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Abstract

In this paper, we study distributed consensus in the radiwark setting. We produce new upper
and lower bounds for this problem in an abstract MAC layer etddat captures the key guarantees
provided by most wireless MAC layers. In more detail, we fiysheralize the well-known impossibility
of deterministic consensus with a single crash failure fidh the asynchronous message passing model
to our wireless setting. Proceeding under the assumptiorodéults, we then investigate the amount
of network knowledge required to solve consensus in our tredr important question given that these
networks are often deployed in an ad hoc manner. We provesosus is impossible without unique
ids or without knowledge of network size (in multihop topgies). We also prove a lower bound on
optimal time complexity. We then match these lower boundh wipair of new deterministic consensus
algorithms—one for single hop topologies and one for maftitopologies—providing a comprehensive
characterization of the consensus problem in the wireleg;g. From a theoretical perspective, our
results shed new insight into the role of network informatémd the power of MAC layer abstractions
in solving distributed consensus. From a practical petspgeagiven the level of abstraction used by our
model, our upper bounds can be easily implemented in realegs devices on existing MAC layers while
preserving their correctness guarantees—facilitatiegittvelopment of wireless distributed systems.

1 Introduction

Consensus provides a fundamental building block for d@ietpreliable distributed systems [20, 19| 21].
Motivated by the increasing interest wirelessdistributed systems, in this paper we prove new upper and
lower bounds for the consensus problem in wireless networks

The Abstract MAC Layer. Consensus bounds are dependent on the model in which thegtatdished.
Accordingly, we must take care in selecting our model fodgiag the wireless version of this problem.
Most existing work on distributed algorithms for wirelesstwworks assumes low-level synchronous models
that require algorithms to deal directly with link-layesigs such as signal fading and channel contention.
Some of these models use topology graphs to determine neebsdwgqvior (c.f.,L[6, 24, 27, 34, |13,/16])
while others use signal strength calculations (c.f., [35113, 22| 23, 14]). These models are well-suited for
asking basic science questions about the capabilities reless communication. They are not necessarily
appropriate, however, for developing algorithms meantdigployment, as real wireless systems typically
require an algorithm to operate on top of a general-purpo8€ Myer which is hard to bypass and enables
many key network functions such as managing co-existence.

Motivated by this reality, in this paper we adopt thestract MAC layerapproach|[29], in which we
model the basic guarantees provided by most existing veseMAC layers—if you broadcast a message
it will eventually be delivered with acknowledgment to r®anodes in the network—but leverages a non-
deterministic message scheduler to allow for unpredilitgbithere is no bound on when messages are
delivered or in what order. The goal with this approach isesalibe and analyze algorithms at a level of
abstraction that makes it easy to subsequently implementytresults in real systems while still preserving
their formally analyzed properties. (See Seclibn 2 for aitket model definition and motivation.)

Results. We begin with lower bounds. In Sectibn B.1, we generalizeotheited result on the impossibility
of deterministic consensus with a single process failukg ftbm the asynchronous message passing model
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to our abstract MAC layer model. (See Section 2 for detailhow these two models differ.) The main
difficulty in this generalization is the new assumption i ooodel that senders receive acknowledgments
at some point after a given broadcast completes. To overdbimelifficulty, we are forced to restrict our
valency definitions to focus on a restricted class of schezdul

Having established this impossibility, we proceed in trapgr assuming no crash failures. Noting that
wireless network deployments are often ad hoc, we next fooudetermining how much priori informa-
tion about the network is required to solve deterministinsemsus in our model. We start, in Secfion 3.2,
by proving that consensus is impossible without uniqueeasden if nodes know the size and diameter of the
network. We then prove, in Sectibn B.3, that even with unigsgand knowledge of the diameter), consen-
sus is impossible in multihop networks if nodes do not knoer letwork size. Finally, we prove that any
solution to consensus in our model requitesD - F,.;) time, whereD is the diameter of the underlying
network topology and,. is the maximum message delivery delay (a value unknown tamdlgles in the
network). All three bounds leverage partitioning argursehat rely on carefully-constructed worst-case net-
work topologies and message scheduler behavior for whiehelevant network knowledge assumptions do
not break symmetry.

We then turn our attention to matching these lower boundk wipair of new deterministic consensus
algorithms. We begin, in Sectidn 4.1, with a new algorithmt thuarantees to solve consensus in single hop
networks in an optimad (F,.;) time, even without advance knowledge of the network sizeastiggpants
(this opens up a gap with the asynchronous message passitg, mbere consensus is impossible under
such assumptions![1]). This algorithm uses a two-phasetstel The key insight is that nodes wait to decide
after their second phase broadcast until they have alsd ti@arbroadcast from a set of importamtnesses

We then present, in Section 4.2, thireless PAXOSWPAXQOS) algorithm, which guarantees to solve
consensus in multihop topologies of diameteiin an optimalO(D - F,.) time. This algorithm assumes
unique ids and knowledge af (as required by our lower bouﬂﬂjs but no other advance knowledge of the
network or participants. The wPAXOS algorithm combines high-level logic of the PAXOS consensus
algorithm [30] with a collection of support services thdiaéntly disseminate proposals and aggregate re-
sponses. We note that if the PAXOS (or similar consensusitigo logic is combined with a basic flooding
algorithm, the result would be@(n - F,.;) time complexity, as bottlenecks are possible wiefe) value
and id pairs must be sent by a single node only able tOit) such pairs in each message. To reduce this
time complexity to an optimaD(D - F,.), we implement eventually stable shortest-path routingsti@nd
show they allow fast aggregation once stabilized, and pressafety at all times. These stabilizing support
services and their analysis represent the main contribatichis algorithm. One could, for example, replace
the PAXOS logic working with these services with somethimgpder (since we have unique ids and knowl-
edge ofn, and no crash failures, we could, for example, simply gattievalues at all nodes). We choose
PAXOS mainly for performance reasons, as it only depends majarity nodes to make progress, and is
therefore not slowed if a small portion of the network is gleth

Related Work. Consensus provides a fundamental building block for rididistributed computing [20, 19,
21]. It is particularly well-studied in asynchronous mad80,39, 36, 2], where deterministic solutions are
impossible with even a single crash failure![15]. Most eérigtdistributed algorithm results for the wireless
setting assume low-level models. Though consensus hasdbedied in such models (e.g., [10]), most
efforts in the low-level setting focus on reliable commuion problems such as broadcast (see [37] for a
good survey). The abstract MAC layer approach to modelingless networks is introduced in_[28] (later
expanded to a journal versian [29]), and has been subsdygumseatd to study several different problems [11,
25,126, 12]. This paper, however, is the first to consider ensiss in the abstract MAC layer context.

Other researchers have also studied consensus in wirelgsrks at higher levels of abstraction. Vollset
and Ezhilchelvan [40], and Alekeish and EzhilchelvMan [4ldy consensus in a variant of the asynchronous
message passing model where pairwise channels come andhgmidglly—capturing some behavior of
mobile wireless networks. Their correctness results démendetailed liveness guarantees that bound the

*Our algorithm still works even if provided onlyood enoughnowledge ofn to recognize a majority. This does
not contradict our lower bound as the lower bound assurnésowledge ofn.
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allowable channel changes. Wu et al.|[41] use the standamtlonous message passing model (with
unreliable failure detectors|[9]) as a stand-in for a wisel@etwork, focusing on how to reduce message
complexity (an important metric in a resource-bounded le#® setting) in solving consensus.

