Hybrid Consensus: Efficient Consensus in the
Permissionless Model*

Rafael Pass! and Elaine Shi?

1 CornellTech, New York, NY, USA
rafael@cs.cornell.edu

2 Department of Computer Science, Cornell University, Ithaca, NY, USA
elaine@cs.cornell.edu

—— Abstract

Consensus, or state machine replication is a foundational building block of distributed systems
and modern cryptography. Consensus in the classical, “permissioned” setting has been extensively
studied in the 30 years of distributed systems literature. Recent developments in Bitcoin and
other decentralized cryptocurrencies popularized a new form of consensus in a “permissionless”
setting, where anyone can join and leave dynamically, and there is no a-priori knowledge of
the number of consensus nodes. So far, however, all known permissionless consensus protocols
assume network synchrony, i.e., the protocol must know an upper bound of the network’s delay,
and transactions confirm slower than this a-priori upper bound.

We initiate the study of the feasibilities and infeasibilities of achieving responsiveness in per-
missionless consensus. In a responsive protocol, the transaction confirmation time depends only
on the actual network delay, but not on any a-priori known upper bound such as a synchronous
round. Classical protocols in the partial synchronous and asynchronous models naturally achieve
responsiveness, since the protocol does not even know any delay upper bound. Unfortunately, we
show that in the permissionless setting, consensus is impossible in the asynchronous or partially
synchronous models.

On the positive side, we construct a protocol called Hybrid Consensus by combining classical-
style and blockchain-style consensus. Hybrid Consensus shows that responsiveness is nonetheless
possible to achieve in permissionless consensus (assuming proof-of-work) when 1) the protocol
knows an upper bound on the network delay; 2) we allow a non-responsive warmup period after
which transaction confirmation can become responsive; 3) honesty has some stickiness, i.e., it
takes a short while for an adversary to corrupt a node or put it to sleep; and 4) less than 1/3
of the nodes are corrupt. We show that all these conditions are in fact necessary — if only one
of them is violated, responsiveness would have been impossible. Our work makes a step forward
in our understanding of the permissionless model and its differences and relations to classical
consensus.

1998 ACM Subject Classification C.2.4 Distributed Systems
Keywords and phrases Distributed Consensus, Permissionless, Responsiveness

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.39

1 Introduction

State machine replication, also commonly referred to as atomic broadcast, has always been
a central distributed systems abstraction. In a state machine replication protocol, a set

* A full version of the paper is available at https://eprint.iacr.org/2016/917.
T This research is funded in part by NSF through grant number CNS-1561209.

© Rafael Pass and Elaine Shi;

37 licensed under Creative Commons License CC-BY
31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 39; pp.39:1-39:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DISC.2017.39
https://eprint.iacr.org/2016/917
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

39:2

Hybrid Consensus: Efficient Consensus in the Permissionless Model

of servers seek to agree on an ever-growing, linearly-ordered log, such that two important

properties are satisfied:

1. consistency, i.e., all servers must have the same view of the log; and

2. liveness, i.e., whenever a client submits a transaction, the transaction is incorporated
quickly into the log.

For more than a decade, companies such as Google and Facebook rely on state machine

replication protocols (in the crash fault model) to replicate a significant fraction of their

database and computing infrastructure. For simplicity, henceforth we use the term consensus

to refer to state machine replication protocols throughout this paper.

Traditionally, consensus protocols were studied in a permissioned setting where the set of
participating nodes is known a-priori. The enormous success of decentralized cryptocurrencies
such as Bitcoin and Ethereum have brought to our attention a new model of distributed
consensus, that is, the permissionless model. Informally speaking, a permissionless model
has the following notable differences from the classical permissioned model:

1. anyone can join the protocol and the network provides no authentication;

2. nodes come and go;

3. there may not be a priori knowledge how many nodes will actually show up; and
4. the number of nodes participating can vary over time.

Although recent (and concurrent) works have begun to explore the theoretical (in)feasibility
of reaching consensus in the permissionless model [13,17,19,21], our understanding of the
permissionless model is nonetheless relatively little in comparison with our rich body of
knowledge for permissioned consensus. In this paper, we make an endeavor at furthering our
understanding of the permissionless model.

All known permissionless consensus protocols work in the synchronous model. So far, it
is somewhat well-understood that proofs-of-work can be employed to thwart Sybil attacks [5,
13,14,18,19] and thus circumvent earlier known theoretical infeasibilities for the permissionless
model [7] — but all known consensus protocols in the permissionless model rely on network
synchrony [5,13,14,18,19]. Remarkedly, the famous Nakamoto blockchain [13,18,19] (that
underlies Bitcoin) also works only in the synchronous model where the protocol must know an
a-priori upper bound of the network delay (henceforth denoted A) [19]. Otherwise, if a delay
upper bound A is unknown, Pass et al. [19] shows that Nakamoto blockchain’s security can be
broken. Pass et al. [19] also show that the expected block interval of Nakamoto’s blockchain
must be set to be, roughly speaking, a constant factor larger than A for consistency.

Relying a synchronous model, however, can be undesirable in practice. Since the synchrony
parameter A must be set conservatively to leave a sufficient safety margin, in practice
the actual network’s delay is typically much better than this pessimistic upper bound.
Unfortunately, any protocol that must wait for at least one synchronous round (or one block-
interval) for transaction confirmation cannot benefit from the network’s actual performance.
We naturally desire a protocol that can confirm transactions as fast as the network makes
progress, a notion that we shall henceforth refer to as responsiveness. The notion of
responsiveness was first defined by Attiya et al. [6]: in a responsive consensus protocol, we
require that the transaction confirmation time is a function of the actual network’s delay 9,
but not of the a priori upper bound A that is provided to the protocol as input [6].

