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Abstract
In this paper, we study distributed consensus in the radio network setting. We produce new upper

and lower bounds for this problem in an abstract MAC layer model that captures the key guarantees
provided by most wireless MAC layers. In more detail, we firstgeneralize the well-known impossibility
of deterministic consensus with a single crash failure [15]from the asynchronous message passing model
to our wireless setting. Proceeding under the assumption ofno faults, we then investigate the amount
of network knowledge required to solve consensus in our model—an important question given that these
networks are often deployed in an ad hoc manner. We prove consensus is impossible without unique
ids or without knowledge of network size (in multihop topologies). We also prove a lower bound on
optimal time complexity. We then match these lower bounds with a pair of new deterministic consensus
algorithms—one for single hop topologies and one for multihop topologies—providing a comprehensive
characterization of the consensus problem in the wireless setting. From a theoretical perspective, our
results shed new insight into the role of network information and the power of MAC layer abstractions
in solving distributed consensus. From a practical perspective, given the level of abstraction used by our
model, our upper bounds can be easily implemented in real wireless devices on existing MAC layers while
preserving their correctness guarantees—facilitating the development of wireless distributed systems.

1 Introduction

Consensus provides a fundamental building block for developing reliable distributed systems [20, 19, 21].
Motivated by the increasing interest inwirelessdistributed systems, in this paper we prove new upper and
lower bounds for the consensus problem in wireless networks.

The Abstract MAC Layer. Consensus bounds are dependent on the model in which they areestablished.
Accordingly, we must take care in selecting our model for studying the wireless version of this problem.
Most existing work on distributed algorithms for wireless networks assumes low-level synchronous models
that require algorithms to deal directly with link-layer issues such as signal fading and channel contention.
Some of these models use topology graphs to determine message behavior (c.f., [6, 24, 27, 34, 13, 16])
while others use signal strength calculations (c.f., [35, 33, 17, 22, 23, 14]). These models are well-suited for
asking basic science questions about the capabilities of wireless communication. They are not necessarily
appropriate, however, for developing algorithms meant fordeployment, as real wireless systems typically
require an algorithm to operate on top of a general-purpose MAC layer which is hard to bypass and enables
many key network functions such as managing co-existence.

Motivated by this reality, in this paper we adopt theabstract MAC layerapproach [29], in which we
model the basic guarantees provided by most existing wireless MAC layers—if you broadcast a message
it will eventually be delivered with acknowledgment to nearby nodes in the network—but leverages a non-
deterministic message scheduler to allow for unpredictability—there is no bound on when messages are
delivered or in what order. The goal with this approach is to describe and analyze algorithms at a level of
abstraction that makes it easy to subsequently implement theory results in real systems while still preserving
their formally analyzed properties. (See Section 2 for a detailed model definition and motivation.)

Results. We begin with lower bounds. In Section 3.1, we generalize theoft-cited result on the impossibility
of deterministic consensus with a single process failure [15] from the asynchronous message passing model
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to our abstract MAC layer model. (See Section 2 for details onhow these two models differ.) The main
difficulty in this generalization is the new assumption in our model that senders receive acknowledgments
at some point after a given broadcast completes. To overcomethis difficulty, we are forced to restrict our
valency definitions to focus on a restricted class of schedulers.

Having established this impossibility, we proceed in this paper assuming no crash failures. Noting that
wireless network deployments are often ad hoc, we next focuson determining how mucha priori informa-
tion about the network is required to solve deterministic consensus in our model. We start, in Section 3.2,
by proving that consensus is impossible without unique ids,even if nodes know the size and diameter of the
network. We then prove, in Section 3.3, that even with uniqueids (and knowledge of the diameter), consen-
sus is impossible in multihop networks if nodes do not know the network size. Finally, we prove that any
solution to consensus in our model requiresΩ(D · Fack) time, whereD is the diameter of the underlying
network topology andFack is the maximum message delivery delay (a value unknown to thenodes in the
network). All three bounds leverage partitioning arguments that rely on carefully-constructed worst-case net-
work topologies and message scheduler behavior for which the relevant network knowledge assumptions do
not break symmetry.

We then turn our attention to matching these lower bounds with a pair of new deterministic consensus
algorithms. We begin, in Section 4.1, with a new algorithm that guarantees to solve consensus in single hop
networks in an optimalO(Fack) time, even without advance knowledge of the network size or participants
(this opens up a gap with the asynchronous message passing model, where consensus is impossible under
such assumptions [1]). This algorithm uses a two-phase structure. The key insight is that nodes wait to decide
after their second phase broadcast until they have also heard this broadcast from a set of importantwitnesses.

We then present, in Section 4.2, thewireless PAXOS(wPAXOS) algorithm, which guarantees to solve
consensus in multihop topologies of diameterD in an optimalO(D · Fack) time. This algorithm assumes
unique ids and knowledge ofn (as required by our lower bounds1), but no other advance knowledge of the
network or participants. The wPAXOS algorithm combines thehigh-level logic of the PAXOS consensus
algorithm [30] with a collection of support services that efficiently disseminate proposals and aggregate re-
sponses. We note that if the PAXOS (or similar consensus algorithm) logic is combined with a basic flooding
algorithm, the result would be aO(n · Fack) time complexity, as bottlenecks are possible whereΩ(n) value
and id pairs must be sent by a single node only able to fitO(1) such pairs in each message. To reduce this
time complexity to an optimalO(D · Fack), we implement eventually stable shortest-path routing trees and
show they allow fast aggregation once stabilized, and preserve safety at all times. These stabilizing support
services and their analysis represent the main contribution of this algorithm. One could, for example, replace
the PAXOS logic working with these services with something simpler (since we have unique ids and knowl-
edge ofn, and no crash failures, we could, for example, simply gatherall values at all nodes). We choose
PAXOS mainly for performance reasons, as it only depends on amajority nodes to make progress, and is
therefore not slowed if a small portion of the network is delayed.

