[⌧ ] 
(
0 if f(⌧, i) < 0

max(%[⌧ ] + 1, 3) if f(⌧, i) > 0

candidateList  {⌧ 2 T | %[⌧ ] = 3}
if candidateList 6= ? then

with probability 1
2 do

8⌧ 2 T, %[⌧ ] 0
currentTask  random task from candidateList
state  TempWorker

end with

end if

case state = FirstReserve

if f(currentTask, i) < 0 then

state  Resting

else

with probability 1
2 do

state  TempWorker

otherwise

state  SecondReserve

end with

end if

case state = SecondReserve

if f(currentTask, i) < 0 then

state  Resting

else

state  TempWorker

end if

case state = TempWorker

if f(currentTask, i) < 0 then

state  FirstReserve

else

state  CoreWorker

end if

case state = CoreWorker

if f(currentTask, i) < 0 then

state  TempWorker

end if

end case



will do so at the task they were last working on. Ants in the FirstReserve state
transition to the Resting state if there is a surplus of energy in currentTask,
and otherwise they transition to the TempWorker state with constant prob-
ability or join the SecondReserve state. Ants in the SecondReserve state
transition to the Resting state if there is a surplus of energy currentTask,
and otherwise transition to the TempWorker state. Having two reserve states,
one with a deterministic transition and the other with a probabilistic transition,
allow us to recruit ants only from the reserved states instead of the entire idle
population, which prevents big oscillations. Indeed, biologists [35–39] have pro-
vided compelling evidence that ants prefer to work on tasks they have become
experienced in.

We remark that two reserve states is the minimum required for our recruit-
ment process to work. The requirement that the potential of a task to reaches
three before a resting ant starts working guarantees that resting ants do not start
working on a task until ants in the reserved states for that task have already
started working.

The number of bits of memory required by the algorithm to store the state,
the currentTask and the potential table % is 3+ log2 |T |+2|T | 2 ⇥(|T |), which
is linear on the number of tasks and independent of the colony size |A|.

For simplicity whenever ants make a decision with constant probability, we
will assume they make the decision with probability 1

2 (i.e., as if each ant was
flipping an independent unbiased coin). However by changing only the constants
in the di↵erent lemmas and propositions, the same analysis works if ants are
using any other constant probability.

4.2 Algorithm analysis

Before describing the properties satisfied by the proposed algorithm we intro-
duce some additional notation. For a round i we denote with Resti, Firsti,
Secondi, Tempi and Corei the set of ants that at the beginning of round i
are in the state Resting, FirstReserve, SecondReserve, TempWorker

and CoreWorker respectively. Additionally for a round i and a task ⌧ we de-
note with Firsti(⌧), Secondi(⌧), Tempi(⌧) and Corei(⌧) the set of ants that
at the beginning of round i have ⌧ as their currentTask and are in the state
FirstReserve, SecondReserve,TempWorker andCoreWorker state re-
spectively.

For the energy supplied by the colony to converge to the energy demanded
by a task we must require that the demand remains “constant” for a su�ciently
long period of time. Specifically, the demand of task ⌧ is constant at a round i i↵
d(⌧, i� 1) = d(⌧, i) = d(⌧, i+ 1). Similarly, the demand for a task ⌧ is constant
during an interval [i, i+k] i↵ for all j 2 [i, i+k] the demand for task ⌧ is constant
at round j.

Proof roadmap. In the following paragraphs we outline the steps used to prove
that the proposed algorithms converges quickly to a near-optimal allocation.



First, we show (Lemma 1) that given an interval of constant demand where
the number of ants in the colony is su�cient to satisfy the demand, then as
long as no task has too big a surplus during the interval, then the probability
that none of the tasks with a deficit becomes satisfied during the interval is
exponentially small in the interval length.

Next (Lemma 4) we show that in an interval of constant demand, once a
task transitions from having a deficit of ants to having a surplus of ants, this
transition will keep happening every two or three rounds during that interval.
We refer to these transitions as oscillations. We also show that each time an
oscillation happens, with constant probability it is a constant fraction smaller
than the previous oscillation in the interval.

We leverage the previous result to show (Lemma 5) that in an interval of
constant demand with oscillations, the probability that by the end of the interval
the size of the oscillations is greater than one ant is exponentially small on the
interval length.