Finally, we note that a key focus in this paper is understaqdie importance of network information
in solving consensus, a topic previously studied in thesatas models. Rupperi [38], and Bonnet and
Raynal [7], for example, study the amount of extra power ade(n terms of shared objects and failure
detection, respectively) to solve wait-free consensusnionymousrersions of the standard models. Attiya
et al. [5] describe consensus solutions for shared memestgmsyg without failures or unique ids. In this paper,
by contrast, we prove consensus impossible without falareunique ids. These results do not contradict,
however, as we assume multihop message passing-style rketwA series of papers|[8,/18, 3], starting
with the work of Cavin et al1[8], study the related problencohsensus with unknown participafGUPs),
where nodes are only allowed to communicate with other nedesse identities have been provided by a
participant detectoformalism. Results on the CUPs problem focus on the streatithe knowledge from
such detectors required for consensus (e.g., if we createpd gvith a directed edge indicating participant
knowledge, then the resulting graph must satisfy certammeotivity properties). Closer to our own model is
the work of Abboud et al'[1], which studies single hop netkgan which participants ara priori unknown,
but nodes do have a reliable broadcast primitive. They pconsensus is impossible in single hop networks
under these assumptions without knowledge of network siz8ectior 4.1L, we describe an algorithm in our
model thatdoessolve consensus under these assumptions: opening a gagebdtvese two models.

2 Modd and Problem

For simplicity, in the following we sometimes call our modet abstract MAC layer model. We emphasize,
however, that there is no single abstract MAC layer modéliftstead many variants that share the same basic
assumptions of acknowledged local broadcast and an ayb#ticheduler. The major differences between our
model and the standard asynchronous message passing meothalta(1) we assume local broadcast instead
of point-to-point communication; (2) senders receive étnawledgment at some point after their broadcast
completes (this acknowledgment captures the time at whietunhderlying link layer is done broadcasting
its current message; e.g., after its slot in a TDMA scheduliees or its CSMA algorithm finally detected

a clear channel); and (3) we care about assumptions regandimvork information knowledge as wireless
networks are often deployed in an ad hoc manner where suatmiafion may be unknown to nodes.

Model Details. To formalize our abstract MAC layer model, fix a gragh= (V, E), with the sefl” describ-
ing the|V| = n wireless devices in the network (calleddesn the following), and the edges ii describing
nodes within reliable communication range. In this modetjes communicate with a local reliable (but not
necessarily atonﬂ) broadcast primitive that guarantees to eventually delivessages to a node’s neighbors
in G. At some point after a broadcast completes (see below), a ratkives an ack. If a node attempts
to broadcast additional messages before receiving an ackdaurrent message, those extra messages are
discarded. To formalize the message delivery guaranteesyriie execution of a deterministic algorithm in
our model. To simplify definitions, assume w.l.0.g. that sag®s are unique. Letbe the event imx where
u callsbroadcastm), and=’ be the subsequent ack returned:tdur abstract MAC layer model guarantees
that in the interval fromr to 7’ in «, every non-faulty neighbor af in G receivesn, and these are the only
receive events fom in « (this is where we leverage message uniqueness in our dafiniti

We associate each message scheduler with an unknown (todes)rbut finite valud,.; that bounds
the maximum delay it is allowed between a broadcast and agmonding acknowledgment. This property
induces some notion of fairness: the scheduler must eMgnallow each broadcast to finish. To simplify
timing, we assume local non-communication steps take ne.tiirhat is, all non-determinism is captured
in the message receive and ack scheduling. We note that ie defimitions of abstract MAC layer models

2Local broadcast in wireless networks is not necessarilyjt@mia operation, as effects such as the hidden terminal
problem might lead some neighbors of a sender to receive sage®efore other neighbors.



(seel[29]), a second timing parametgy,..,, is introduced to bound the time for a node to recsivmemes-
sage when one or more neighbors are broadcasting. We omjidhameter in this study as it is used mainly
for refining time complexity analysis, while we are concerhere more with safety properties. Refining our
upper bound results in a model that includes this secondnes remains useful future work. We also note
that some definitions of the abstract MAC layer assume a setapology graph consisting afnreliable
links that sometimes deliver messages and sometimes doN®bmit this second graph in this analysis,
which strengthens our lower bounds. Optimizing our multiipper bound to work in the presence of such
links, however, is left an open question.

In some results that follow, we consideashfailures (a node halts for the remainder of the execution).
The decision to crash a node and the timing of the crash isrdigted by the scheduler and can happen in
the middle of a broadcast (i.e., after some neighbors hagiverd the message but not all). We call a node
non-faulty (equiv. correc) with respect to a given execution if it does not crash. Farupper bounds, we
restrict the message size to contain at most a constant mwhhbeique ids. For a given topology gragh
we useD to describe its diameter. Finally, for integer 0, let [i] = {1, 2, ...,4}.

The Consensus Problem. To better understand the power of our abstract MAC layer madexplore upper
and lower bounds for the standard binary consensus prolffemore detail, each node begins an execution
with an initial value from{0,1}. Every node has the ability to perform a single irrevocatgeideaction

for a value in{0,1}. To solve consensus, an algorithm must guarantee the folipthiree properties: (1)
agreement no two nodes decide different values; (@lidity: if a node decides value, then some node
hadv as its initial value; and (3jermination every non-faulty process eventually decides. By focusing
binary consensus, as oppose to the more general definisbasbumes an arbitrary value set, we strengthen
the lower bounds that form the core of this paper. Genenglipur upper bounds to the general case in an
efficient manner (e.g., a solution more efficient than agigeen the bits of a general value, one by one, using
binary consensus) is non-trivial and remains an open pmable

3 Lower Bounds

We begin by exploring the fundamental limits of our abstM&C layer model with respect to the consensus
problem. In Sectionl4, we provide matching upper bounds hénfollowing, we defer some proofs to the
appendix for the sake of clarity and concision.

3.1 ConsensusisImpossiblewith Crash Failures

In this section we prove consensus is impossible in our modéle presence of even a single crash failure.
To achieve the strongest possible bound we assume a clipo®gy. Our proof generalizes the FLIP[15]
result to hold in our stronger setting where nodes now hakeadedgments.

Preliminaries. For this proof, assume w.l.0.g. that nodes always send messae., on receiving an ack
for their current message they immediately begin sendingvamessage. We definesgepof a nodeu to

be either: (a) a node # u receivingu’s current message; or (l)receiving an ack for its current message
(at which point its algorithm advances to sending a new ngegsaWe call a step of type (a) from above
valid with respect to the execution so far if the nodeeceivingu’s message has not previously received
that messagand all non-crashed nodes smaller thaifby some fixed but arbitrary ordering) have already
receivedu’s message. We call a step of type {aJid with respect to the execution so far if every non-crashed
neighbor ofu has received its current message in a previous step. Wheongier executions that consist
only of valid steps we are, in effect, restricting our atiemtto a particular type of well-behaved message
scheduler.

3The version of the FLP proof that we directly generalize liethe cleaned up and condensed version that appeared
in the subsequent textbook of Lynch[32].



We call an execution fragment (equiv. prefix)of a consensus algorithilsivalentif there is some ex-
tension of valid steps that leads to nodes decidingnd some extension of valid steps that leads to nodes
decidingl. By contrast, we call an executianunivalentif every extension of valid steps fromthat leads
to a decision leads to the same deciéaifithis decision is0 (resp.1), we also say that is 0-valent(resp.
1-valen). In the following, we use the notatiom - s, for execution fragment and steps, to describe the
extension ofx by s.