Related Work. Consensus provides a fundamental building block for reliable distributed computing [20, 19,
21]. It is particularly well-studied in asynchronous models [30, 39, 36, 2], where deterministic solutions are
impossible with even a single crash failure [15]. Most existing distributed algorithm results for the wireless
setting assume low-level models. Though consensus has beenstudied in such models (e.g., [10]), most
efforts in the low-level setting focus on reliable communication problems such as broadcast (see [37] for a
good survey). The abstract MAC layer approach to modeling wireless networks is introduced in [28] (later
expanded to a journal version [29]), and has been subsequently used to study several different problems [11,
25, 26, 12]. This paper, however, is the first to consider consensus in the abstract MAC layer context.

Other researchers have also studied consensus in wireless networks at higher levels of abstraction. Vollset
and Ezhilchelvan [40], and Alekeish and Ezhilchelvan [4], study consensus in a variant of the asynchronous
message passing model where pairwise channels come and go dynamically—capturing some behavior of
mobile wireless networks. Their correctness results depend on detailed liveness guarantees that bound the

1Our algorithm still works even if provided onlygood enoughknowledge ofn to recognize a majority. This does
not contradict our lower bound as the lower bound assumesnoknowledge ofn.
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allowable channel changes. Wu et al. [41] use the standard asynchronous message passing model (with
unreliable failure detectors [9]) as a stand-in for a wireless network, focusing on how to reduce message
complexity (an important metric in a resource-bounded wireless setting) in solving consensus.

Finally, we note that a key focus in this paper is understanding the importance of network information
in solving consensus, a topic previously studied in the classical models. Ruppert [38], and Bonnet and
Raynal [7], for example, study the amount of extra power needed (in terms of shared objects and failure
detection, respectively) to solve wait-free consensus inanonymousversions of the standard models. Attiya
et al. [5] describe consensus solutions for shared memory systems without failures or unique ids. In this paper,
by contrast, we prove consensus impossible without failures or unique ids. These results do not contradict,
however, as we assume multihop message passing-style networks. A series of papers [8, 18, 3], starting
with the work of Cavin et al. [8], study the related problem ofconsensus with unknown participants(CUPs),
where nodes are only allowed to communicate with other nodeswhose identities have been provided by a
participant detectorformalism. Results on the CUPs problem focus on the structure of the knowledge from
such detectors required for consensus (e.g., if we create a graph with a directed edge indicating participant
knowledge, then the resulting graph must satisfy certain connectivity properties). Closer to our own model is
the work of Abboud et al. [1], which studies single hop networks in which participants area priori unknown,
but nodes do have a reliable broadcast primitive. They proveconsensus is impossible in single hop networks
under these assumptions without knowledge of network size.In Section 4.1, we describe an algorithm in our
model thatdoessolve consensus under these assumptions: opening a gap between these two models.

2 Model and Problem

For simplicity, in the following we sometimes call our modeltheabstract MAC layer model. We emphasize,
however, that there is no single abstract MAC layer model, but instead many variants that share the same basic
assumptions of acknowledged local broadcast and an arbitrary scheduler. The major differences between our
model and the standard asynchronous message passing model are that: (1) we assume local broadcast instead
of point-to-point communication; (2) senders receive an acknowledgment at some point after their broadcast
completes (this acknowledgment captures the time at which the underlying link layer is done broadcasting
its current message; e.g., after its slot in a TDMA schedule arrives or its CSMA algorithm finally detected
a clear channel); and (3) we care about assumptions regarding network information knowledge as wireless
networks are often deployed in an ad hoc manner where such information may be unknown to nodes.

Model Details. To formalize our abstract MAC layer model, fix a graphG = (V,E), with the setV describ-
ing the|V | = n wireless devices in the network (callednodesin the following), and the edges inE describing
nodes within reliable communication range. In this model, nodes communicate with a local reliable (but not
necessarily atomic2) broadcast primitive that guarantees to eventually deliver messages to a node’s neighbors
in G. At some point after a broadcast completes (see below), a node receives an ack. If a node attempts
to broadcast additional messages before receiving an ack for the current message, those extra messages are
discarded. To formalize the message delivery guarantees, fix some executionα of a deterministic algorithm in
our model. To simplify definitions, assume w.l.o.g. that messages are unique. Letπ be the event inα where
u callsbroadcast(m), andπ′ be the subsequent ack returned tou. Our abstract MAC layer model guarantees
that in the interval fromπ to π′ in α, every non-faulty neighbor ofu in G receivesm, and these are the only
receive events form in α (this is where we leverage message uniqueness in our definition).

We associate each message scheduler with an unknown (to the nodes) but finite valueFack that bounds
the maximum delay it is allowed between a broadcast and a corresponding acknowledgment. This property
induces some notion of fairness: the scheduler must eventually allow each broadcast to finish. To simplify
timing, we assume local non-communication steps take no time. That is, all non-determinism is captured
in the message receive and ack scheduling. We note that in some definitions of abstract MAC layer models

2Local broadcast in wireless networks is not necessarily an atomic operation, as effects such as the hidden terminal
problem might lead some neighbors of a sender to receive a message before other neighbors.
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(see [29]), a second timing parameter,Fprog, is introduced to bound the time for a node to receivesomemes-
sage when one or more neighbors are broadcasting. We omit this parameter in this study as it is used mainly
for refining time complexity analysis, while we are concerned here more with safety properties. Refining our
upper bound results in a model that includes this second parameter remains useful future work. We also note
that some definitions of the abstract MAC layer assume a second topology graph consisting ofunreliable
links that sometimes deliver messages and sometimes do not.We omit this second graph in this analysis,
which strengthens our lower bounds. Optimizing our multihop upper bound to work in the presence of such
links, however, is left an open question.