Finally we show (Theorem 6) that during an interval of constant demand of
logarithmic length, with high probability by the end of the interval the number
of workers assigned to each task only di↵ers from the demand by at most one
ant. Due to space constraints we only outline the proofs.

Informally, the following lemma shows that during an interval of constant
demand and given su�ciently many ants, then if a set of tasks is satisfied without
surplus and a set of tasks is unsatisfied, then it is likely that an additional task
will become satisfied.

Lemma 1. Fix a constant " 2 (0, 1) and let k 2 ⇥(log 1
" ).

If the demands for all tasks are constant during the interval [i, i + k], and
|A| �

P
⌧2T (d(⌧, i) + 1), and there is a set of tasks C ✓ T such that 8⌧ 2 T \C

d(⌧, i) > w(⌧, i) and 8⌧ 2 C, 8j 2 [i, i+ k] d(⌧, j)  w(⌧, j)  d(⌧, j) + 1, then
Pr [8⌧ 2 T \ C, 8j 2 [i, i+ k]w(⌧, j) < d(⌧, j)]  ".

The proof of this lemma argues that given the conditions assumed, then in
order for all task to remain unsatisfied during the entire interval, at least one
ant must repeatedly decide not to work at any task, despite the fact that there
are tasks that need work; and the probability of this happening is exponentially
small on the interval length.

For the remaining part of the analysis we will make use of Hoe↵ding’s in-
equality. In addition we will also leverage the following proposition, which can
be shown easily as a consequence of Hoe↵ding’s inequality.

Proposition 2. LetX1, . . . , Xk be independent random variables where Pr [Xi = 1] =

Pr [Xi = 0] = 1
2 and let X =

Pk
i=1 Xi. If k � 2 then Pr

⇥
1
8k  X  7

8k
⇤
� 1

2 .

To simplify the analysis we introduce the following definition.

Definition 1. An oscillation happens for task ⌧ at round i if f(⌧, i) < 0 and
f(⌧, i+ 1) > 0.



Observe that if the demand for task ⌧ is constant at round i and an oscillation
occurs for task ⌧ at round i, then the fact that f(⌧, i) < 0 implies that d(⌧, i) <
|Corei(⌧) [ Tempi(⌧)| and the algorithm guarantees that by round i + 1 any
temporary worker becomes idle and only core workers remain. This together
with f(⌧, i+1) > 0 implies that |Corei(⌧)| < d(⌧, i). This is summarized in the
next proposition.

Proposition 3. If there is an oscillation for task ⌧ at round i and the demand for
⌧ was constant at round i then |Corei(⌧)| < d(⌧, i)  |Corei(⌧) [Tempi(⌧)|.

Observe that during an oscillation of task ⌧ at round i the ants in Tempi(⌧)
transition between working and being idle, while the ants in Corei(⌧) keep
working through the oscillation, and there are never more than Corei(⌧) [
Tempi(⌧) ants working during the oscillation. Therefore given an oscillation
for task ⌧ at round i we say |Tempi(⌧)| is the magnitude of the oscillation,
|Corei(⌧)| is the low-value of the oscillation, and |Corei(⌧)[Tempi(⌧)| is the
high-value of the oscillation.

The next lemma shows that if an oscillation happens during an interval of
constant demand, it will happen again in two or three rounds. Moreover with
constant probability the magnitude of the oscillation will become a constant
fraction smaller than the previous oscillation by either increasing the low-value
or decreasing the high-value.

Lemma 4. If there is an oscillation for task ⌧ at round i and the demand for ⌧
is constant during the interval [i, i+ 4] then:
1. Secondi+2(⌧) ✓ Tempi(⌧) and if |Tempi(⌧)| � 2 then with probability at

least 1
2 we have 1

8 |Tempi(⌧)|  |Secondi+2(⌧)|  7
8 |Tempi(⌧)|.

2. There is an oscillation for task ⌧ either at
a) round i+2 whereTempi+2 = Tempi(⌧)\Secondi+2(⌧) andCorei+2(⌧) =

Corei(⌧), or
b) round i+3 whereTempi+3 = Secondi+2(⌧) andCorei+3(⌧) = Tempi(⌧)[

Corei(⌧) \ Secondi+2(⌧).