Result. Fix some algorithmA. Assume for the sake of contradiction thatguarantees to solve consensus
in this setting with up td crash failure. The key to generalizing the FLP impossipiid our model is the
following lemma, which reproves the main argument of thissslcal result in a new way that leverages our
model-specific constraints.

Lemma 3.1. Fix some bivalent execution fragmenbdf .4 and some process There exists a finite extension
o of a such thate’ - s, is bivalent, wheres,, is a valid step of: with respect tay'.

Proof. Assume for contradiction that this property does not hofdstaimea andw. It follows that for every
finite extensiom’ of « of valid steps, if we extend’ by a single additional valid step af, the execution is
univalent. Lets, be the next valid step far after o (by our definition of valid,s,, is well-defined). We start
by consideringx - s,,. By assumption, this fragment is univalent. Assume, vgl.thata - s, is 0-valent (the
argument below is symmetric for the case wheres, is insteadl-valent). Because: is bivalent, however,
there is some other extensiaff consisting of valid steps that isvalent.

We now move step by step id’, starting froma, until our growing fragment becomésvalent. Assume
there arek > 1 steps in this extension. Label tieintermediate execution fragments framto the o
a1, a9, ..., a, Whereay is the where the fragment becomiesalent. To simplify notation, letyg = «. For
0 < i < k, we knowqy; is bivalent, so, by our contradiction assumption, that b&fveeny;_; anda; cannot
bes,. Lets* be the step between, _; anday. (Notice that itis possible that* = s, as the execution is no
longer bivalent after this final step.)

By our contradiction assumption, we know that for eaeh {0, ...,k — 1}, «; - s, iS univalent. We also
know thatay - s, is O-valent. It follows that there must exist somes {0, ...,k — 1}, such thato; - s, is
0-valent ando; - s, - s, is 1-valent, wheres, is the next valid step of some node# u. Notice this holds
whether or nots* = s, (if s* = s, thenqy is a fragment ending witl,, that we know to bel-valent,
otherwise,ay, - s, is this fragment). We have found a fragmeitit therefore, where.* - s,, is 0-valent but
a* - s, - sy IS 1-valent. We now perform a case analysissorands,, to show that all possible cases lead to a
contradiction. In the following, to simplify notation, 18y = o* - s, andf; = a™ - s, - sy.

Casel: Both steps affect the same node It is possible thatv is u or v (e.g., if s,, is an acknowledg-
ment ands,, is u receivingv's message), it is also possible thatis notw or v (e.g., if s, ands, are both
receives at some third node). We note thatv (and onlyw) can distinguish betweefy, and ;. Imagine,
however, that we extend; such that every nodexcept forw keeps taking valid steps. All nom-nodes
must eventually decide, as this is equivalent to a fair eti@cwherew crashes afte;, andw is the only
node to crash—a setting where termination demands decBipour valency assumption, these nodes must
decidel. Now imagine that we extenél, with the exact same steps. For all nemodes these two execu-
tions are indistinguishable, so they will once again dedidé/e assumed, however, that was0-valent: a
contradiction.

Case2: The steps affect two different nodes. In this case, it isrdlegt no node can distinguish between
Bo - s, and5;. We can, therefore, apply the same style of indistinguigibialargument as in casg, except
in this case we can allow all nodes to continue to take steps. O

We now leverage Lemnia 3.1 to prove our main theorem.

“Notice, not every extension need lead to a decision. If, kangple, the extension does not give steps to two or
more nodes, than this is equivalent to two or more nodes iergiska circumstance for which we do not expedtfault
tolerant algorithm to necessarily terminate.
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Figure 1: InNetwork A (left) the a nodes plus: combine to comprise gadget The bridge nodey is
connected to two copies of this gadget at themodes. It is also connected to all nodes in a cliguased

to adjust the total network size. Metwork B (right) the sub-graph&, L2, andL3, are each a copy of the
sub-graph of the gadget of Netwarkconsisting of nodes at, and below in the diagram (i.e., nodes labelled
a; fori > 1, as well as thaj nodes.)Lq, Ly, andLs, in other words, connect to thg node of the Network
A gadget.

Theorem 3.2. There does not exist a deterministic algorithm that guagastto solve consensus in a single
hop network in our abstract MAC layer model with a single tréilure.

Proof. Assume for contradiction such an algorithm exists. Call.itUsing the standard argument we first
establish the existence of a bivalent initial configuratiénd (e.g., Lemma from [15]). Starting from this
configuration, we keep applying Lemimal3.1, rotating throalyjin nodes in round robin order, to extend the
execution in a way that keeps it bivalent. Because we rotaugh all nodes when applying Leminal3.1,
the resulting execution is fair in the sense that all nodegp kaking steps. The termination property of
consensus requires that nodes eventually decide. By agrd#@vhen any node decides the execution becomes
univalent. By Lemma 3]1, however, our execution remainalbivt, so no node must ever decide. This
violates termination and therefore contradicts the assiomghat.A solves consensus. O

3.2 ConsensusisImpossible without Unique Ids

Having proved that consensus is impossible with crashr&sluwe consider the conditions under which it
remains impossiblevithout crash failures. Recall, in wireless networks, unlike winetworks, the network
configuration might be ad hoc, preventing nodes from havidigaf priori information on the participants.
Accordingly, in this section and the next we explore the mekwnformation required to solve consensus. We
start here by investigating the importance of unique ids. cdlean algorithm thatloes notuse unique ids
ananonymouslgorithm. We prove below that consensus is impossible antbnymous algorithms, even if
nodes know the network size and diameter. We then provideddlany that extends this result to the standard
asynchronous network model. To the best of our knowledgejghhe first result on the necessity of unique
ids for consensus in multihop message passing networks.

Result. To prove our main theorem we leverage an indistinguishglitisult based on the network topologies
shown in Figuréll. Due to the careful construction of theseorks, we cannot prove our impossibility holds
for all n and D (network B, for example, requires thatbe divisible by3). We can, however, prove that for
every sufficiently large (evenp andn, the problem is impossible fdp and some)’ = ©(n).

Theorem 3.3. There exists a constant integer> 1, such that for every even diametBr > 4 and network
sizen > D, there exists am’ € {n,...,c - n}, such that no anonymous algorithr guarantees to solve
consensus in our abstract MAC layer model in all networksiafnéterD and sizen'.
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Given someD andn that satisfy the theorem constraints, kebe the smallest integefr > 0 such that

3(252 4+ k) + 12 > n. Setn’ = 3(252 + k) + 12. Consider networks! and B from Figure[1, instantiated
with d = % and k set to the value fixed above in definimg In the case of networkld, set the clique
C to contain enough nodes to bring the total count in that neétwmequal the number of nodes . The

following claim follows from the structure of these netwsrind our definitions of andd.
Claim 3.4. NetworksA and B, instantiated with the values described above, havergiaad diameteD.

We define thesynchronous schedulér our model to be a message scheduler that delivers mesisalgek
step rounds. That is, it delivers all nodes’ current messagal recipients, then provides all nodes with
an ack, and then moves on to the next batch of messages. fruotlee we assume no global time (or,
equivalently, some small amount of time that we can defineeasled in the below proof) passes between
thesesynchronous stepskix some consensus algoriths that does not use unique ids. Rore {0,1},

let o/]B be the execution ofd in network B (see the right network in Figufé 1) with all nodes startinghwi
initial valueb and message behaviors scheduled by the synchronous sahd&dheé following lemma follows
directly from the definition of consensus and the fairneshefsynchronous scheduler.