In some results that follow, we considercrashfailures (a node halts for the remainder of the execution).
The decision to crash a node and the timing of the crash is determined by the scheduler and can happen in
the middle of a broadcast (i.e., after some neighbors have received the message but not all). We call a node
non-faulty(equiv. correct) with respect to a given execution if it does not crash. For our upper bounds, we
restrict the message size to contain at most a constant number of unique ids. For a given topology graphG,
we useD to describe its diameter. Finally, for integeri > 0, let [i] = {1, 2, ..., i}.

The Consensus Problem. To better understand the power of our abstract MAC layer model we explore upper
and lower bounds for the standard binary consensus problem.In more detail, each node begins an execution
with an initial value from{0, 1}. Every node has the ability to perform a single irrevocabledecideaction
for a value in{0, 1}. To solve consensus, an algorithm must guarantee the following three properties: (1)
agreement: no two nodes decide different values; (2)validity: if a node decides valuev, then some node
hadv as its initial value; and (3)termination: every non-faulty process eventually decides. By focusingon
binary consensus, as oppose to the more general definition that assumes an arbitrary value set, we strengthen
the lower bounds that form the core of this paper. Generalizing our upper bounds to the general case in an
efficient manner (e.g., a solution more efficient than agreeing on the bits of a general value, one by one, using
binary consensus) is non-trivial and remains an open problem.

3 Lower Bounds

We begin by exploring the fundamental limits of our abstractMAC layer model with respect to the consensus
problem. In Section 4, we provide matching upper bounds. In the following, we defer some proofs to the
appendix for the sake of clarity and concision.

3.1 Consensus is Impossible with Crash Failures

In this section we prove consensus is impossible in our modelin the presence of even a single crash failure.
To achieve the strongest possible bound we assume a clique topology. Our proof generalizes the FLP [15]
result to hold in our stronger setting where nodes now have acknowledgments.3

Preliminaries. For this proof, assume w.l.o.g. that nodes always send messages; i.e., on receiving an ack
for their current message they immediately begin sending a new message. We define astepof a nodeu to
be either: (a) a nodev 6= u receivingu’s current message; or (b)u receiving an ack for its current message
(at which point its algorithm advances to sending a new message). We call a step of type (a) from above
valid with respect to the execution so far if the nodev receivingu’s message has not previously received
that messageand all non-crashed nodes smaller thanv (by some fixed but arbitrary ordering) have already
receivedu’s message. We call a step of type (b)valid with respect to the execution so far if every non-crashed
neighbor ofu has received its current message in a previous step. When we consider executions that consist
only of valid steps we are, in effect, restricting our attention to a particular type of well-behaved message
scheduler.

3The version of the FLP proof that we directly generalize hereis the cleaned up and condensed version that appeared
in the subsequent textbook of Lynch [32].
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We call an execution fragment (equiv. prefix)α of a consensus algorithmbivalent if there is some ex-
tension of valid steps that leads to nodes deciding0, and some extension of valid steps that leads to nodes
deciding1. By contrast, we call an executionα univalentif every extension of valid steps fromα that leads
to a decision leads to the same decision.4 If this decision is0 (resp.1), we also say thatα is 0-valent(resp.
1-valent). In the following, we use the notationα · s, for execution fragmentα and steps, to describe the
extension ofα by s.

Result. Fix some algorithmA. Assume for the sake of contradiction thatA guarantees to solve consensus
in this setting with up to1 crash failure. The key to generalizing the FLP impossibility to our model is the
following lemma, which reproves the main argument of this classical result in a new way that leverages our
model-specific constraints.

Lemma 3.1. Fix some bivalent execution fragmentα ofA and some processu. There exists a finite extension
α′ of α such thatα′ · su is bivalent, wheresu is a valid step ofu with respect toα′.

Proof. Assume for contradiction that this property does not hold for someα andu. It follows that for every
finite extensionα′ of α of valid steps, if we extendα′ by a single additional valid step ofu, the execution is
univalent. Letsu be the next valid step foru afterα (by our definition of valid,su is well-defined). We start
by consideringα · su. By assumption, this fragment is univalent. Assume, w.l.o.g. thatα · su is 0-valent (the
argument below is symmetric for the case whereα · su is instead1-valent). Becauseα is bivalent, however,
there is some other extensionα′′ consisting of valid steps that is1-valent.

We now move step by step inα′′, starting fromα, until our growing fragment becomes1-valent. Assume
there arek ≥ 1 steps in this extension. Label thek intermediate execution fragments fromα to theα′′:
α1, α2, ..., αk, whereαk is the where the fragment becomes1-valent. To simplify notation, letα0 = α. For
0 < i < k, we knowαi is bivalent, so, by our contradiction assumption, that stepbetweenαi−1 andαi cannot
besu. Let s∗ be the step betweenαk−1 andαk. (Notice that itis possible thats∗ = su, as the execution is no
longer bivalent after this final step.)

By our contradiction assumption, we know that for eachi ∈ {0, ..., k − 1}, αi · su is univalent. We also
know thatα0 · su is 0-valent. It follows that there must exist someî ∈ {0, ..., k − 1}, such thatαî · su is
0-valent andαî · sv · su is 1-valent, wheresv is the next valid step of some nodev 6= u. Notice this holds
whether or nots∗ = su (if s∗ = su thenαk is a fragment ending withsu that we know to be1-valent,
otherwise,αk · su is this fragment). We have found a fragmentα∗, therefore, whereα∗ · su is 0-valent but
α∗ · sv · su is 1-valent. We now perform a case analysis onsv andsu to show that all possible cases lead to a
contradiction. In the following, to simplify notation, letβ0 = α∗ · su andβ1 = α∗ · sv · su.