We thus ask the following natural question:

Can we achieve responsiveness in permissionless consensus? In other words, is slow
confirmation inherent in permissionless consensus?

R. Pass and E. Shi

1.1 Our Results and Contributions

Impossibility of permissionless consensus in the partially synchronous model. Tradition-
ally, permissioned state machine replication protocols achieve responsiveness by adopting
a partially synchronous or asynchronous model', where the protocol does not know any
a-priori upper bound of the network delay A.

Thus, to answer our earlier question, a first attempt is to design a permissionless consensus
protocol for the partially synchronous or asynchronous setting. Unfortunately, this task turns
out to be impossible — we show that no consensus protocol unaware of a delay upper bound
A can simultaneously guarantee consistency and liveness in the permissionless setting — yet
another reason why the permissionless setting is fundamentally different from permissioned!

Is responsiveness hopeless for permissionless? At first sight, this pessimistic observation
seems to have closed the question: perhaps waiting for the synchronization delay is inevitable
in permissionless consensus. Even more discouragingly, it is easy to see that when the number
of nodes n is unknown a priori, this lower bound generalizes to one-shot consensus even when
the protocol knows A but must be responsive — by one-shot consensus, we mean that we need
to confirm exactly one transaction proposed to honest nodes upfront, and responsiveness
requires that the confirmation time be independent of A.

Hybrid consensus. One might now be attempted to think that responsiveness is impossible
in a permissionless setting. Perhaps somewhat surprisingly, we construct a protocol called
Hybrid Consensus through which we show that responsiveness is actually possible in permis-
sionless state machine replication (assuming proof-of-work), provided that

1. less than % — € fraction of nodes are corrupt where € is an arbitrarily small constant;

2. the protocol is aware of the upper bound A, and moreover, we allow a warmup period that
depends on A — transactions start to confirm as fast as the actual network’s performance
after this warmup period but not before; and

3. honest nodes stick around and remain honest for a while even when an adversary may
try to adaptively corrupt or crash the node — in other words, corruption is not an instant
operation but requires some time to take effect. We shall formally define this requirement
as the 7-mildly adaptive corruption model where 7 is the stickiness parameter.

Lower bounds. Are the above constraints mecessary for achieving responsiveness in the
permissionless model? Earlier we have argued that requirement (2) is necessary since
responsiveness is impossible for one-shot consensus even when the protocol knows A. Later
we will prove several simple but hopefully insightful lower bounds, and show that indeed, all
the remaining conditions are necessary as well!

1. We prove that % corruption is the optimal resilience parameter for responsiveness — even
assuming proof-of-work, static corruption, and even when the number of players is known
in advance and all players spawn upfront.

2. If honest nodes do not stick around at least for a while (i.e., if the stickiness parameter
7 = 0), responsiveness would also be impossible when the number of players can vary by
a factor of 2 (or more) in adjacent rounds.

In summary, our paper gives a somewhat comprehensive answer towards understanding
the feasibilities and infeasibilities of achieving responsiveness in permissionless consensus.

! For the purpose of this paper, the technical difference between partial synchrony and asynchrony is
non-essential.

39:3

DISC 2017

39:4

Hybrid Consensus: Efficient Consensus in the Permissionless Model

Our results contribute to the further understanding of the permissionless model, how it differs
from the classical permissioned model, and how techniques from permissioned consensus can
lend to permissionless consensus.

2 Preliminaries

2.1 Permissionless Execution Model

We consider a standard, round-based Interactive Turing Machine (ITM) execution model.
The execution proceeds in atomic time steps called rounds — henceforth in our paper the
terms time and round are used interchangably.

Corruption model. We consider the following corruption model.

Spawning. The adversary is allowed to spawn new nodes in any round during the execution.
Newly spawned nodes can either be honest or corrupt.

Corruption. To corrupt a node during the protocol, the adversary must first issue a
“target corrupt” instruction to an honest node 7 — let ¢t denote this round. This “target
corrupt” instruction will take effect only 7 rounds later, i.e., the node i actually becomes
corrupt in round t + 7. When a node actually becomes corrupt, its internal states are
exposed to the adversary and the adversary fully controls the node’s actions. Henceforth,
the parameter 7 is referred to as the agility parameter. If 7 = 0, we model fully adaptive
corruptions; if 7 = 0o, we model static corruption; anywhere in between, corruption is
said to be mildly adaptive.

Killing. The adversary can issue a “kill” instruction to kill a corrupt node, and the
instruction takes effect immediately. A killed node is no longer considered live. The
adversary is not allowed to corrupt honest nodes directly without corrupting them first.

Henceforth, in every round, all nodes that have been spawned but have not been killed
are considered live. We say that the adversary is subject to a p corruption budget iff in every
round, the number of honest nodes that have not received “target corrupt” is more than
1 — p fraction of the total number of live nodes in that round.

Communication model. The adversary is responsible for delivering all messages sent by
nodes (honest or corrupt) to all other nodes. The adversary cannot modify the contents of
messages broadcast by honest nodes, but it may arbitrarily delay or reorder the delivery of
a message subject to the following §-bounded delay constraint: if an honest node sends a
message at time ¢, then in any round r > ¢ + 4, any honest node that is live in round r will
have received the message, including nodes that may possibly have been sleeping but just
woke up in round r, as well as nodes which may have just been spawned at the beginning of
round r. We assume that the identity of the sender is not known to the recipient.

Henceforth in this paper, we assume that the protocol is provided with an input A which
is an a-priori upper bound of the actual network delay 4.