Lemma 3.5. There exists some> 0 such that forb € {0, 1}, o/]B terminates by synchronous stewith all
nodes deciding.

Next, letas be an execution ofd in network A (see the left network in Figuifd 1) defined as follows:
(1) all nodes in one gadget start with initial valoécall these nodesly), all nodes in the other copy of the
gadget start with initial valué (call these nodesl;); (2) the bridge node and the nodes in componeft
start with arbitrary initial values; and (3) we fix the schkxlito schedule the steps dfy and A; like the
synchronous scheduler for festeps (for the fixed in Lemmd_3.6), while delaying any message from node
q being delivered until after thegdesteps are complete. After this point, the scheduler canveeha the
synchronous scheduler for the full network.

The key argument in our proof is that a nodedp cannot distinguish itself during the firssteps ofo 4
from the same node ia%. Intuitively, this follows because the network i is carefully constructed to be
symmetric, so nodes cannot tell if they are communicatirty eme copy of the networld gadget or multiple
copies. To formalize this argument, we introduce some nadtat relates networkl to B. Notice that
network B consists of three copies of the gadget from netwéifith some of the edges from the connector
node copies swapped to interconnect the copies). For eatdwuno a networkA gadget, therefore, we can
defineS, to be the set containing the three nodes in netw®itkat correspond ta: that is, the nodes in’s
position in the three gadget copies Bj. For example, consider noden the networkA gadget shown in
Figure[l. By our above definitiorf. = {c1, c2, c3}. We can now formalize our indistinguishability.

Lemma 3.6. Fix someb € {0,1} and some node in A;,. The firstt steps ofu in a4 are indistinguishable
from the first steps of the three nodes i, in o.

Proof. We begin by noting the following property of our networksttifigllows directly from its structure
(in the following, we use the notatiolV4, to indicate the neighbor function of the subgraph of netwdrk
consisting only of the nodes iA,): (*) Fix anyu € A, andu’ € S,,. For everyv € Ny, (u), v’ is connected
to exactly one node it5,. There are no other edges adjacent:itoin B. We now leverage property (*)
in proving the following induction argument, which itselfectly implies our lemma statement. The below
induction is on the number of synchronous steps intlexecutions.

Hypothesisvu € Ay, 0 < r < t: afterr stepsu in a4 has the same state as the nodesS,jiin a%.

Basis ¢ = 0): Because we assume no unique ids and the same initial valuel felevant nodes, the
hypothesis is trivially true afted steps.

Step: Assume the hypothesis holds through some stép< r < t. We will now show it holds for step
r+1. By our hypothesis, for each € A, the nodes irb,, will send the same messagewasluring step-+ 1
(as this message is generated deterministically by theshatite after step). Now consider a particular



u € Ay and a particular copy’ € S, in network B. By property (*), for each node € Ny, (u) that sends
a message ta in r + 1, «’ is connected to a single node #). By our above argument, this node S will
send the same messageut@sv sends ta:. Furthermore, (*) establishes that there are no other etbgés
that will deliver messages at this point. It follows th&will receive the same message set i 1in o4, as
u receives in- + 1in a4. They will endr + 1, therefore, in the same state. O

We now leverage Lemma 3.6 to prove our main theorem.

Proof of Theoreri 313Assume for contradiction that there exists an anonymousithgn A that guarantees

to solve consensus for a diameferand network size’ specified to be impossible by the theorem statement.
Fix some nodes € Ay andv € A; such that, andv are in the same position in their respective gadgets
in network A. Fix somew € S, = S,. By Lemma3.5w decides) within ¢ steps ofa%. Combining this
observation with Lemmia_3.6, applied#candb = 0, it follows thatu will decide0 in a4. By agreement, it
follows that all nodes must decidein a4—including v. We can, however, apply this same argumemgo

v andb = 1, to determine that decidesl in a4. A contradiction. O

We conclude with a corollary for the standard asynchronoadetthat follows from the fact that our model
is strictly stronger and this result concerns a lower bound.

Corollary 3.7. There exists a constant integee> 1, such that for every even diametBr> 4 and network
sizen > D, there exists am’ € {n,...,c - n}, such that no anonymous algorith# guarantees to solve
consensus in the asynchronous network model with broadoasiunication and no advance knowledge of
the network topology, in all networks of diameférand sizen/'.

3.3 ConsensusisImpossible without K nowledge of n

In Sectiori 3.2, we proved that consensus in our model regjuinue ids.

Here we prove that even with unique ids and knowledg® phodes still LYy, Lp.i L%
need knowledge of. to solve the problem (in multihop networks). Our
strategy for proving this theorem is an indistinguishapiirgument of a ° ° .
similar style to that used in Sectién B.2. In more detail,sider network | / | \ |
K p with diameterD shown in Figuré 2. Imagine that we start the+ 1 b b hd
nodes in sub-graplil, (resp. L%) with initial value 0 (resp. 1). If we
delay message delivery long enough betwéen ; and its neighbors in
Kp, the nodes ir%, cannot distinguish between being partitioneddp
or executing by themselves in a network. Diameter knowlediggs not
distinguish these cases.

To formalize this argument, we first assume w.l.0.g. thaesambntin-
ually send messages. In the following, fix some consensusitim A.
Let L, for integerd > 1, be the network graph consisting @f- 1 nodes Figure 2: The Kp network.
in a line. Letal, for b € {0, 1} and some integet > 1, be the execution Note: Lp_; containsD nodes.
of Ain Ly, where all nodes begin with initial valileand message behav-
ior is scheduled by the synchronous scheduler (defined iticBé8.2). The following lemma follows from
the validity and termination properties of consensus.

Lemma 3.8. There exists some integee> 0, such that for every € {0,1} andd > 1, ag terminates aftet
synchronous steps with all nodes deciding

For a given diameteDb > 1, we define the network grapli , to consist of two copies aof p (call theseL}j
andL%) and the lineLp_;, with an edge added from every nodeliy and L%, to some fixed endpoint of

the Lp_1 line. Notice that by constructions, has diameteD. (See Figurél2.) Next, we define teemi-
synchronous schedulgn the context of network grapR p, to be a message scheduler that delivers messages
amongst nodes iliif}j and amongst nodes ih%, in the same manner as the synchronous scheduler for
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synchronous steps (for theprovided by Lemma_318). During this period, the semi-syonbus scheduler
doesnotdeliver any messages from the endpoint of fhe ; line to nodes inL}, or L2,. After this period, it
behaves the same as the synchronous schedulefijLbe the execution o#d in Kp with: (1) all nodes in

L}, starting with initial valued; (2) all nodes inZ.% starting with initial valuel; (3) all nodes inL.p_; starting
with arbitrary initial values; and (4) the semi-synchroa@echeduler controlling message actions. With these
definitions established, we can prove our main theorem.

Theorem 3.9. For everyD > 1, no algorithm.4 guarantees to solve consensus in our abstract MAC layer
model in all networks of diametdp.

Proof. Assume for contradiction thatl guarantees to solve consensus in all networks of dianieteor
some fixedD > 1. By the definition of the semi-synchronous scheduler, itrgightforward to see thatp

is indistinguishable frona?, for nodes inL1,, and indistinguishable from1, for nodes inL%, for the firstt
synchronous steps. Combining Lemima 3.8 with our indisfsitability, we note that nodes i, will decide

0 in Bp while nodes inL% will decide 1. Therefore, A does not satisfy agreement fip. We constructed
Kp, however, so that it has a diameterf Therefore, A guarantees to solve consensus (and thus satisfy
agreement) in this network. A contradiction. O

3.4 Consensus Requires Q(D - F,.) Time

The preceding lower bounds all concerned computabilityr tRe sake of completeness, we conclude by
considering complexity. Th@(D- F, ) time bound claimed below is established by a partitionimgarent.