The proof follows through a straightforward but detailed analysis of the state
transitions made by the ants on the di↵erent states of the algorithm during the
interval, relying on Proposition 2 to show that the magnitude of oscillations
decreases by a constant fraction with constant probability.

The next lemma shows that given an interval with a constant demand and
where the number of resting ants is greater than the number of ants required
by a particular task, then the probability that the magnitude of the oscillations
does not converge to one is exponentially small in the interval length.

Lemma 5. Fix " 2 (0, 1) and let k 2 ⇥(log |A|+ log 1
" ). If the demand for task

⌧ is constant in the interval [i, i+ k] with oscillations for task ⌧ at round i and
i+ k then Pr [|Tempi+k(⌧)| > 1]  ".

This lemma can be shown as a consequence of the results of Lemma 4 and
following a standard concentration of measure argument.



We are finally ready to prove the main theorem of this paper. Namely, we
show that if the colony has enough ants to satisfy the demand, then during an
interval with a length which is logarithmic on the colony size and linear on the
number of tasks, the probability that the di↵erence between the energy supplied
to each task, and the energy required by each task, is greater than one for any
task, is exponentially small on the size of the colony.

Theorem 6. Fix " 2 (0, 1) and let k 2 ⇥(|T |(log 1
" + log |A|+ log |T |)).

If demand is constant for all tasks in the interval [i, i+k] and |A| �
P

⌧2T (1+
d(⌧, i)), then Pr [8⌧ 2 T d(⌧, i+ k)� w(⌧, i+ k)|  1] � 1� ".

To prove this theorem we go through a case analysis, showing that unless the
work supplied by the colony has converged to be within one ant of the demand
for every task, an additional task will converge after at most ⇥(log |A|+ log 1

" );
the additive log |T | term is a result of a union bound over the probability of not
converging for each task.

Given that in real ant colonies we expect |T | to be a constant, then by letting
" = 1/|A| we get the following corollary.

Corollary 1. Let k 2 ⇥(log |A|). If the demand is constant for all tasks in the
interval [i, i+k] and the number of ants is enough to satisfy the demand, then with
high probability ants converge to an allocation where |d(⌧, i+k)�w(⌧, i+k)|  1.

5 Conclusions and future work

We’ve shown that given certain assumptions, a fairly simple task allocation al-
gorithm can achieve near-optimal performance in time which is logarithmic on
the colony size. The assumptions we had to make were that individual workers
did not di↵er in their ability to perform tasks, that workers could sense whether
each task required more workers or not, and that workers use a small amount
of memory about recently performed tasks and task demand. No sophisticated
communication or sensing, nor long-term memory were required. Interestingly,
we also argued that once variation among workers (in ability to perform tasks) is
introduced, the task allocation problem becomes NP-hard. This may be the rea-
son that such variation, when it is not correlated with clear categorizing factors
such as body size, is not always optimally utilized by ants [3].

It is inherent in our algorithm, and probably any algorithm that does not
allow ants to measure precisely how many workers are needed to fulfill a task,
that the number of workers engaged in a task fluctuates around the optimum.
In other words, the algorithm does not reach an optimal allocation immediately,
but approaches it over time. Our model assumes that workers go through three
stages between being fully uncommitted and idle (Resting) and fully committed
and working on a task (CoreWorker). These stages introduces some resistance
in workers to being too frequently reallocated among di↵erent tasks, and thus
reduces oscillations.

As future work, we would like to explore di↵erent, weaker binary feedback
functions. For instance, one could consider a binary function which is only correct



with probability 1� � for some � < 1
2 . An alternative binary feedback function

could return accurate values when the di↵erence between the demand and the
supply is di↵erent by a significant mount, but returns random values when the
energy supply and demand are close to being in equilibrium. We conjecture that
with little modifications the same algorithm would perform well in these circum-
stances, but it would provide slightly weaker guarantees (bigger oscillations) and
require a more technical analysis.

In this paper the role of communication has been abstracted and is captured
by the binary feedback function. We would also like to explore possible mech-
anisms by which said function could be implemented using explicit means of
communication, such as pheromone or other signaling mechanisms.

What are the e↵ects of varying the number of tasks on the properties of the
algorithm. Specifically, the memory requirements of the proposed algorithm are
linear in the number of tasks, and so is its convergence time. Can either of these
be decreased to be logarithmic on the number of tasks?
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