Number of nodes. For simplicity we make a mild assumption about how the number of
players may vary. We assume that

1. the protocol is given an estimate n* of the number of players; and
*

2. the number of players in every round is between [%-,n*].

R. Pass and E. Shi

We stress that our partial synchrony impossibility and fully adaptive impossibility results
hold as long as the protocol’s estimate of the number of players can be off by a factor of 2

(or more)?.

2.2 State Machine Replication

In this paper, a permissionless consensus protocol is a protocol that realizes the “state machine

replication” abstraction in a permissionless environment. In a state machine replication

protocol, in every round, every honest node receives one or more transactions as input, and
outputs a log. Henceforth let LOG] denote node #’s output log in round r. A state machine
replication protocol is said to satisfy consistency, iff except with negligible probability,

1. for any node 4 honest in round r and any node j honest in round ¢, either LOG] < LOGE»
or LOG; < LOG], where < denotes “is a prefix of” (by convention, we assume that z < z
for any x); and

2. any honest node’s log should not shrink over time.

A state machine replication protocol is said to satisfy (Twarm, Leonfirm)-liveness, iff except

with negligible probability, if an honest node receives some transaction tx as input or has tx

in its output log in round r > Tyarm, then in round r + Teongem Or later, tx appears in all
honest nodes’ output logs.

Responsiveness. A state machine replication protocol that satisfies (Twarm, Tconfirm)-liveness
is said to be responsive, iff the function Tionfrm depends only on the actual maximum network
delay 0 but not on the a-priori upper bound A. Note that we allow the warmup period
Twarmup tO be non-responsive, i.e., dependent on the a-priori upper bound A.

3 Limits on Responsiveness in Permissionless Consensus

We present our lower bounds for responsiveness. Due to space constraints, we present proof
intuitions in this section and defer full, formal proofs to our online full version [20].

Impossibility of partial synchrony for permissionless. One obvious approach towards
achieving responsiveness is to rely on a partially synchronous or asynchronous model —
indeed, classical, permissioned consensus protocols in the partially synchronous or asyn-
chronous models naturally provide responsiveness, since the protocol does not even know a
network delay upper bound. Unfortunately, as it turns out, the same approach would fail in
the permissionless setting.

We prove the following theorem where a partially synchronous protocol is defined to be
one whose protocol instructions do not depend on the a-priori delay upper bound A.

» Theorem 1 (Impossibility of partial synchrony). No partially synchronous, permissionless
consensus protocol can achieve both consistency and liveness in an execution environment
where the protocol is provided with an a-priori estimate of the number of players that can be
off by a factor of 2 (or more) — even when no node is corrupt.

2 On the other hand, for upper bounds: although the earlier blockchain analysis work by Pass et al. [19]

and Fruitchain [21] assume that the number of players in every round stays fixed and is known to the
protocol — we observe that it is straightforward to extend these earlier works to the case when the
number of players may vary by any known constant factor, and that the protocol is given an estimate
that can be off by a known constant factor (see online full version [20] for additional details).

39:5

DISC 2017

39:6

Hybrid Consensus: Efficient Consensus in the Permissionless Model

Proof sketch. We explain the proof intuition but defer the formal proof to the online full
version [20]. Imagine an execution where honest nodes Py and P; have a slow network link.
Py cannot distinguish whether its network link to P; is slow, or if P; simply did not show up.
Had it been the latter case, Py must output a decision quickly (and for a sufficiently large
choice of A, the decision will be output before the end of A rounds). Thus Py must output
a decision quickly in the current execution too (i.e., former case). By symmetry, P; must
output a decision quickly too. Now, if Py and P; received different, high-entropy transactions
as inputs, they would have resulted in disagreement except with negligible probability. <«

Resilience lower bound. We next ask the question, suppose that we do allow the protocol
to know A, and moreover we allow a non-responsive warmup period — in this case, can we
achieve responsive permissionless consensus, and if so, what fraction of corruption can we
tolerate? We prove the following lower bound.

» Theorem 2 (Resilience lower bound). No responsive, permissionless consensus protocol
can tolerate % or more corruptions, even assuming the existence of a proof-of-work oracle,
static corruptions, and even when assuming that all nodes are spawned upfront (i.e., no late
spawning), and moreover, the protocol is provided with the exact number of players.

Proof sketch. Our proof is inspired by the well-known %—corruption lower bound by Dwork
et al. [11]. Dwork et al’s proof considers an execution with three nodes, honest nodes Py, P;
and a corrupt node Q). The corrupt node @ simulates two nodes Qg and @7 in its head where
Qyp plays with P, for b € {0,1}. Messages between Py and P; are delayed for a sufficiently
long time. Dwork et al. argues that in such an execution, Fy’s view is the same as an
alternate execution where P; is the corrupt node, and thus Py should output a decision
responsively. By symmetry, so will P;. Now, if Py and P; received different, high-entropy
transactions as inputs, then they would disagree.

The main challenge in our proof is that we must essentially prove the same statement,
but assuming a proof-of-work oracle. Since a corrupt node can query the proof-of-work oracle
only once in each time step, the adversary cannot simulate two parallel executions without
causing any slowdown. Fortunately, there is a way to temporally interleave the two simulated
executions, such that the second execution waits for the first one to finish before starting —
and the lapse in time till the second execution starts can be charged to the network delay.
We defer the full, formal proof to the online full version [20]. <

Impossibility of responsiveness with a fully adaptive adversary. We show that respons-
iveness is impossible if the adversary is fully adaptive, i.e., 7 = 0, and moreover, if the
number of players in every round can differ by a factor of 2. The intuition is the following:
when the agility parameter 7 = 0, i.e., if “honesty” has no stickiness, then the adversary
can corrupt and kill honest nodes instantly. In other words, the adversary can kill an old
batch of honest nodes and spawn a new batch instantly, such that the nodes in two adjacent
rounds are completely disjoint — notice that the adversary can do this without even charging
to the corruption budget p! Thus every round behaves like the start of the execution where
the number of online nodes is unpredictable by a factor of 2x. This means that even a
non-responsive warmup period will not help. We formalize this intuition in the following
theorem. It is interesting to note why this lower bound no longer holds when honesty does
have some stickiness. In this case, swapping out an old batch of nodes and swapping in
a new batch is no longer for free — since when an honest node receives a “target corrupt”
instruction, it is charged to the corruption budget p.