Theorem 3.10. No algorithm can guarantee to solve consensus in our abski&C layer model in less than
L%JFack time.

Proof. Fix someD. Consider a line of diameteD consisting of nodes:, us, ..., up+1, arranged in that
order. Consider an execution of a consensus algorithm snrtbiwork with a variant of the synchronous
scheduler from Sectidn 3.2 that delays the maxinfgm, time between each synchronous stepHﬁ Fook
time, the endpoints cannot hear from beyond their neardéfsbiihe line. If we assume they must decide by
this deadline we can apply a standard partitioning argurtteateate an agreement violation. In particular,
if one half starts with initial valu® and the other initial value, the endpoint of the first half must decide
0 and the endpoint of the second must dedidby indistinguishability and validity), creating an agneent
violation. O

4 Uppe Bounds

In Section B, we proved fundamental limits on solving cossenin our model. In this section, we prove
these bounds optimal with matching upper bounds. We conbioiih single hop(i.e., the network graph
is a clique) andnultihop (i.e., the network graph is an arbitrary connected graptwaorks. Due to the
impossibility result from Section 3.1, we assume no craghrés in the following.

4.1 Consensusin Single Hop Networks

Here we describe an algorithmiwo-phase consensughat guarantees to solve consensus in single hop
network topologies in an optimal(F,.;) time. It assumes unique ids but does not require knowledge
of n. This opens a separation with the standard broadcast asymmets model (which does not include
acknowledgments) where consensus is known to be impossilier these conditions|[1].



The pseudocode for our algorithm is presented

Algorithm 1 Two-Phase Consensus (for nade in Algorithm[1. Here we summarize its operqtion:

1: v < initial value from{0, 1} Each node: executes twphases At the beginning

%: Ry + {(phase lid.,v)} A of the first phasey broadcasts its unique id and its

: > Phasel ;i1 ; ; ;

4: broadcast((phase lidy, v)) initial value v, € {0,1}_. Nod.eu considers its first

5: while waiting for ack do phase complete once it receives an acknowledgment

?f - di‘vjﬁiflgce“’ed messages t; for its first broadcast. At this point, will choose its

8: if (phase 1, — v) € R; or (phase 2,*, bivalente R; then status If u has seen evidence of a different initial

9. status « bivalent value in the system by this point (i.e., it sees a phase
10: dse . .

11°  status « decidedv) 1 message fqr a dlf_ferent valu_e onba/alentphgse
%%: end if ce 2 2 message), it sets its statushiwalent Otherwise,

: P . . . .

14" broadcast((phase 2id., status)) PFNAse < it sets it todecidedv,. Nodew now begins phase
15! Ry < {(phase 2id., status)} 2 by broadcasting its status and id. Oncéinishes
16: while waiting for ack do this phase broadcast, it has two possibilities. If its
17: addreceived messages t&s ) ) . . L.

18: end while status isdecided then it can decide its initial value
%8 W < every unique id in?, and Rz > Witness list created gnd terminate. Otherwise, it constructe/éness set
D1 et aceived oot st . 12 W, consisting of every node it has heard from so
%% endwhile far in the execution. It waits until it has received a
oa- i %Eisdeezo' ; decided)) € Rz then phase2 message fromeverynode inT,. At this

25! dse point, if the set contains any message of the form
26:  dedidel decidedv,,, then it decides,,. Otherwise, it decides

27: endif .
end! default valuel. We now establish the correctness of

this strategy.

Theorem 4.1. The two-phase consensus algorithm solves consensusfiy.;,) time in our abstract MAC
layer model in single hop networks with unigue ids.

Proof. Validity and termination are straightforward to estahli$Ne turn our attention, therefore, to agree-
ment. If no node ends up wititatus = decide@), thenl is the only possible decision value. The interesting
case, therefore, is when some nadeoes sestatus« decided0) after its phase broadcast completes.
Let S be the subset of nodes that began with initial valu@ any). By assumptiony’s phasel broadcast
completed before any node # as, otherwisey would have seen evidence oflabefore settingstatus,
preventing it from choosinglecided0). It follows that every node irb must setstatus to bivalent. We
know, therefore, that it is impossible to have ba#rcidedl) anddecided0) in the system. We are left to
show that if there iglecided0) in the system, then all nodes end up decidingAs before, letu be a node
with statusdecided0). Now letv be a node with statusivalent We consider two cases concerningnd
v's interaction.

In the first case, assumereceives a message frombeforewv finishes its phase broadcast. It follows
thatu will be placed inv’s witness list,). The algorithm now requires to wait for u’s phase2 broadcast
before deciding. It will therefore see thathas a status alecided0), requiringv to decide0. In the second
casep does not receive a message frarbeforewv finishes its phase broadcast. Accordingly is not inv’s
witness setV. This might be problematic as it could allawto decide before it seesdecided0) message.
Fortunately, we can show this second case cannot happenhdfl not heardny message from: by the
time it finished its phas@ broadcast, it follows that: receives this broadcast before it finishes its phiase
broadcast. But's phase2 broadcast haslaivalentstatus. By the algorithm, this would preventrom setting
its status talecided0)—contradicting our assumption thathas adecidedstatus. O

4.2 Consensusin Multihop Networks

We now describe a consensus algorithm for the multihopnggettiat guarantees to solve consensu@ (v -
F,.) time. It assumes unique ids and knowledge:dgs required by the lower bounds of Section 3), but
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makes no additional assumptions about the participanteterank topology. Notice, this solution does not
replacethe single hop algorithm of Sectién 4.1, as this previousrilgm: (1) is simpler; (2) has a small
constant in its time complexity (i.€2); and (3) does not require knowledge

Our strategy for solving consensus in this setting is torkege the logic of the PAXOS consensus algo-
rithm [30,/31]. This algorithm was designed and analyzedterasynchronous network model with bounded
crash failures. Here we apply the logic to our wireless mad#i no crash failures. The main difficulty we
face in this effort is that nodes do not know the topology efiiletwork or the identity of the other participants
in advance. To overcome these issue we connect the PAXOSwWaid a collection of sub-routines we call
services which are responsible for efficiently delivering messagdsacting the leaders needed by PAXOS
for liveness, and telling the proposers when to generatepmeposal numbers. We call this combination of
PAXOS logic with our model-specific servicagreless PAXOSNVPAXOS).

If we were satisfied with a non-optimél(n - F,.) time complexity, the communication services could
be implemented with a simple flooding logic (the first time ywme a message, re-broadcast), and the leader
election service could simply return the largest id seerasoTo obtain an optimaD (D - F,.) time com-
plexity, however, requires a more intricate solution. Intisalar, when a proposer is waiting to hear from a
majority of acceptors, we cannot afford for it to receiveleeesponse individually (as each message can only
hold a constant number of unique ids, and this would theeafequire a proposer to receiggn) messages).
Our solution is to instead have nodes execute a distributginBn-Ford style iterative refinement strategy
to establish shortest-path routing trees rooted at patdetders. We design this service such that once the
leader election service stabilizes, a tree rooted at thiddewill complete soon after (if it is not already com-
pleted). These trees are then used to safglyregateresponses from acceptors: a strategy that leverages the
fact that PAXOS only requires the totabuntof a given response type, not the individual respoﬁs@hjs
aggregation strategy reduces the time to gather respcafsesstabilization) fronO(n- F,cx) to O(D - Fer.).

