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Abstract

We give a simple and intuitive proof of anf + 2 round lower bound for uniform consensus. That is, we show that for every
uniform consensus algorithm toleratingt failures, and for everyf � t − 2, there is an execution withf failures that requires
f + 2 rounds.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a consensus problem, each process has an in-
put in {0,1} and can decide on an output in{0,1},2
such that the following conditions are satisfied: (1)ter-
mination: each correct process decides on an output;
(2) agreement: every two correct processes that decide

✩ Preliminary version appeared in [SIGACT News 32 (2) (2001)
45–63].
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decide on the same output; and (3)validity: the out-
put is the input of one of the processes. Theuniform
consensus problem replaces agreement withuniform
agreement: every two processes (correct or faulty) that
decide, decide on the same output.

We consider a standard synchronous message-
passing crash failure model [12] withn processesp1,

. . . , pn, of which at mostt can crash,t < n. We
assume a fully connected network. In around of an
algorithm each process sends messages to any subset
of the processes, receives messages, and does local
processing. If a process fails in a given round, then
any subset of the messages it sends in this round can
be lost, and the process does not participate in any later
rounds.

In this paper we present a new lower bound proof
for early-deciding [3] uniform consensus. We show
that in executions withf failures, uniform consensus
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requiresf + 2 rounds, for 0� f � t − 2. This is
in contrast to non-uniform consensus, which can be
solved inf + 1 rounds [12]. Our proof is based on a
very simple forward induction argument.

A standard technique for showing impossibility
results and lower bounds related to consensus by
forward induction is based on a notion ofbivalency,
that is, the existence of a state from which two
different executions lead to different decisions. This
technique was first introduced in [7] and was later
used to prove numerous lower bound and impossibility
results (see, e.g., [13,1,6]). Interestingly, the numerous
bivalency proofs occurring in the literature do not
make a strong enough use of validity to be able to
prove thef +2 lower bound for uniform consensus of
this paper, as we show in Section 3. Therefore, we base
our proof on a stronger notion than bivalency, namely,
the existence oftwo states that lead to different
decision values infailure-free executions.3 Using this
new notion, we give, for the first time, a proof by
forward induction of the uniform consensus lower
bound.

The uniform consensus lower bound has implica-
tions for the consensus problem in certain partial syn-
chrony models and asynchronous models with unreli-
able failure detectors: In such models, any algorithm
for consensus also solves uniform consensus [8–10].
Therefore, our lower bound for the case off = 0
implies a lower bound of two rounds for consensus
in failure-free executions of such models (see [10]).
This bound is tight: there are algorithms for consen-
sus with unreliable failure detectors that decide in two
rounds in all failure-free suspicion-free executions,
e.g., [14].

In our proof, we use a weaker version of the validity
condition defined as follows: for every valuev ∈ {0,1}
there is a failure-free execution in which some process
decidesv. By considering a weaker problem, we
strengthen the result. In particular, this formulation of
uniform consensus is also weaker thannon-blocking
atomic commit [15,5], and therefore, the lower bound
we prove in this paper also applies to non-blocking
atomic commit.

3 The existence of two initial states that lead to different decision
values is typically used to show that an initial bivalent state
exists [7].

Related work

The lower bound presented here was previously
shown by Charron-Bost and Schiper [2]. However,
their proof proceeds by a rather involved backward
induction (similar to the original proofs of thef + 1
round lower bound for consensus [12]) and is therefore
difficult to follow. Moreover, the proof in [2] does
not cover the case off = 0.4 Our proof technique
is inspired by the recent simpler proof of thef +
1 round consensus lower bound due to Moses and
Rajsbaum [13], which uses forward induction and a
new technique calledlayering.

Dwork and Skeen [5] give a related result for
failure-free executions of non-blocking atomic com-
mit. Their complexity analysis uses a different mea-
sure than the one we use here, but the two-round lower
bound for failure-free executions implicitly appears in
their paper. Lamport [11] presents a two-round lower
bound for failure-free executions of uniform consen-
sus in a model with only message omission failures.