Case1: Both steps affect the same nodew. It is possible thatw is u or v (e.g., if su is an acknowledg-
ment andsv is u receivingv’s message), it is also possible thatw is notu or v (e.g., if su andsv are both
receives at some third nodew). We note thatw (and onlyw) can distinguish betweenβ0 andβ1. Imagine,
however, that we extendβ1 such that every nodeexcept forw keeps taking valid steps. All non-w nodes
must eventually decide, as this is equivalent to a fair execution wherew crashes afterβ1, andw is the only
node to crash—a setting where termination demands decision. By our valency assumption, these nodes must
decide1. Now imagine that we extendβ0 with the exact same steps. For all non-w nodes these two execu-
tions are indistinguishable, so they will once again decide1. We assumed, however, thatβ0 was0-valent: a
contradiction.

Case2: The steps affect two different nodes. In this case, it is clear that no node can distinguish between
β0 · sv andβ1. We can, therefore, apply the same style of indistinguishability argument as in case1, except
in this case we can allow all nodes to continue to take steps.

We now leverage Lemma 3.1 to prove our main theorem.

4Notice, not every extension need lead to a decision. If, for example, the extension does not give steps to two or
more nodes, than this is equivalent to two or more nodes crashing—a circumstance for which we do not expect a1-fault
tolerant algorithm to necessarily terminate.

5



❴ ❴ ❴ ❴ ❴✤
✤

✤
✤

❴ ❴ ❴ ❴ ❴
(gadget copy) •q

❴ ❴✤
✤

✤
✤

❴ ❴C

•c

•a1

✐✐✐✐✐✐✐✐✐✐✐✐
•a+

2

•a+
3

•a+
4

●●●●

•a2

...

•ad−1

•a∗
1

♣♣♣♣♣
•a∗

2
... •a∗

k

❯❯❯❯❯❯❯❯❯❯❯
•ad

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

•c1 •c2 •c3

• • • •
③③③
• • •

❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩ •
③③③
• • •

❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩ •

❴ ❴✤
✤

✤
✤

❴ ❴L1

❴ ❴✤
✤

✤
✤

❴ ❴L2

❴ ❴✤
✤

✤
✤

❴ ❴L3

Figure 1: InNetwork A (left) the a nodes plusc combine to comprise agadget. The bridge nodeq is
connected to two copies of this gadget at theirc nodes. It is also connected to all nodes in a cliqueC used
to adjust the total network size. InNetwork B (right) the sub-graphsL1, L2, andL3, are each a copy of the
sub-graph of the gadget of NetworkA consisting of nodes ata2 and below in the diagram (i.e., nodes labelled
ai for i > 1, as well as thea∗j nodes.)L1, L2, andL3, in other words, connect to thea1 node of the Network
A gadget.

Theorem 3.2. There does not exist a deterministic algorithm that guarantees to solve consensus in a single
hop network in our abstract MAC layer model with a single crash failure.

Proof. Assume for contradiction such an algorithm exists. Call itA. Using the standard argument we first
establish the existence of a bivalent initial configurationof A (e.g., Lemma2 from [15]). Starting from this
configuration, we keep applying Lemma 3.1, rotating throughall n nodes in round robin order, to extend the
execution in a way that keeps it bivalent. Because we rotate through all nodes when applying Lemma 3.1,
the resulting execution is fair in the sense that all nodes keep taking steps. The termination property of
consensus requires that nodes eventually decide. By agreement when any node decides the execution becomes
univalent. By Lemma 3.1, however, our execution remains bivalent, so no node must ever decide. This
violates termination and therefore contradicts the assumption thatA solves consensus.

3.2 Consensus is Impossible without Unique Ids

Having proved that consensus is impossible with crash failures, we consider the conditions under which it
remains impossiblewithoutcrash failures. Recall, in wireless networks, unlike wirednetworks, the network
configuration might be ad hoc, preventing nodes from having full a priori information on the participants.
Accordingly, in this section and the next we explore the network information required to solve consensus. We
start here by investigating the importance of unique ids. Wecall an algorithm thatdoes notuse unique ids
ananonymousalgorithm. We prove below that consensus is impossible withanonymous algorithms, even if
nodes know the network size and diameter. We then provide a corollary that extends this result to the standard
asynchronous network model. To the best of our knowledge, this is the first result on the necessity of unique
ids for consensus in multihop message passing networks.

Result. To prove our main theorem we leverage an indistinguishability result based on the network topologies
shown in Figure 1. Due to the careful construction of these networks, we cannot prove our impossibility holds
for all n andD (networkB, for example, requires thatn be divisible by3). We can, however, prove that for
every sufficiently large (even)D andn, the problem is impossible forD and somen′ = Θ(n).

Theorem 3.3. There exists a constant integerc ≥ 1, such that for every even diameterD ≥ 4 and network
sizen ≥ D, there exists ann′ ∈ {n, ..., c · n}, such that no anonymous algorithmA guarantees to solve
consensus in our abstract MAC layer model in all networks of diameterD and sizen′.
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Given someD andn that satisfy the theorem constraints, letk be the smallest integerk ≥ 0 such that
3(D−22 + k) + 12 ≥ n. Setn′ = 3(D−22 + k) + 12. Consider networksA andB from Figure 1, instantiated
with d = D−2

2 andk set to the value fixed above in definingn′. In the case of networkA, set the clique
C to contain enough nodes to bring the total count in that network to equal the number of nodes inB. The
following claim follows from the structure of these networks and our definitions ofk andd.

Claim 3.4. NetworksA andB, instantiated with the values described above, have sizen′ and diameterD.

We define thesynchronous schedulerin our model to be a message scheduler that delivers messagesin lock
step rounds. That is, it delivers all nodes’ current messageto all recipients, then provides all nodes with
an ack, and then moves on to the next batch of messages. Furthermore, we assume no global time (or,
equivalently, some small amount of time that we can define as needed in the below proof) passes between
thesesynchronous steps.Fix some consensus algorithmA that does not use unique ids. Forb ∈ {0, 1},
let αb

B be the execution ofA in networkB (see the right network in Figure 1) with all nodes starting with
initial valueb and message behaviors scheduled by the synchronous scheduler. The following lemma follows
directly from the definition of consensus and the fairness ofthe synchronous scheduler.