The final optimization needed to adapt PAXOS to our modeldsctimnge service. We need the eventual
leader to generate proposafer the leader election and tree services stabilize, so it cap tlee benefits
of efficient acceptor response aggregation. At the same timgever, the leader cannot generaie many
new proposals after this point, or each new proposal maydeéprevious. The key property of our change
service is that it guarantees that the leader will genédate new proposal after stabilization (assuming there
is no decision yet in the network).

4.2.1 Algorithm

Our algorithmic strategy is to implement the logic of thessia PAXOS asynchronous agreement algo-
rithm [30,131] in our abstract MAC layer model. To do so, we iempent and analyze a collectizervices
that can be connected to the high-level PAXOS logic to run ur model. These services are responsible
for disseminating proposer messages and acceptor resp@msea efficient manner), as well as notifying the
high level PAXOS logic when to start over with a new proposahber. They also provide the leader election
service needed for liveness. As mentioned, we call this @oaion of the high-level PAXOS logic with our
model-specific support servicesireless PAXOBVPAXOS).

We note, that if we did not care about time complexity, ouviees could disseminate messages and
responses with simple flooding services. To achieve an eptiiD - F, ) time, however, requires a more
complicated strategy. In more detail, our services buida idistributed fashion, an eventually stabilized
shortest path tree rooted at the eventual leader in the riet@mnce stabilized, acceptors can efficiently send
their responses to the leader by aggregating common respypes as they are routed up the tree.

We proceed below by first describing these support servared,then describing how to connect them
to the standard PAXOS logic. We conclude by proving our ndextdety and liveness properties for the

5This lack of knowledge of. does not violate the lower bound of Section] 3.3, as this Idveand requires the use
of a multihop network topology.

8A technicality here is that these responses sometimesdagtior proposals; we handle this issue by simply main-
taining in aggregated responses the prior proposal—if amith-the largest proposal number of those being aggregated.
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Algorithm 2 Leader Election Service (for nodg

Algorithm 4 Tree Building Service (for node)

1: procedure ON INITIALIZATION
2: Qy + idy,
3 UpdateQ(leader, idy))
4: end procedure 1
5! procedure RECEIVE((leader, id)) %
6: if id > Q, then 2
7: Qy +id 5
8: UpdateQ(leader, id)) :
9: end if 6:
10: end procedure 7
11: procedure UPDATEQ((leader, id)) g
12: empty leader queue anehqueue (leader, id) 10'_
13: end procedure 11
12
_ _ 13
Algorithm 3 Change Service (for node 14:
. procedure ON INITIALIZATION %g
. lastChange < —oo 17'
. end procedure

. procedure ONCHANGE

Update@(change, lastChange, id.,))

> QU or dist, updated.%gi procedure ONL EADERCHANGE

20:

procedure ON INITIALIZATION
Yv # u : dist[idy] < oo andparent|id,] < L
dist[idy] < 0 andparent|id,] < id.,
UpdateQ(search, idy, 1))

end procedure

procedure RECEIVE(m = (search, id, h))
if h < dist[id] then
dist[id) < h
parent[id] «+— m.sender
UpdateQ(search, id, h + 1))
end if

. end procedure

. procedure UPDATEQ((search,id, h))

enqueue (search, id, h) on tree queue
discard any message faid with hop counth’ > h
move message (if any) with i€, to front of tree queue

. end procedure

> Called wherf2,, changes
move message (if any) with i€, to front of tree queue
end procedure

end procedure

. procedure RECEIVE((change,t, id))

1
2
3
4
g: lastChange < time_stamp()
7
8
9

if t > lastChange then

Algorithm 5 Broadcast Service (for nodg

while truedo
wait for at least one queue from
{tree, leader, change} to become non-empty
dequeue a message from each non-empty queue and
combine into one message.
broadcast(m) then wait forack
end while

lastChange «+ t 1:
11: UpdateQ(change, t, id)) 2:
12: end if 3:
13: end procedure 2
14: procedure UPDATEQ((change, t, id)) =
15: empty the change queue thenqueue (change, t, id) 6_
16:  if Qu = idy then ’
17: GenerateNewPAXOSProposal()
18: end if
19: end procedure

Figure 3: Support services used by wPAXOS. Notice, the lmasidservice schedules message broadcasts
from the queues maintained by the other three services. Weresthat when a message is received it is
deconstructed into its constituent service messages velnecthen passed to thecei ve procedure of the
relevant service. This basic receive logic is omitted ingheve.
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resulting combined algorithm. In the following, we assurhe teader is already familiar with the PAXOS
algorithm (if not, see [31]), and will focus on the new seeviagorithms specific to our model it uses and
how it uses them.

Services. Our wPAXOS algorithm requires the four support services (Egurd 3 for the pseudocode). The
first three leader electionchange andtree buildingeach maintain a message queue. The folmtadcast

is a straightforward loop that takes messages from the &ftitese queues, combines them, then broadcasts
the combined message—allowing the algorithm to multiplextiple service on the same channel. In the
following, therefore, we talk about the messages of thedeatkction, change, and tree building services as
if they were using a dedicated channel.

Leader ElectionThis service maintains a local varial§bg, containing an id of some node in the network,
at each node. The goal of this service is to eventually stabilize thesgatses to the same id network-wide.

It is implemented with standard flooding logic.

Tree Building. This service attempts to maintain in the network, for eactieng a shortest-path tree
rooted atv. The protocol runs a Bellman-Ford style iterative refinetr@ocedure for establishing these
trees, with the important optimization that the messagesesponding to the current leader get priority in
each node’s tree service queue. This optimization ensheg¢ssbon after the network stabilizes to a single
leader a tree rooted at that leader is completed.

Change.This service is responsible for notifying PAXOS proposehemwthey should start a new proposal
number. The goal for this service is to ensure that the eatfgaderu, starts a new proposal after the other
two services have stabilized: that is, after the leadettieleservice has stabilized tg across the network,
and the tree rooted aft, is complete. Proposals generated after this point, we Wil are efficiently
processed. The service must also guarantee, however, geh&atdoo manychanges after this point, as
each new proposal can delay termination.

Connecting PAXOS Logic to Support Services. We now describe how to combine the standard PAXOS
logic with our model-specific support services to form theA¥PS algorithm. Recall, in PAXOS there are
two roles: proposersandacceptorg! In wPAXOS all nodes play both roles. We describe below hovi bot
roles interact with our services.

Proposers.Proposers generaf@epareand proposemessages (the latter sometimes calledeptmes-
sages), associated with a given proposal number. A propmsaber is aag (initially 0) and the node’s
id. The pairs are compared lexicographically. A key detaihiny PAXOS deployment is the conditions un-
der which a proposer chooses a new proposal number and ®tartthe proposal process. In wPAXOS, a
proposer starts over when its change service locally GalserateNewPAXOSPropo§alAt this point it in-
creases itsag to bel larger than the largest tag it has previously seen or usehislhew proposal number is
rejected at either stagandthe proposer learns of a larger proposal number in the systeimg this process
(i.e., because an acceptor appended a previous messageddtion),andit is still the leader according
to its leader election service, it increases its tag numhdradtempts a new proposal. If this new proposal
also fails, it waits for the change service before tryingiaghn other words, a proposer will only try up fo
proposal numbers for each time it is notified by the changéseto generate a new proposal.