R. Pass and E. Shi

» Theorem 3 (Impossibility of responsiveness with a fully adaptive adversary). No protocol
(even in the proof-of-work model), given an estimate n*, can achieve responsive permissionless
consensus in a fully adaptive environment (i.e., T = 0) where the number of nodes in each
round is allowed to vary between [%-,n*] — moreover this holds for any corruption budget p.

n*

2

We defer the formal proof of the above theorem to our online full version [20].

4 Hybrid Consensus

4.1 Blockchain Preliminaries

An abstract blockchain protocol. One way to realize state machine replication is through
a blockchain protocol. In a blockchain protocol, in every round, every honest node receives
one or more transactions as input. In every round, every honest node outputs a chain
consisting of linearly ordered blocks, where each block is a sequence of logical records (e.g.,
transactions). As defined by Garay et al. [13] and Pass et al. [19], a blockchain protocol is
expected to satisfy three properties except with negligible probability:

1. consistency, i.e., all honest nodes’ output chains agree with each other except for the
trailing A\ blocks where A is a security parameter;

2. Q-chain quality, i.e., in any A consecutive blocks in an honest node’s output chain, more
than @ fraction must be contributed by honest nodes that have not received “target
corrupt”; and

3. (G,G')-chain growth, i.e., over any duration of length ¢ where Gt > A, honest nodes’
chains grow by at least Gt and at most G't.

It is not hard to see that given a blockchain protocol snailchain, we can construct a non-
responsive permissionless consensus protocol, where we simply run the blockchain protocol
snailchain, and have each node’s output log be its chain minus the trailing ©(\) blocks. In
particular, the resulting permissionless consensus protocol’s liveness can be inferred from
snailchain’s (positive) chain quality and chain growth lower bound3.

Nakamoto’s blockchain. Earlier, Garay et al. [13] and Pass et al. [19] analyze Nakamoto’s
blockchain protocol [18] for the case when the number of players n is fixed — we observe that
it is straightforward to extend these earlier results to deal with the case when n varies by a
known constant factor (see our online full version [20] for additional details). In other words,
the following statement is immediately implied by these earlier works [13,19]: assuming the
existence of an “idealized” proof-of-work oracle, there exists a blockchain protocol, as long
as

(i) the protocol is provided with an estimate of the number of players that is off by a known

constant factor;

(ii) the number of players in every round varies by a known constant; and
(i) the protocol is aware of a upper bound A of the network’s delay.

3 Although a blockchain abstraction may resemble the state machine replication definition in Section 2.2,
the blockchain abstraction additionally allows us to express a rough notion of time through chain growth,
and express “fairness” through chain quality.

39:7

DISC 2017

39:8

Hybrid Consensus: Efficient Consensus in the Permissionless Model

4.2 OQur ldeas in a Nutshell

To clarify our contributions, the high-level idea of combining classical- and blockchain-style
consensus has been proposed before [9] or in concurrent work [15]. However, these earlier
works do not achieve responsiveness or are flawed (see Section 5 for detailed discussions).
Our hybrid consensus scheme is different in nature from these other works [9,15] despite the
superficial resemblance in the high-level idea. We now explain intuitively how to derive our
hybrid consensus scheme step by step.

At a very high level, the idea is to run an underlying blockchain protocol denoted
snailchain — for the time being, imagine that we are running Nakamoto’s blockchain as the
snailchain. We rely on the blockchain to re-elect committees over time where each committee
consists of recently online miners. Each committee will now execute a classical, partially
synchronous consensus instance (e.g., PBFT) henceforth referred to as “daily consensus” to
confirm transactions. To periodically elect committees, we can do the following: whenever
the blockchain advances by A number of blocks, we re-elect a committee in the following way:
1. first, chop off ©(A\) number of trailing, unstable blocks; and
2. in the remaining chain, the most recent A blocks’ miners’ are elected as the new committee.

Now, we make the following useful observations:

1. Due to the consistency property of the blockchain, as long as we removed the trailing
©(\) blocks, except with negligible probability, all nodes will agree on the committee —
for this reason, removing the trailing ©(\) blocks is important, and previous works that
neglected this [15] could lead to inconsistency.

2. If the underlying blockchain satisfies %—cham quality, then in every window of A consecutive
blocks in an honest node’s chain, at least % fraction of blocks that are contributed by
honest nodes (that have not received “target corrupt”).

3. Finally, due to chain growth, it does not take too long to re-elect each new committee.

To make our scheme fully work, however, various non-trivial challenges must be addressed,
including
1. how to achieve (near) optimal resilience;
2. how to smoothly switch between multiple daily consensus instances and compose their
output logs; and
3. how to deal with a posterior corruption attack.
As we discuss more in the Section 5, some earlier works [9,15] neglect a subset to all of these
issues, making their claims somewhat incomplete or flawed. We now discuss how to address
these non-trivial technicalities one by one.