Lemma 3.5. There exists somet ≥ 0 such that forb ∈ {0, 1}, αb
B terminates by synchronous stept with all

nodes decidingb.

Next, letαA be an execution ofA in networkA (see the left network in Figure 1) defined as follows:
(1) all nodes in one gadget start with initial value0 (call these nodesA0), all nodes in the other copy of the
gadget start with initial value1 (call these nodesA1); (2) the bridge nodeq and the nodes in componentC
start with arbitrary initial values; and (3) we fix the scheduler to schedule the steps ofA0 andA1 like the
synchronous scheduler for fort steps (for thet fixed in Lemma 3.5), while delaying any message from node
q being delivered until after theset steps are complete. After this point, the scheduler can behave as the
synchronous scheduler for the full network.

The key argument in our proof is that a node inAb cannot distinguish itself during the firstt steps ofαA

from the same node inαb
B . Intuitively, this follows because the network inB is carefully constructed to be

symmetric, so nodes cannot tell if they are communicating with one copy of the networkA gadget or multiple
copies. To formalize this argument, we introduce some notion that relates networkA to B. Notice that
networkB consists of three copies of the gadget from networkA (with some of the edges from the connector
node copies swapped to interconnect the copies). For each nodeu in a networkA gadget, therefore, we can
defineSu to be the set containing the three nodes in networkB that correspond tou: that is, the nodes inu’s
position in the three gadget copies ofB). For example, consider nodec in the networkA gadget shown in
Figure 1. By our above definition,Sc = {c1, c2, c3}. We can now formalize our indistinguishability.

Lemma 3.6. Fix someb ∈ {0, 1} and some nodeu in Ab. The firstt steps ofu in αA are indistinguishable
from the firstt steps of the three nodes inSu in αb

B.

Proof. We begin by noting the following property of our networks that follows directly from its structure
(in the following, we use the notationNAb

to indicate the neighbor function of the subgraph of networkA
consisting only of the nodes inAb): (*) Fix anyu ∈ Ab andu′ ∈ Su. For everyv ∈ NAb

(u), u′ is connected
to exactly one node inSv. There are no other edges adjacent tou′ in B. We now leverage property (*)
in proving the following induction argument, which itself directly implies our lemma statement. The below
induction is on the number of synchronous steps in theα executions.

Hypothesis:∀u ∈ Ab, 0 ≤ r ≤ t: afterr steps,u in αA has the same state as the nodes inSu in αb
B .

Basis (r = 0): Because we assume no unique ids and the same initial values for all relevant nodes, the
hypothesis is trivially true after0 steps.

Step:Assume the hypothesis holds through some stepr, 0 ≤ r < t. We will now show it holds for step
r+1. By our hypothesis, for eachw ∈ Ab, the nodes inSw will send the same message asw during stepr+1
(as this message is generated deterministically by the nodes’ state after stepr). Now consider a particular
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u ∈ Ab and a particular copyu′ ∈ Su in networkB. By property (*), for each nodev ∈ NAb
(u) that sends

a message tou in r + 1, u′ is connected to a single node inSv. By our above argument, this node inSv will
send the same message tou′ asv sends tou. Furthermore, (*) establishes that there are no other edgesto u′

that will deliver messages at this point. It follows thatu′ will receive the same message set inr + 1 in αb
B as

u receives inr + 1 in αA. They will endr + 1, therefore, in the same state.

We now leverage Lemma 3.6 to prove our main theorem.

Proof of Theorem 3.3.Assume for contradiction that there exists an anonymous algorithmA that guarantees
to solve consensus for a diameterD and network sizen′ specified to be impossible by the theorem statement.
Fix some nodesu ∈ A0 andv ∈ A1 such thatu andv are in the same position in their respective gadgets
in networkA. Fix somew ∈ Su = Sv. By Lemma 3.5,w decides0 within t steps ofα0

B. Combining this
observation with Lemma 3.6, applied tou andb = 0, it follows thatu will decide0 in αA. By agreement, it
follows that all nodes must decide0 in αA—includingv. We can, however, apply this same argument toα1

B ,
v andb = 1, to determine thatv decides1 in αA. A contradiction.

We conclude with a corollary for the standard asynchronous model that follows from the fact that our model
is strictly stronger and this result concerns a lower bound.

Corollary 3.7. There exists a constant integerc ≥ 1, such that for every even diameterD ≥ 4 and network
sizen ≥ D, there exists ann′ ∈ {n, ..., c · n}, such that no anonymous algorithmA guarantees to solve
consensus in the asynchronous network model with broadcastcommunication and no advance knowledge of
the network topology, in all networks of diameterD and sizen′.

3.3 Consensus is Impossible without Knowledge of n

L1
D LD−1 L2

D

• • •

•

rrrrrrr
• •

▲▲▲▲▲▲▲

... ... ...

•

☞☞☞☞☞☞☞☞☞☞☞☞
• •

✷✷✷✷✷✷✷✷✷✷✷✷

•

✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑
• •

✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲

•

✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔
•

✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯

Figure 2: TheKD network.
Note:LD−1 containsD nodes.

In Section 3.2, we proved that consensus in our model requires unique ids.
Here we prove that even with unique ids and knowledge ofD, nodes still
need knowledge ofn to solve the problem (in multihop networks). Our
strategy for proving this theorem is an indistinguishability argument of a
similar style to that used in Section 3.2. In more detail, consider network
KD with diameterD shown in Figure 2. Imagine that we start theD + 1
nodes in sub-graphL1

D (resp. L2
D) with initial value 0 (resp. 1). If we

delay message delivery long enough betweenLD−1 and its neighbors in
KD, the nodes inLi

D cannot distinguish between being partitioned inKD

or executing by themselves in a network. Diameter knowledgedoes not
distinguish these cases.