To disseminate thprepareand proposemessages generated by proposers we assume a simple flooding
algorithm (due to its simplicity, we do not show this pseuntbe in Figuré B): if you see a proposer message
from v for the first time, add it to your queue of proposer messagestimadcast. To prevent old proposers
messages from delaying new proposer messages we have epcser maintain the following invariant
regarding the message queues used in this flooding: At adistithe queue is updated to ensure: (1) only
contains messages from the current leader; and (2) onlgic@nessages associated with the largest proposal
number seen so far from that leader.

"There is sometimes a third role considered, cakkedners that are responsible for determining when a decision
has been made. As is common, however, we collapse this rtidhve role of the proposer. When a proposer determines
it can can decide a value—i.e., because a proposal for this veas accepted by a majority of acceptors—it does so
and floods this decision to the rest of the network.

13



Acceptors We now consider the acceptors. When accep@enerates a response tprapareor propose
message from proposer v labels the response with the destinatj@mrent|id,| then adds it to its acceptor
broadcast queue. This message is then treated like a umessiage: even though it will be broadcast (as
this is the only communication primitive provided by our netid it will be ignored by any node except
parent|id,]. Of course, ifv = u then the message can skip the queue and simply be passeddher t
proposer logic.

To gain efficiency, we have acceptors aggregate messadesnimatceptor queue when possible. In more
detall, if at any point an acceptorhas in its queue multiple responses of the same type (positimegative)
to the same proposer message, to be sent to sameit: it can combine them into a singlggregated
message. This single message retains the the type of respasisvell as the proposal number the responses
reference, but replaces the individual responses with atcdiye can combine aggregated messages with
other aggregated messages and/or non-aggregated messdlgessame way (i.e., given two aggregated
messages with counts andks, respectively, we can combine them into an aggregated gpesgi#h count
k1 + ko).

Notice, PAXOS sometimes has acceptors respondpmepare message with a previous proposal (i.e.,
combination of a proposal number and value). When aggragatultiple messages of this type (i.e., con-
taining previous proposal) we keep only the previous prapwsth the largest proposal number. We also
assume PAXOS implements the standard optimization thad¢weptors, when rejecting a message, append
the larger proposal number to which they are currently cabachi We aggregate these previous proposals
in the same way we do with positive responses to prepare gesssby maintaining only the largest among
those in the messages we are aggregating.

Finally, as with the proposers, the acceptors keep theisagesqueue up to date by maintaining the in-
variant that at all times, the queue is updated to ensuren{)contains messages in response to propositions
from the current leader; and (2) only contains responsexited with the largest proposal number seen so
far from that leader.

Deciding. When a proposer learns it can decide a valué (i.e., because it has learned that at least
a majority of acceptors replied withicceptto a proposal containingal), it will decide val then flood a
deciddval) message. On receiving this message, a node will decitle

4.2.2 Analysis

We now prove that our wPAXOS algorithm solves consensus (i - F,.,) time—matching the relevant
lower bounds. In the following, let emessage stefoften abbreviated below as just “step”) be an event
in an execution where a message or ack is received. Noticaube we consider deterministic algorithms
and assume that local computation does not require any tiradyehavior of an algorithm in our model is
entirely describe by a sequence of message steps.drepasitionbe a combination of a proposer, a proposer
message type (i.e., eithprepareor proposg, and a proposal number. For a fixed execution of WPAXOS: let
a(p), for a given propositior, be the number acceptors that generate an affirmative resgorproposition

p; and lete(p) be the total count of affirmative responses for proposiiaeceived by the originator qf.
Similarly, letc(p, s), for steps, be the total count of affirmative response® t@ceived by the end of step
Safety. In the standard asynchronous network model, PAXOS takegr&mted that proposers properly count
the relevant responses to their propositions, as the metlably delivers each response, labeled with the
acceptor that generated it. In WPAXOS, however, we aggeegsponses using shortest-path trees that might
change during throughout the execution. Before we candgecthe standard safety arguments for PAXOS,
we must first show that this aggregation in dynamic trees doesompromise the integrity of the proposer
response counts.

Lemma 4.2. Fix some execution of WPAXOS. Lxebe a proposition generated hyin this execution. It
follows thatc(p) < a(p).

Proof. In this proof, for a fixed execution, propositign nodewv, and steps, we defineg(p, v, s) be the sum
of the following values: (1) the total count of affirmativespmnses to propositiop in nodev’s acceptor
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message queue after step(2) the total count of the affirmative responsetm the message is in the
process of sending to someafter steps, assuming thai has not yet received the message at this point; (3)
1, if the acceptor at will generate an affirmative responsep@t some later stegf > s in the execution.
Similarly, letQ(p, s) = >, <y a(p,v, s). Fix some propositiop with originatoru. To prove our lemma it is
sufficient to prove the following invariant:

(*) For every steps > 0: Q(p, s) + ¢(p,s) < a(p).

We prove (*) by induction or. Thebasis(s = 0) of this induction is trivial: by definitior)(p,0) = a(p)
ande(p,0) = 0. For theinductive stepve assume (*) holds through step There are three cases for step
s + 1 that are relevant to our hypothesis.

Casel: Assumes + 1 has some accepter# « receive a message that causes it to generate a response
to p. This action transfers quantityfrom ¢(p, v, s) (contributed from element (3) of the definition @fand
transfers it either to the messages®mqueue, or, if it is not in the process of sending a messagmwh- 1
occurs, into a message being sentbyin either case, this value afnow shows up iry(p, v, s + 1) either
from element (1pr (2) of its definition/ It follows that)(p, s + 1) = Q(p, s) ande(p, s + 1) = ¢(p, s).

Case2: Assumes + 1 has some acceptar # u receive a message from v that contains affirmative
responses tp and v addressed the messageutoIn this case, the count of affirmative responses contained
in this message was moved unchanged figmv, s) to ¢(p, w, s + 1). Once agairQ(p, s) = Q(p,s + 1)
ande(p,s + 1) = ¢(p, s).

Case3: Assume step hasu receive a message withaffirmative responses pothat is addressed to.

In this caseu addsk to its count and discards the message. It follows &at, s + 1) = Q(p,s) — k and
c(p,s+1) =c(p,s) + k. O

The below lemma comes from [31], where Lamport shows thatipgothis lemma provides agreement.
If we can prove this below lemma, in other words, then we cariyafhe arguments of [31] to establish
agreement. Notice, this proof leverages Lenima 4.2.

Lemma 4.3. Fix an execution of wPAXOS. Assume proposejenerates a proposal with value:! and
proposal numbet:. It follows that there exists a sétconsisting of a majority of acceptors such that either:
(a) no acceptor inS has accepted a proposal with number smaller tharor (b) val is the value of the
highest-numbered proposal among all proposals with nuslees than: accepted by the acceptors ih

Proof. Fix some executiom. Letp’ be a proposal proposition generated:bfor proposal numbes. Let

p be the prepare proposition fromwith this same numbet that must, by the definition of the algorithm,
precede)’. Let A be the set of acceptors that commitgtd_et s be the step at which(p, s) becomes greater
thann /2 for the first time. We define a directed grapfia, p, s) = (V, E') as follows. Add(w,v) to E iff

at some step’ < s in «, acceptorv sent a message about a positive respongetda. Let A, C A be the
subset of4 that have a path ta in G(«, p, ).