Achieving optimal resilience. For near optimal resilience, our hope is that we can achieve
%—chain quality as long as more than % of the nodes are honest (and have not received
“target corrupt”) — however, perhaps somewhat surprisingly, this is fact false for Nakamoto’s
blockchain! Due to a well-known selfish mining attack [12], Nakamoto’s blockchain in fact
does not achieve “perfect” chain quality. Specifically, for Nakamoto’s blockchain to achieve
% chain quality, we must in fact assume that more than % of the nodes are honest!

To aid understanding, we briefly explain the selfish mining attack. When a corrupt node
mines a block, it withholds the block without releasing it to honest nodes. Later, when an
honest node mines a equal-length fork, the adversary now immediately releases his private
block to race against the honest node’s. If the adversary additionally controls network
delivery, he can perform a rushing attack such that his private fork is guaranteed to arrive

R. Pass and E. Shi

first at other nodes, and thus everyone will now mine off the adversary’s private fork. Such
an attack effectively “erases” a portion of the honest node’s mining power, a direct effect of
which is degraded chain quality as mentioned above.

As argued above, if we use Nakamoto’s blockchain as the underlying snailchain, we can
tolerate only i corruption. However, our goal is to tolerate % — e corruption and thus achieve
near optimal resilience. To this end, we rely on the recent Fruitchains [21] as a drop-in
replacement for Nakamoto’s blockchain, i.e., we will instantiate snailchain with Fruitchains [21].
Interestingly, Fruitchains realizes exactly the same abstraction as Nakamoto’s blockchain but
achieves near optimal chain quality — more specifically, it achieves this by piggybacking two
independent mining processes on top of each other, one for mining fruits, and one for mining
blocks. In Fruitchains, blocks contain fruits and fruits in turn contain transactions. One can
show that the underlying blockchain’s liveness guarantees that honest nodes’ work in mining
fruits cannot be erased by the adversary. Thus, if we regard the fruits as the new blocks,
Fruitchain achieves near optimal chain quality.

Switching between daily consensus instances. Another technicality is how to smoothly
transition between multiple daily consensus instances without causing “glitches” in responsive
transaction confirmation. To this end, our idea is the following: whenever the blockchain
advances by another A number of blocks, we initiate a stopping procedure for the present
daily consensus instance while simultaneously starting the next daily consensus instance.
Since the stopping procedure may take some time to complete, during a short window, two
or more daily consensus instances may be executing concurrently. Although the new daily
consensus instance may start accumulating a log, we defer including this log in the output
until the previous daily consensus instance has fully terminated and its log fully output. It
is not hard to see that as long as this stopping procedure is responsive, all transactions will
confirm responsively without any glitches during the switch. In our online full version [20], we
show that subtle composition issues arise when composing multiple daily consensus instances.

On-chain stamping and posterior corruption defense. Although it takes a while for the
adversary to adaptively corrupt nodes, it is possible for the adversary to eventually corrupt
entire past committees. We would like to retain consistency even when entire past committees
can be corrupt — henceforth we refer to this problem as posterior corruption. The challenge
with posterior corruption is that the corrupt past committee can sign equivocating transac-
tions; and whenever a new node joins the protocol, it cannot distinguish which signature is
real and which signature was generated a-posteriori by a corrupt past committee — this can
lead to incomnsistency. To defend against such a posterior corruption attack, we introduce
an on-chain stamping mechanism. When a committee completes its term of appointment
(where each term is said to be a day), it will propose hash of the daily log, signed by more
than % of the committee, to be stamped on the blockchain. Now, although the entirety of a
past committee can become corrupt sometime after its term of appointment and can sign
arbitrary messages of the past — at this point, these signatures will be too late to deceive
anyone, since the hash of the committee’s daily log will already be stamped on the blockchain,
and thus the corrupt committee of the past can no longer equivocate about their past daily
log unless they can find hash collisions.

4.3 Detailed Protocol

We present our protocol below but defer formal definition of building blocks and proofs
to the online full version [20]. For modular composition, we make use of a global signing

39:9

DISC 2017

39:10

Hybrid Consensus: Efficient Consensus in the Permissionless Model

functionality gggn (parametrized by a signature scheme) shared by all protocol instance.

Gsign provides the following interfaces:

1. upon receiving keygen from a node i: Ggign calls X’s key generation to generate a new
(pk, sk) pair and returns pk;

2. upon receiving mykeys from a node i, output the set of all public keys that have been
generated for i;

3. upon receiving sign(pk, msg) from a node i, if pk was recorded as a public key generated
for 4, call 3.Sign(sk, (sid, msg)) where sid is the current session identifier, and sk is the
secret key corresponding to pk, and return the signature;

4. when i becomes corrupt: return all of node i’s secret keys to A.

4.3.1 Offchain BFT

We call each committee’s term of service a day. For modular protocol composition, we define
an intermediate abstraction called a daily offchain consensus protocol, denoted DailyBFT. In
DailyBFT, committee members run an offchain BFT instance to decide a daily log, whereas
non-members count signatures from committee members. A DailyBFT[R] parametrized by
the session identifier R (representing the day) has the following syntax.

Inputs and outputs. In each time step, the environment Z can provide the following types

of inputs multiple times:

1. start(comm) where comm = {pk; };c[m];

2. TXs; and

3. stop.

Honest nodes output the following to Z:
In each time step ¢, honest nodes output to the environment Z notdone(logt), until in
one final step t*, it outputs done(logt*7recs), where recs is either () or a set of signed
tuples vouching for the hash of the final daily log. After outputting done(logt*7recs),
honest nodes stop outputting in future time steps.