To formalize this argument, we first assume w.l.o.g. that nodes contin-
ually send messages. In the following, fix some consensus algorithmA.
Let Ld, for integerd ≥ 1, be the network graph consisting ofd+ 1 nodes
in a line. Letαb

d, for b ∈ {0, 1} and some integerd ≥ 1, be the execution
of A in Ld, where all nodes begin with initial value0 and message behav-
ior is scheduled by the synchronous scheduler (defined in Section 3.2). The following lemma follows from
the validity and termination properties of consensus.

Lemma 3.8. There exists some integert ≥ 0, such that for everyb ∈ {0, 1} andd ≥ 1, αb
d terminates aftert

synchronous steps with all nodes decidingb.

For a given diameterD > 1, we define the network graphKD to consist of two copies ofLD (call theseL1
D

andL2
D) and the lineLD−1, with an edge added from every node inL1

D andL2
D to some fixed endpoint of

theLD−1 line. Notice that by construction,KD has diameterD. (See Figure 2.) Next, we define thesemi-
synchronous scheduler, in the context of network graphKD, to be a message scheduler that delivers messages
amongst nodes inL1

D and amongst nodes inL2
D, in the same manner as the synchronous scheduler fort
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synchronous steps (for thet provided by Lemma 3.8). During this period, the semi-synchronous scheduler
doesnotdeliver any messages from the endpoint of theLD−1 line to nodes inL1

D orL2
D. After this period, it

behaves the same as the synchronous scheduler. LetβD be the execution ofA in KD with: (1) all nodes in
L1
D starting with initial value0; (2) all nodes inL2

D starting with initial value1; (3) all nodes inLD−1 starting
with arbitrary initial values; and (4) the semi-synchronous scheduler controlling message actions. With these
definitions established, we can prove our main theorem.

Theorem 3.9. For everyD > 1, no algorithmA guarantees to solve consensus in our abstract MAC layer
model in all networks of diameterD.

Proof. Assume for contradiction thatA guarantees to solve consensus in all networks of diameterD, for
some fixedD > 1. By the definition of the semi-synchronous scheduler, it is straightforward to see thatβD
is indistinguishable fromα0

D for nodes inL1
D, and indistinguishable fromα1

D for nodes inL2
D, for the firstt

synchronous steps. Combining Lemma 3.8 with our indistinguishability, we note that nodes inL1
D will decide

0 in βD while nodes inL2
D will decide 1. Therefore,A does not satisfy agreement inβD. We constructed

KD, however, so that it has a diameter ofD. Therefore,A guarantees to solve consensus (and thus satisfy
agreement) in this network. A contradiction.

3.4 Consensus Requires Ω(D · Fack) Time

The preceding lower bounds all concerned computability. For the sake of completeness, we conclude by
considering complexity. TheΩ(D ·Fack) time bound claimed below is established by a partitioning argument.

Theorem 3.10. No algorithm can guarantee to solve consensus in our abstract MAC layer model in less than
⌊D2 ⌋Fack time.

Proof. Fix someD. Consider a line of diameterD consisting of nodesu1, u2, ..., uD+1, arranged in that
order. Consider an execution of a consensus algorithm in this network with a variant of the synchronous
scheduler from Section 3.2 that delays the maximumFack time between each synchronous step. In⌊D2 ⌋Fack

time, the endpoints cannot hear from beyond their nearest half of the line. If we assume they must decide by
this deadline we can apply a standard partitioning argumentto create an agreement violation. In particular,
if one half starts with initial value0 and the other initial value1, the endpoint of the first half must decide
0 and the endpoint of the second must decide1 (by indistinguishability and validity), creating an agreement
violation.

4 Upper Bounds

In Section 3, we proved fundamental limits on solving consensus in our model. In this section, we prove
these bounds optimal with matching upper bounds. We consider both single hop(i.e., the network graph
is a clique) andmultihop (i.e., the network graph is an arbitrary connected graph) networks. Due to the
impossibility result from Section 3.1, we assume no crash failures in the following.

4.1 Consensus in Single Hop Networks

Here we describe an algorithm—two-phase consensus—that guarantees to solve consensus in single hop
network topologies in an optimalO(Fack) time. It assumes unique ids but does not require knowledge
of n. This opens a separation with the standard broadcast asynchronous model (which does not include
acknowledgments) where consensus is known to be impossibleunder these conditions [1].
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Algorithm 1 Two-Phase Consensus (for nodeu)
1: v ← initial value from{0, 1}
2: R1 ← {〈phase 1, idu, v〉}
3: ⊲ Phase1
4: broadcast(〈phase 1, idu, v〉)
5: while waiting forack do
6: addreceived messages toR1

7: end while
8: if 〈phase 1,*,1− v〉 ∈ R1 or 〈phase 2,*, bivalent〉 ∈ R1 then
9: status← bivalent

10: else
11: status← decided(v)
12: end if
13: ⊲ Phase 2
14: broadcast(〈phase 2, idu, status〉)
15: R2 ← {〈phase 2, idu, status〉}
16: while waiting forack do
17: addreceived messages toR2

18: end while
19: W ← every unique id inR1 andR2 ⊲ Witness list created
20: while ∃id ∈ W s.t. 〈phase 2, id,*〉 /∈ R1 ∪ R2 do
21: addreceived phase2 messages toR2

22: end while
23: if 〈phase 2, *, decided(0)〉 ∈ R2 then
24: decide 0
25: else
26: decide 1
27: end if