2. The lower bound

A state of an algorithm (sometimes called global
state or configuration), consists of value assignments
to the local states of all the processes. If a process
is failed, its local state consists of only one special
symbol denoting that it is failed. Assume, for the lower
bound of this section, that adeterministic uniform
consensus algorithm is given. Given a statex of an
execution of this algorithm, the state after one round
is completely determined by two things: (1) which
processes fail in this round, and (2) which of the
messages sent by the failing processes are lost. An
environment action consists of choosing these two
things. Note: we assume that all the messages that are
not lost in a given round arrive simultaneously, and
therefore there is no non-determinism associated with
the order in which messages arrive.

To obtain our impossibility result, it is sufficient to
consider only a subset of all possible executions of
the model, as generated by a subset of environment

4 Following the publication of our proof in [10], Charron-Bost
and Schiper have extended the proof to cover the casef = 0.
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actions.5 Thus, we define asystem to be a subset of
executions. Following [13], we consider a system in
which at most one process fails in every round, and
moreover, messages from the failed process are lost by
a prefix of the processes,{p1, . . . , pk}. We denote the
set {p1, . . . , pk} by [k], with [0] denoting the empty
set. We denote environment actions as follows: fori >

0, (i, [k]), denotes thatpi fails in this round and that
messages sent frompi to members of[k] in this round
will be lost, and only these messages will be lost.
The action(0, [0]) models a round in which no failure
occurs. Since we assume that at mostt processes can
crash,t < n, the action(j, [k]) for j > 0 is applicable
to a statex only if fewer thant processes are failed at
x, and processpj is not failed atx. The action(0, [0])
is always applicable.

Given a statex and an action(i, [k]) that is
applicable tox, we denote byx · (i, [k]) the state
after running the algorithm one round fromx with the
environment action(i, [k]). We denote:

L(x)= {
x · (i, [k]) | (i, [k]) is applicable tox

}
.

We generalize this definition for a set of statesX, as
follows:

L(X)=
⋃

x∈X
L(x).

We defineLk to be the application ofL k times.
Formally,Lk is defined recursively as follows:

L◦(X)=X and Lk(X)= L
(
Lk−1(X)

)
.

Lower bound and impossibility proofs for distrib-
uted algorithms are typically based on a notion ofsim-
ilarity that captures the case that different states look
the same to all but one processes. We define similarity
as follows:

Definition 2.1. Statesx and y are similar, denoted
x ∼ y, if they are identical, or if there exists a process
pj such that (a)x and y are identical except in the
local state ofpj ; and (b) there exists a processpi �= pj

that is non-failed in bothx and y (so, x and y are
identical at least atpi ).

A setX of states issimilarity connected if for every
x, y ∈X there are statesx = x0, . . . , xm = y such that
xi ∼ xi+1 for all 0 � i < m.

5 Sets of environment actions are calledlayers in [13].

Given a statex, consider the execution extending
x in which no failures occur after statex. Recall that
in our model, an execution is fully determined by the
initial state and the failure pattern. Since the algorithm
solves uniform consensus, then all correct processes
must decide upon the same value in this execution. We
denote this decision value byval(x).

We denote byInit the set of initial states of the
algorithm. No process is failed in an initial state.
Thus, an initial state is determined by the inputs of
the processes: for each combination of 0’s and 1’s
there is an initial state inInit. We use the following
well-known lemma (see, e.g., [13], for a proof in our
context):

Lemma 2.1. If n > 1, Init is similarity connected.

We now show that a uniform consensus algorithm
cannot reach a decision in one round from some states
in a similarity connected set.

Lemma 2.2. Let X be a similarity connected set of
states. Assume that there are states x, x ′ ∈X such that
val(x) �= val(x ′). Assume that in every state in X there
are at least three non-failed processes, and the number
of failed processes is at most t − 2. Then, there is a
state y ∈X such that in the state y · (0, [0]) there is at
least one correct process that has not decided.

Proof. Since X is similarity connected, there are
statesx = x0 ∼ x1 ∼ · · · ∼ xm = x ′ in X. Since
val(x) �= val(x ′), at some point along this chain there
are two similar statesy, y ′ ∈ X such thatval(y) �=
val(y ′). Assume, by way of contradiction, that every
correct process decides in bothy · (0, [0]) and y ′ ·
(0, [0]). Without loss of generality,val(y) = 1, that
is, all the processes decide 1 iny · (0, [0]) and 0 in
y ′ · (0, [0]). The statesy andy ′ are identical except in
the local state of one processpj , which implies that
every process other thanpj that is non-failed iny is
also non-failed iny ′, and vice versa. By assumption,
there are at least two non-failed processes (other than
pj ) in y and y ′. Let pm be the non-failed process,
other thanpj , with the highest identifier iny andy ′
(that is, for allk > m,k �= j : pk is failed iny, y ′). We
distinguish between two cases:

Case 1: pj is failed in one of these states, without
loss of generality,y ′. The statesy ′ · (0, [0]) and y ·
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(j, [n]) are identical because all the processes other
thanj have the same local states iny ′ andy, and no
process hears fromj in either extension. So, iny ·
(j, [n]) all the non-failed processes decide 0. Consider
the statey ·(j, [m−1]). There is at least one non-failed
processpi with i < m which does not distinguish
betweeny · (j, [n]) andy · (j, [m− 1]), and therefore
decides 0 iny ·(j, [m−1]). On the other hand, process
pm has exactly the same local state iny · (j, [m− 1])
as iny · (0, [0]). Thus,pm decides 1 iny · (j, [m−1]).
A contradiction to uniform agreement.

Case 2: pj is non-failed in bothy andy ′. Since the
number of failed processes in states inX is � t − 2,
we can extendy by failing two more processes,pj

andpm. As argued above,pm decides 1 iny · (j, [m−
1]). By uniform agreement, all the correct processes
decide 1 in every extension ofy · (j, [m − 1]), and
in particular, in every extension ofy · (j, [m − 1]) ·
(m, [n]). By a symmetric argument fory ′, in any
extension ofy ′ · (j, [m− 1]) · (m, [n]) all the correct
processes decide 0. But no correct process other than
pm hears frompj , so iny · (j, [m− 1]) · (m, [n]) and
y ′ · (j, [m−1]) · (m, [n]) all the correct processes have
the same state, and by assumption, there is at least one
correct process. A contradiction.✷

By plugging inInit for X in the above lemma, we
get the lower bound for the casef = 0. In order to
prove the general case, we now show thatLk(Init) is
similarity connected for allk � t .

Lemma 2.3. Let X = L0(X) be a similarity connected
set of states in which no process is failed, then Lk(X)

is a similarity connected of states in which no more
than k processes are failed for all k � t .

Proof. By induction on k. The base casek = 0
is immediate. For the inductive step, assume that
Lk−1(X) is similarity connected and in every state in
Lk−1(X), at mostk − 1 < t processes are failed.

We first show that for everyx ∈ Lk−1(X), L(x)

is similarity connected. For every processpi that is
non-failed atx, the statesx · (i, [0]) and x · (0, [0])
are similar since they differ only in the local state of
pi . In addition, for every non-failedpi and for all
l > 0, the statesx · (i, [l − 1]) andx · (i, [l]) differ in
the state of at most one processpl , and are therefore
similar.

It is left to show that ifx ∼ x ′ (for x �= x ′), then
there are similar statesy ∈ L(x), y ′ ∈ L(x ′). To see
this, recall that the statesx andx ′ are identical except
in the local state of one processpi . Since the number
of processes that are failed inx andx ′ is smaller than
t , it is possible forpi to fail unless it is already failed.
If pi is non-failed in bothx and x ′, then the states
y = x · (i, [n]) andy ′ = x ′ · (i, [n]) are identical, and
therefore similar. Ifpi is failed in one of these states,
say x ′ (without loss of generality), then the states
x ′ · (0, [0]) and x · (i, [n]) are identical, and hence
similar. ✷
Theorem 2.4. Consider an algorithm for uniform
consensus in the synchronous crash model with up
to t failures, where 1 < t < n. For every 0 � f �
t−2, there exists an execution of the algorithm with f

failures in which it takes at least f + 2 rounds for all
the correct processes to decide.

Proof. Fix f , 0� f � t −2. By Lemmas 2.1 and 2.3,
Lf (Init) is similarity connected. By validity, there
exist two statesx, x ′ ∈ Init so thatval(x) �= val(x ′).
Let y, y ′ be the states obtained by applying the action
(0, [0]) f times tox, x ′, respectively. Sincey, y ′ are
failure-free extensions ofx, x ′, we get thatval(y) �=
val(y ′), and they are both inLf (Init). Sincef � t−2,
and t < n, in every state ofLf (Init) there are at
least three non-failed processes two of which can fail.
Therefore, by Lemma 2.2, there is a statez ∈ Lf (Init),
so that in the failure-free extension ofz it takes at least
two additional rounds for all the correct processes to
decide. ✷