Construction. In Figure 1, we construct DailyBFT from a “strongly secure BFT” protocol
denoted BFT. A strongly secure BFT protocol is a strengthening of the classical, property-
based definition of a state machine replication protocol — this strengthening is necessary to
defend against a selective opening attack as we discuss in more detail in our formal proofs in
the online full version. We give an overview of the protocol below.
BFT wvirtual nodes and selective opening of committee. When DailyBFT receives a
start(comm) command, if comm contains one or more of its own public keys, then the
node is elected as a committee member. In this case, the node will fork a BFT virtual
node for each public key in comm that belongs to itself. Here the committee is selectively
opened by the environment through the start(comm) command, later our proof will
need to leverage the strong security of BFT.
Member and non-member basic operations. Committee members populate their daily logs
relying on the BFT protocol, whereas committee non-members count signatures from
committee members to populate their logs.
Termination. Nodes implement a termination procedure as follows: whenever an honest
committee member receives a stop instruction, it inputs a special, signed stop transaction
to each of its BFT virtual node. As soon as the inner BFT instance outputs a log containing
stop transactions signed by at least [|comm|/3] distinct committee public keys, the log is
finalized and output. All transactions after the first [|comm|/3] stop transactions (with
distinct committee public keys) are ignored.

R. Pass and E. Shi

Signed daily log hashes. When committee members output done, they also output a
signed digest of the final daily log — later, our HybridConsensus protocol will stamp this
digest onto the snailchain.

4.3.2 Hybrid Consensus

We now describe our hybrid consensus protocol built on top of a blockchain protocol
denoted snailchain. The description of our hybrid consensus relies on snailchain being any
protocol that realizes an abstract blockchain (see Section 4.1). For conceptual simplicity, we
recommend that the reader first think of snailchain as being Nakamoto’s original blockchain
protocol [13,18,19]. However, later we will actually plug in the Fruitchains [21] protocol as a
drop-in replacement of Nakamoto to instantiate snailchain. Since Fruitchains [21] has near-
optimal chain quality, the resulting hybrid consensus protocol, instantiated with Fruitchains,
will have almost-optimal resilience.

Hybrid consensus consumes multiple instances of DailyBFT where rotating committees
agree on daily logs. Hybrid consensus primarily does the following:

It manages the spawning and termination of DailyBFT instances effectively using snailchain

as a global clock that offers weak synchronization among honest nodes;

Recall that each DailyBFT instance does not ensure security for nodes that spawn too late,

since committee members can become corrupt far out in the future at which point they

can sign arbitrary tuples. Therefore, hybrid consensus introduces an on-chain stamping

mechanism to extend security guarantees to even nodes that spawn late.

Figure 2 is an algorithmic description of the HybridConsensus protocol. Each node
maintains a history of all past transcripts denoted history — we assume this for simplicity of
formalism, and it can be optimized away in practice. Nodes that newly spawn obtain the
historical transcripts instantly (in practice this can be instantiated by having honest nodes
offer a history retrieval service). When a new node spawns, it populates its LOG as follows:

Matching on-chain valid tuples. A newly spawned node first identifies all on-chain valid
tuples of the form (R,h), where R is the day number and h is the hash of the daily
log. Then, the node will search history and identify an appropriate daily log logp that is
consistent with h. The node populates LOG with these daily logs. This on-chain matching
process effectively provides a safe mechanism for a newly spawned node to catch up and
populate old entries of its output LOG.

Through daily offchain consensus. Once this catch-up process is complete, the node will

henceforth rely on DailyBFT instances to further populate remaining entries of its output

LOG. In each DailyBFT instance, a node can act as a committee member or non-member.

To do this, a node monitors its chain from the snailchain instance. As soon as the chain

length exceeds csize- R+ A, the R-th day starts, at which point the node inputs stop to the

39:11

previous DailyBFT[R—1] instance (if one exists), and inputs start(MinersOf(chain[lower(R) :

upper(R)])) to the DailyBFT[R] instance. There is typically a period of overlap during
which both DailyBFT[R — 1] and DailyBFT[R] instances are running and outputting daily
logs simultaneously. When nodes assimilate their daily logs into the final output LOG,
they make sure that LOG is always contiguous leaving no gaps in between. Due to the
timely termination property of DailyBFT, the old DailyBFT[R — 1] will terminate fairly
soon at which point the new DailyBFT[R] instance fully takes over.

Concrete instantiation. The recent work Fruitchains [21] showed the following informal
theorem: under a corruption budget of p < % (where p is a constant), for any 7 > 0, and any
arbitrarily small positive constant 7, there is a blockchain protocol (called Fruitchains) in the

DISC 2017

39:12 Hybrid Consensus: Efficient Consensus in the Permissionless Model

Subprotocol DailyBFT[R)

On input init: £ := 0, log := (), henceforth let mykeys be an alias for Ggign.mykeys
On input stop : for each BFTP* virtual node forked: input TXs := {{stop} -1} to BF TPk

On input start(comm): if mykeys N comm # @: isMember = true, else isMember = false

Case isMember = true

For each pk € mykeys N comm: fork a BFT virtual node, and BFT.start(pk, comm).
// henceforth this BFT virtual node is denoted BF TP
On input TXs: input TXs to each BFT virtual node forked

Let BF T denote the first such BFT virtual node forked

Let complete(log) = true iff log contains stop correctly signed by th := [|comm|/3]
distinct pks in comm

Every time step t if start has been received and done has not been output:
Receive output log™ from BF Ty
If complete(log™) then log* := shortest prefix of log™ such that complete(log™)
For each tx € log™ — log that is not a stop transaction:
Let £:={+1, for each pk € mykeys N comm: gossip {R, £, tx} -1
log := log*
If complete(log): call Finalize; else output notdone(log)

Finalize:
recs := (), remove all stop transactions from log
For each pk € mykeys N comm: let x := {R, hash(log)} -1, recs := recs U {x}, gossip z
Output done(log, recs), and stop outputting in future time steps.