The pseudocode for our algorithm is presented
in Algorithm 1. Here we summarize its operation:
Each nodeu executes twophases. At the beginning
of the first phase,u broadcasts its unique id and its
initial value vu ∈ {0, 1}. Nodeu considers its first
phase complete once it receives an acknowledgment
for its first broadcast. At this point,u will choose its
status. If u has seen evidence of a different initial
value in the system by this point (i.e., it sees a phase
1 message for a different value or abivalentphase
2 message), it sets its status tobivalent. Otherwise,
it sets it todecidedvu. Nodeu now begins phase
2 by broadcasting its status and id. Onceu finishes
this phase2 broadcast, it has two possibilities. If its
status isdecided, then it can decide its initial value
and terminate. Otherwise, it constructs awitness set
Wu, consisting of every node it has heard from so
far in the execution. It waits until it has received a
phase2 message fromeverynode inWu. At this
point, if the set contains any message of the form
decidedvw, then it decidesvw. Otherwise, it decides
default value1. We now establish the correctness of
this strategy.

Theorem 4.1. The two-phase consensus algorithm solves consensus inO(Fack) time in our abstract MAC
layer model in single hop networks with unique ids.

Proof. Validity and termination are straightforward to establish. We turn our attention, therefore, to agree-
ment. If no node ends up withstatus = decided(0), then1 is the only possible decision value. The interesting
case, therefore, is when some nodeu does setstatus← decided(0) after its phase1 broadcast completes.
Let S be the subset of nodes that began with initial value1 (if any). By assumption,u’s phase1 broadcast
completed before any node inS, as, otherwise,u would have seen evidence of a1 before settingstatus,
preventing it from choosingdecided(0). It follows that every node inS must setstatus to bivalent. We
know, therefore, that it is impossible to have bothdecided(1) anddecided(0) in the system. We are left to
show that if there isdecided(0) in the system, then all nodes end up deciding0. As before, letu be a node
with statusdecided(0). Now let v be a node with statusbivalent. We consider two cases concerningu and
v’s interaction.

In the first case, assumev receives a message fromu beforev finishes its phase2 broadcast. It follows
thatu will be placed inv’s witness list,W . The algorithm now requiresv to wait for u’s phase2 broadcast
before deciding. It will therefore see thatu has a status ofdecided(0), requiringv to decide0. In the second
case,v does not receive a message fromu beforev finishes its phase2 broadcast. Accordingly,u is not inv’s
witness setW . This might be problematic as it could allowv to decide before it sees adecided(0) message.
Fortunately, we can show this second case cannot happen. Ifv had not heardany message fromu by the
time it finished its phase2 broadcast, it follows thatu receives this broadcast before it finishes its phase1
broadcast. Butv’s phase2 broadcast has abivalentstatus. By the algorithm, this would preventu from setting
its status todecided(0)—contradicting our assumption thatu has adecidedstatus.

4.2 Consensus in Multihop Networks

We now describe a consensus algorithm for the multihop setting that guarantees to solve consensus inO(D ·
Fack) time. It assumes unique ids and knowledge ofn (as required by the lower bounds of Section 3), but
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makes no additional assumptions about the participants or network topology. Notice, this solution does not
replacethe single hop algorithm of Section 4.1, as this previous algorithm: (1) is simpler; (2) has a small
constant in its time complexity (i.e.,2); and (3) does not require knowledge ofn.5

Our strategy for solving consensus in this setting is to leverage the logic of the PAXOS consensus algo-
rithm [30, 31]. This algorithm was designed and analyzed forthe asynchronous network model with bounded
crash failures. Here we apply the logic to our wireless modelwith no crash failures. The main difficulty we
face in this effort is that nodes do not know the topology of the network or the identity of the other participants
in advance. To overcome these issue we connect the PAXOS logic with a collection of sub-routines we call
services, which are responsible for efficiently delivering messages, electing the leaders needed by PAXOS
for liveness, and telling the proposers when to generate newproposal numbers. We call this combination of
PAXOS logic with our model-specific serviceswireless PAXOS(wPAXOS).

If we were satisfied with a non-optimalO(n · Fack) time complexity, the communication services could
be implemented with a simple flooding logic (the first time yousee a message, re-broadcast), and the leader
election service could simply return the largest id seen so far. To obtain an optimalO(D · Fack) time com-
plexity, however, requires a more intricate solution. In particular, when a proposer is waiting to hear from a
majority of acceptors, we cannot afford for it to receive each response individually (as each message can only
hold a constant number of unique ids, and this would therefore require a proposer to receiveΘ(n) messages).
Our solution is to instead have nodes execute a distributed Bellman-Ford style iterative refinement strategy
to establish shortest-path routing trees rooted at potential leaders. We design this service such that once the
leader election service stabilizes, a tree rooted at this leader will complete soon after (if it is not already com-
pleted). These trees are then used to safelyaggregateresponses from acceptors: a strategy that leverages the
fact that PAXOS only requires the totalcountof a given response type, not the individual responses.6 This
aggregation strategy reduces the time to gather responses (after stabilization) fromO(n ·Fack) toO(D ·Fack).

The final optimization needed to adapt PAXOS to our model is the change service. We need the eventual
leader to generate proposalsafter the leader election and tree services stabilize, so it can reap the benefits
of efficient acceptor response aggregation. At the same time, however, the leader cannot generatetoo many
new proposals after this point, or each new proposal may delay the previous. The key property of our change
service is that it guarantees that the leader will generateΘ(1) new proposal after stabilization (assuming there
is no decision yet in the network).

4.2.1 Algorithm

Our algorithmic strategy is to implement the logic of the classic PAXOS asynchronous agreement algo-
rithm [30, 31] in our abstract MAC layer model. To do so, we implement and analyze a collectionservices
that can be connected to the high-level PAXOS logic to run it in our model. These services are responsible
for disseminating proposer messages and acceptor responses (in an efficient manner), as well as notifying the
high level PAXOS logic when to start over with a new proposal number. They also provide the leader election
service needed for liveness. As mentioned, we call this combination of the high-level PAXOS logic with our
model-specific support services,wireless PAXOS(wPAXOS).