Consider the case where at least one nodé,jitnad previously committed to a proposal numbevhen
p arrived. We knowz < zx as this node subsequently committedrtolLet ... > % be the largest such
proposal number of a previous commitment and,,,,, be the corresponding value. Lé&tbe the set of
previous proposals thatreceives in response o We argue thatx,,q., valnq.) is in P and has the largest
proposal number of any proposal in If this is true, it follows that: will adopt val,,.. for its proposaly’,
as needed by the lemma.

To show this is true, let,,,.. be an acceptor i, that previously committed to that proposal. By the
definition of G(«, p, s), there is a casual path of messages on which this proposal ttavel tou. The only
way it could be discarded before arrivingqats if at some point a larger proposal in responsg joins the
path fromuv,,,,, to u, beforethe z,,.,. proposal has been sent forward. By assumption, howeveraresgs in
A, has alarger proposal number. It follows that this largeppsal must have originated from sowieZ A,,.
However, if this previous proposal can intercept the paimfo,,,,.. to u beforev,,,.,.'s messages have passed
that point, then, by the definition @¥(«a, p, s). u must have a path te in G(«, p, s), and therefore must be
in A,.
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We have now shown that properties (a) and (b) hold'sAgr To prove the lemma, we are left to show
that A,, must hold a majority of acceptors. Assume for the sake ofradittion that| A,,| < n/2. At steps,
however, proposer hasc(p, s) > n/2. By the definition ofG(«, p, s), there is no causal path of messages
being sent and received from nodedin, A, to u that arrive at: before it counts a majority of acceptances.
Therefore, the executia® in whichnonode inV" \ A,, commits top is indistinguishable frona with respect
to u through steps. In o/, however,|A|] < n/2 and thereforei(p) < n/2. In this same execution, we also
know ¢(p) > n/2. The result: i/, ¢(p) > a(p). This contradicts Lemnia4.2 O

Part of the difficulty tackled by wPAXOS is efficiently dissigrating responses form acceptors even
though the messages are of bounded size (i.e., can only(dldids). If message size was instead un-
bounded, we could simply flood every response we have seem. 98i¥en this restriction, however, we must
make sure that the proposal numbers used by proposers in @BAd6 not grow too large. In particular,
we show below that these proposal numbers always remain enmalgh to be represented B)(log n) bits
(messages must at least this large by the assumption tlyatahehold a constant number of ids in a network
of sizen).

Lemma4.4. There exists a constaktsuch that the tags used in proposal numbers of WPAXOS arededun
by O(n*).

Proof. Each nodeu can only locally observed(n?) change events. its leader variable can only have
possible values and these values strictly increase. An@dohv, dist[v] at u can only haven values it
strictly decreases. Each change event can lead to atmest proposal numbers at each node in the network
(recall: the algorithm restricts a proposer to attemptingiast2 new numbers in response to a given call of
GenerateNewPAXOSPropokaWe also note that there aretotal nodes and the tags in proposal numbers
are increased to be onlylarger than the largest tag previously seen. A straightotdwnduction argument
bounds the largest possible tag size as polynomialas needed. O

Liveness. We now establish that all nodes in wPAXOS will decide by ti@eD - F,.;). The main idea in
this proof is to consider the behavior of the algorithm after tree and leader election service stabilize. WE
show this stabilization occurs i@(D - F,.;) time and after this point the leader will continue to gererat
proposals and end up reaching a decision within an additio0® - F,.) time.

Lemma4.5. Fix some execution of WPAXOS. Every node decidéX in - F,.;) time.

Proof. Let s be the step that generates firal change in this execution. Leéts) be the global time at which
this step occurs. Repurposing a term from the study of plgrégnchronous model, we cal(s) the global
stabilization timgGST) as it defines a time by which point: (a) the whole netwwk stabilized to the same
leader./; (b) the tree defined byarent[¢] pointers in the network has stabilized to a shortest-patimrspg
tree rooted at.

Consider?’s behavior after the GST. We know thadgenerates a change message. Because this change
message has a timestamp as larger (or larger) than othegehagssage in the execution, every node will
receive a change message with this timestamp for the firstsmmewhere in thg(s),t(s) + O(D - Fyer)]-

This is the last change message any node will pass on todpdateQprocedure in the change service. This
is significant, because it tells us thawill generate a new proposition at some on or after the GSiThobu
too muchafter. And, this is the last time the change service will ei® generate a proposition.

We now bound the efficiency dfs propositions after the GST. Notice, after GST only messdgom/
can be stored in proposer queues. Whganerates a new proposition message with a larger propaosediar
than any previous such messages, it will necessarily padpaguickly—reaching a major it of acceptors in
O(D - F,.) time. We can show that acceptor responses returthwith the same bound, as every such
response is at most distan£efrom ¢ in the shortest path tree, and can be delayed by at @@&t.; ) time
at each hop (if multiple responses arrive at the same nogenttissimply be aggregated into one response)

Now we consider the fate dfs propositions after GST. We know from above that it geresa new
proposition with a new proposal number on or after GST. IEiges enough commits to its prepare message
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for this proposal number, then it follows it will go on to gatlenough accepts to decide (as no other proposer,
after GST, can have its proposals considered). If it failgather enough commits, it will move on to the next
proposal after counting a majority of the acceptors rejectis prepare. By the algorithm, however, it will
learn the largest proposal number that one of this set hasopsdy committed to. Its subsequent proposal
number will be larger, and therefore this same majority @ltl up sending him enough commits to move on
toward decision. It follows that a constant number of prajmss is sufficient for/ to decide.

To tie up the final loose ends, we note that oAdecides, all nodes decide within an additio@&D- F, .. )
time, and that GST is bounded l6y(DF, ;) as well: it takes this long for the leader election service to
stabilize, after which the tree rooted at the leader mustdiglzed within in additionO (D - F,.x) time. O

Pulling Together the Pieces. We are now ready to combine our key lemmas to prove the finabcimess of
WPAXOS.

Theorem 4.6. The wPAXOS algorithm solves consensu®i{D - F,.) time in our abstract MAC layer
model in any connected network topology, whBrés the network diameter and nodes have unique ids and
knowledge of network size.

Proof. The validity property is trivial. Theterminationproperty as well as th&(D - F,.;) bound on ter-
mination follow directly from Lemma 4]5. To satisfy agreath&e combine Lemm@a 4.3 with the standard
argument of|[31]. O

5 Conclusion

Consensus is a key primitive in designing reliable distedusystems. Motivated by this reality and the
increasing interest in wireless distributed systems, impaper we studied the consensus problem in a wire-
less setting. In particular, we proved new upper and lowante for consensus in an abstract MAC layer
model—decreasing the gap between our results and realythepid. We prove that (deterministic) consensus
is impossible with crash failures, and that without crashuffes, it requires unique ids and knowledge of the
network size. We also establish a lower bound on the time &ty of any consensus solution. We then
present two new consensus algorithms—one optimized fgteshiop networks and one that works in general
multihop (connected) networks.

In terms of future work, there are three clear next stepswtioald help advance this research direction.
The first is to consider consensus in an abstract MAC layereiibat includes unreliable links in addition
to reliable links. The second is to consider what additidoahalisms might allow deterministic consensus
solutions to circumvent the impossibility concerning trdailures. In the classical distributed systems set-
ting, failure detectors were used for this purpose. In theless world, where, among other things, we do not
always assuma priori knowledge of the participants, this might not be the mostimrgformalism to deploy.
The third direction is to consider randomized algorithm&jcli might provide better performance and the
possibility of circumventing our crash failure, unique &hd/or network size knowledge lower bounds.
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