Case isMember = false

On receive {R, £} -1 or {R,£,tx},—1: add message to history and check the following:

On collect (1,4, tx) and signatures s.t. » = R and th := [|comm|/3] distinct pks
in comm signed the tuple correctly:

If log[¢] has not been set, let log[¢] := tx
On collect (r,¢) and signatures s.t. » = R and th := [|comm|/3] distinct pks
in comm signed the tuple correctly:

Wait till log[: £] all populated

Output done(log, @), and stop outputting in future time steps.

Each time step until done is output:

let log’ := longest contiguous prefix of log, output notdone(log’)

Figure 1 Daily offchain consensus protocol. All signing operations are achieved by calling
Gsign.sign which signs the message tagged with the session identifier.

R. Pass and E. Shi

Protocol HybridConsensusA, parametrized by A

On init: let R:=0, LOG, := 0, LOG := 0, csize :=), let the “warmup window” Wy := 2.

Mempools:
Fork an instance of mempool denoted snailpool that stores pending records for snailchain.
Fork another instance of mempool that stores pending transactions, denoted txpool.
On input TXs: txpool.propose(TXs).

Snailchain: Fork an instance of snailchain, in each time step:
let chain denote the current local chain
let pk := Ggign . keygen
let recs := snailpool.query(ExtractRecs(chain[: —)])), input (recs, pk) to snailchain

Preprocess:
Wait till |chain| > Wy

L := Find in history maximal, ordered list of (R, logy) tuples such that R is incrementing
with no gaps, and (R, hash(logg)) is on-chain valid w.r.t. chain

LOG := log; |[log, || . . - |[log|
Daily Offchain Consensus:

Let R:= |L|

Loop:

Wait till |chain| > upper(R+1) + A, let R:== R+ 1

Let commpg := MinersOf(chain[lower(R) : upper(R)]) where MinersOf parses each block as
(recs;, pk;) and returns a list containing all pk;s

If an instance DailyBFT[R — 1] was started, DailyBFT[R — 1].stop
DailyBFT[R].start(commg)

Each time step: let TXs := txpool.query(LOG), input TXs to DailyBFT[R]

Output: In each time step: let R denote the current day. Let isdone(r) = true if DailyBFT|r]
has output done in this or earlier time steps.
If DailyBFT[R — 1] outputs done(log_;, recs) in this time step: LOG; := LOG;||log_,
snailpool.propose(recs)
Let log_; and log be the output logs of DailyBFT[R — 1] and DailyBFT[R] in this time
step respectively (or @) if nothing is output)
If isdone(R — 1): LOG := LOG;||log; else LOG := LOG;||log_;. Output LOG

On-chain valid: A tuple (R, h) is on-chain valid w.r.t chain iff the following holds
For at least 3 fraction of distinct pk € MinersOf(chain[lower(R),upper(R)]):
{R,h} 1 is the first occurrence in chain: —A] where pk signed some tuple of

the form (R,_).

Figure 2 Main HybridConsensus protocol. A newly spawned, honest node starts running this
protocol. We assume history is the set of all historical transcripts sent and received. We assume that
message routing to subprotocol instances is implicit: whenever any subprot[sid] instance is forked,
history[subprot[sid]] and protocol messages pertaining to subprot[sid] are automatically routed to the
subprot[sid] instance.

39:13

DISC 2017

39:14

Hybrid Consensus: Efficient Consensus in the Permissionless Model

proof-of-work model that satisfies consistency, (1 — 7)(1 — p)-chain quality, and (C(%A, cllA)
for appropriate constants ¢y and c¢;. As mentioned, although the original Fruitchains work
assumes a pre-determined and fixed n, it is straightforward to extend their result to the

case when n can vary by a known constant factor, and moreover the protocol knows only an
estimate of n that can be off by a known constant factor (see our full version for details [20]).

We will instantiate hybrid consensus with Fruitchains as the underlying snailchain, since
Fruitchains has almost ideal chain quality. If we do so, and assuming that the agility
parameter 7 is sufficiently large, we have the following theorem whose proof is deferred to
the online full version [20].

» Theorem 4 (Hybrid consensus over Fruitchains). Assume the existence of a proof-of-work
oracle and one-way functions. Further, assume that 7 > CAA for some appropriate constant
C, and assume that the adversary is subject to p < % corruption budget where p is a
constant. Then, there exists a permissionless consensus protocol that achieves consistency

and (Twarm, Teonfirm) -liveness for Tyarm = O(AA) and Teonfirm = O(A9).

5 Related Work

Although the idea of combining permissionless consensus and permissioned consensus has
been discussed in the community (e.g., the recent work by Decker et al. [9] and the concurrent
and independent work ByzCoin [15]), these other works are of a different nature. The
concurrent work ByzCoin [15] (Usenix Security’16) does not remove trailing unstabilized
blocks from the blockchain for committee election; consequently the nodes may not agree
on the committee (and thus consistency can be broken). Although their paper claims to
tolerate % corruption, the claim is incorrect — due to a well-known selfish mining attack, the
adversary can control up to a half of the blocks under % corruption, and thus the adversary
will control a half of the committee in Byzcoin. Indeed, the authors of Byzcoin themselves
acknowledged flaws of their protocol in subsequent blog posts [1,2], and acknowledged that
they need to rely on some of our ideas to fix their incorrect claim. Even with the fixes in
their blog posts, it remains unclear what properties their protocol guarantees since they
do not offer formal proofs of security — for example, their protocol overlooks the issue of
posterior corruption which, as we show, requires non-trivial techniques to handle. The prior
work by Decker et al. [9] does not aim to achieve responsiveness which is our primary goal.
Specifically, Decker et al. [9] relies on classical consensus such as PBFT to vote on each block
as it is mined — thus they have to wait for at least one “block interval”. Moreover, Decker
et al’s blockchain variant [9] suffers from the same type of selfish mining attack [12] that
Nakamoto’s blockchain is prone to. Thus, they cannot tolerate % corruption due to degraded
chain quality.