3. The bivalency argument does not work

Bivalency is a widely-used technique for impossi-
bility and lower bound proofs related to consensus,
first introduced in [7]. A state isbivalent if two differ-
ent executions starting at this state can lead to different
decision values. Numerous proofs based on bivalency
arguments exist in the literature (see examples in [13,
1,6]). Such proofs are based on the observation that a
state in which some process has decided cannot be bi-
valent. Such a proof first shows that an initial bivalent
state exists. It then shows, by induction, that there are
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Function Counter_Example(vi )

Round 1: Send a message to all the processes (includingpi ).
let S1 be the set of processes from which Round 1 messages have been received.
if |S1| = n then return (1) fi

Round 2: Send a message to all the processes.
let S2 be the set of processes from which Round 2 messages have been received.
if |S2|< |S1| then init← 1 else init← 0 fi
return Uniform_Consensus(init).

Fig. 1. A counter-example algorithm for bivalent validity.

executions that remain in a bivalent state (for a cer-
tain number of rounds in case of a lower bound proof),
precluding decision [6].

Recent simple proofs of thef + 1 lower bound
for consensus [1,13] use bivalency arguments in the
context of a system, i.e., a subset of executions. LetS
be a system in which at most one process fails in each
round. Those proofs, as well as ours, consider systems
(ours and [13] strictly) contained inS. A state of an
algorithm isbivalent with respect to S if it can lead
to different decision values in executions ofS.6 The
SBV uniform consensus problem replaces the validity
condition with:

• Bivalent validity with respect to system S (SBV):
There is an initial state which is bivalent with
respect toS.

Remark. If we define bivalent validity as in [7] with
respect to all executions, not just those inS, then
the f + 1 lower bound does not hold, as shown
in [4].7 Since all bivalency proofs we know of use
the validity property only in order to show that an
initial bivalent state exists, such proofs also hold for
the SBV version of their problems. We now prove
Theorem 3.1, which shows that thef +2 lower bound
of the previous sectiondoes not apply toSBV uniform
consensus.

Theorem 3.1. There is an algorithm for SBV uniform
consensus that has all the processes decide after one
round in all failure-free executions.

6 Bivalency is explicitly defined with respect to systemS in [13],
and implicitly in [1].

7 Many thanks to Bernadette Charron-Bost for pointing this out.

In Fig. 1, we give an algorithm, Counter_Example,
which solvesSBV uniform consensus and decides
after one round in every failure-free execution. The
algorithm uses a uniform consensus algorithm that
satisfies (strong) validity (e.g., [2]), and tolerates up
to t = n − 1 failures. This algorithm is invoked by
calling Uniform_Consensus(v); we assume that if
certain processes do not invoke the uniform consensus
algorithm, other instances of the uniform consensus
algorithm do not block, as they can assume these
processes to be faulty after failing to receive messages
from them.

It is easy to see that Counter_Example decides in
one round in all failure-free executions. We now show
that Counter_Example satisfies uniform agreement,
termination, andSBV validity. Termination is implied
by termination of Uniform_Consensus, since all the
correct processes either decide in Round 1 or run
Uniform_Consensus.

To show uniform agreement, we first observe that
if some processpi decides 1 in Round 1, then all the
processes that run uniform consensus have 1 as their
input value for uniform consensus. This is because
pi does not send a Round 2 message, and thus, for
any process that does execute Round 2,|S2| < |S1|
becausepi ∈ S1 andpi /∈ S2. By the (strong) validity
property of uniform consensus, the only possible
decision value in this case is 1. If no process decides
in Round 1, then Uniform_Consensus ensures uniform
agreement.

Finally, all the initial states of this algorithm are
bivalent with respect toS: If one process fails in
Round 1 so that none of its messages are received, and
there are no further failures, then the decision is 0. If
there are no failures at all, then the decision is 1.

In summary, we observe that the bivalency argu-
ment, as used extensively in the literature (e.g., [13,1,
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6]), cannot show the lower bound proven in this pa-
per, because in essence it relies on too weak a va-
lidity property. In this paper, we instead used a new
technique, looking at apair of states from which the
failure-free executions lead to different decision val-
ues. Using this stronger notion, we constructed, for the
first time, a proof by simple forward induction of the
uniform consensusf + 2 round lower bound.
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