Earlier works on permissioned consensus have also considered group reconfiguration.
For example, Vertical Paxos [16] and BFT-SMART [8] allow nodes to be reconfigured in a
dynamic fashion. These works consider group reconfiguration for a related but somewhat
different purpose. A line of research starting from Dolev et al. [10] investigated Byzantine
agreement protocols capable of early-stopping when conditions are more benign than the
worst-case faulty pattern: e.g., the actual number of faulty nodes turns out to be smaller
than the worst-case resilience bound. However, these works are of a different nature: First,
these earlier works focus on stopping in a fewer number of synchronous rounds, and it is not
part of their goal to achieve responsiveness. Second, although some known lower bounds [10]
show that the number of actual rounds must be proportional to the actual number of faulty
processors — these lower bounds work only for deterministic protocols, and thus they are not
applicable in our setting.

R. Pass and E. Shi

The concurrent work SPETRE [22] also aims to achieve responsiveness in permissionless
consensus by relaxing the consistency requirement. The subsequent work Solidus [4] aims to
achieve responsive permissionless consensus and additionally obtain incentive compatibility
guarantees — their paper does not precisely articulate under what model their protocol
retains security, but all the lower bounds we prove should apply to their setting, so even if
their protocol could be proven secure, it would require the same type of restrictions on the
model that we impose. Their incentive compatibility guarantees are heuristic and without
a formal proof [3] — we also point out for regarding incentive compatibility, by combining
the reward distribution mechanism proposed in Fruitchains [21] with Hybrid Consensus,
it is straightforward how to distribute rewards in a manner that provably achieves e-Nash
equilibrium against any % — € coalition. This means that no attacker wielding less than
% hashpower can gain more than € fraction more rewards than its fair share even if he is
allowed to arbitrarily deviate from the honest protocol. We leave it as an open question how
to provably achieve strict Nash equilibrium.

Acknowledgements. We would like to thank the reviewers for their insightful comments,
especially Christian Cachin whose feedback was critical in helping us improve the paper.

—— References

1 Byzcoin: Securely scaling blockchains. http://hackingdistributed.com/2016/08/04/
byzcoin/.

2 Untangling mining incentives in bitcoin and byzcoin. http://bford.github.io/2016/10/
25/mining/.

3 Personal communication with Kartik Nayak and Ling Ren.

4 Tttai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman.

Solidus: An incentive-compatible cryptocurrency based on permissionless byzantine con-
sensus. CoRR, abs/1612.02916, 2016.
5 Marcin Andrychowicz and Stefan Dziembowski. Pow-based distributed cryptography with
no trusted setup. In CRYPTO, pages 379-399, 2015.
6 Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Bounds on the time
to reach agreement in the presence of timing uncertainty. J. ACM, 41(1):122-152, 1994.
7 Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure computation
without authentication. In CRYPTO, pages 361-377, 2005.
8 Alysson Neves Bessani, Jodo Sousa, and Eduardo Adilio Pelinson Alchieri. State machine
replication for the masses with BET-SMART. In DSN, pages 355-362, 2014.
9 Christian Decker, Jochen Seidel, and Roger Wattenhofer. Bitcoin meets strong consistency.
In ICDCN, 2016.
10 Danny Dolev, Ruediger Reischuk, and H. Raymond Strong. Early stopping in byzantine
agreement. J. ACM, 37(4):720-741, October 1990.
11 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 1988.
12 Ittay Eyal and Emin Gun Sirer. Majority is not enough: Bitcoin mining is vulnerable. In
FC, 2014.
13 Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Furocrypt, 2015.
14 Jonathan Katz, Andrew Miller, and Elaine Shi. Pseudonymous secure computation from
time-lock puzzles. TACR Cryptology ePrint Archive, 2014:857, 2014.

39:15

DISC 2017

http://hackingdistributed.com/2016/08/04/byzcoin/
http://hackingdistributed.com/2016/08/04/byzcoin/
http://bford.github.io/2016/10/25/mining/
http://bford.github.io/2016/10/25/mining/

39:16

Hybrid Consensus: Efficient Consensus in the Permissionless Model

15

16

17

18
19

20

21
22

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser,
and Bryan Ford. Enhancing bitcoin security and performance with strong consistency via
collective signing. In Useniz Security, 2016.

Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Vertical paxos and primary-backup
replication. In PODC; pages 312-313, 2009.

Silvio Micali. Algorand: The efficient and democratic ledger. ht-
tps://arxiv.org/abs/1607.01341, 2016.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asyn-
chronous networks. In Furocrypt, 2017.

Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless
model. Technical report version, https://eprint.iacr.org/2016/917, 2016.

Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In PODC, 2017.

Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. SPECTRE: A fast and scalable
cryptocurrency protocol. JACR Cryptology ePrint Archive, 2016:1159, 2016.

https://eprint.iacr.org/2016/917

	Introduction
	Our Results and Contributions

	Preliminaries
	Permissionless Execution Model
	State Machine Replication

	Limits on Responsiveness in Permissionless Consensus
	Hybrid Consensus
	Blockchain Preliminaries
	Our Ideas in a Nutshell
	Detailed Protocol
	Offchain BFT
	Hybrid Consensus

	Related Work