We note, that if we did not care about time complexity, our services could disseminate messages and
responses with simple flooding services. To achieve an optimal O(D · Fack) time, however, requires a more
complicated strategy. In more detail, our services build, in a distributed fashion, an eventually stabilized
shortest path tree rooted at the eventual leader in the network. Once stabilized, acceptors can efficiently send
their responses to the leader by aggregating common response types as they are routed up the tree.

We proceed below by first describing these support services,and then describing how to connect them
to the standard PAXOS logic. We conclude by proving our needed safety and liveness properties for the

5This lack of knowledge ofn does not violate the lower bound of Section 3.3, as this lowerbound requires the use
of a multihop network topology.

6A technicality here is that these responses sometimes include prior proposals; we handle this issue by simply main-
taining in aggregated responses the prior proposal—if any—with the largest proposal number of those being aggregated.
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Algorithm 2 Leader Election Service (for nodeu)
1: procedure ON INITIALIZATION

2: Ωu ← idu

3: UpdateQ(〈leader, idu〉)
4: end procedure

5: procedure RECEIVE(〈leader, id〉)
6: if id > Ωu then
7: Ωu ← id
8: UpdateQ(〈leader, id〉)
9: end if

10: end procedure

11: procedure UPDATEQ(〈leader, id〉)
12: empty leader queue andenqueue 〈leader, id〉
13: end procedure

Algorithm 3 Change Service (for nodeu)
1: procedure ON INITIALIZATION

2: lastChange← −∞
3: end procedure

4: procedure ONCHANGE ⊲ Ωu or distu updated.
5: lastChange← time stamp()
6: UpdateQ(〈change, lastChange, idu〉)
7: end procedure

8: procedure RECEIVE(〈change, t, id〉)
9: if t > lastChange then

10: lastChange← t
11: UpdateQ(〈change, t, id〉)
12: end if
13: end procedure

14: procedure UPDATEQ(〈change,t, id〉)
15: empty the change queue thenenqueue 〈change, t, id〉
16: if Ωu = idu then
17: GenerateNewPAXOSProposal()
18: end if
19: end procedure

Algorithm 4 Tree Building Service (for nodeu)
1: procedure ON INITIALIZATION

2: ∀v 6= u : dist[idv]←∞ andparent[idv]← ⊥
3: dist[idu]← 0 andparent[idu]← idu

4: UpdateQ(〈search, idu, 1〉)
5: end procedure

6: procedure RECEIVE(m = 〈search, id, h〉)
7: if h < dist[id] then
8: dist[id]← h
9: parent[id]← m.sender

10: UpdateQ(〈search, id, h+ 1〉)
11: end if
12: end procedure

13: procedure UPDATEQ(〈search,id, h〉)
14: enqueue 〈search, id, h〉 on tree queue
15: discard any message forid with hop counth′ > h
16: move message (if any) with idΩu to front of tree queue
17: end procedure

18: procedure ONLEADERCHANGE ⊲ Called whenΩu changes
19: move message (if any) with idΩu to front of tree queue
20: end procedure

Algorithm 5 Broadcast Service (for nodeu)
1: while truedo
2: wait for at least one queue from
3: {tree, leader, change} to become non-empty
4: dequeue a message from each non-empty queue and
5: combine into one messagem.
6: broadcast(m) then wait forack
7: end while

Figure 3: Support services used by wPAXOS. Notice, the broadcast service schedules message broadcasts
from the queues maintained by the other three services. We assume that when a message is received it is
deconstructed into its constituent service messages whichare then passed to thereceive procedure of the
relevant service. This basic receive logic is omitted in theabove.
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resulting combined algorithm. In the following, we assume the reader is already familiar with the PAXOS
algorithm (if not, see [31]), and will focus on the new service algorithms specific to our model it uses and
how it uses them.

Services. Our wPAXOS algorithm requires the four support services (see Figure 3 for the pseudocode). The
first three,leader election, change, andtree buildingeach maintain a message queue. The fourth,broadcast,
is a straightforward loop that takes messages from the frontof these queues, combines them, then broadcasts
the combined message—allowing the algorithm to multiplex multiple service on the same channel. In the
following, therefore, we talk about the messages of the leader election, change, and tree building services as
if they were using a dedicated channel.

Leader Election.This service maintains a local variableΩu, containing an id of some node in the network,
at each nodeu. The goal of this service is to eventually stabilize these variables to the same id network-wide.
It is implemented with standard flooding logic.

Tree Building. This service attempts to maintain in the network, for each node v, a shortest-path tree
rooted atv. The protocol runs a Bellman-Ford style iterative refinement procedure for establishing these
trees, with the important optimization that the messages corresponding to the current leader get priority in
each node’s tree service queue. This optimization ensures that soon after the network stabilizes to a single
leader a tree rooted at that leader is completed.

Change.This service is responsible for notifying PAXOS proposers when they should start a new proposal
number. The goal for this service is to ensure that the eventual leaderuℓ starts a new proposal after the other
two services have stabilized: that is, after the leader election service has stabilized touℓ across the network,
and the tree rooted atuℓ is complete. Proposals generated after this point, we will show, are efficiently
processed. The service must also guarantee, however, not togeneratetoo manychanges after this point, as
each new proposal can delay termination.

Connecting PAXOS Logic to Support Services. We now describe how to combine the standard PAXOS
logic with our model-specific support services to form the wPAXOS algorithm. Recall, in PAXOS there are
two roles: proposersandacceptors.7 In wPAXOS all nodes play both roles. We describe below how both
roles interact with our services.

Proposers.Proposers generateprepareandproposemessages (the latter sometimes calledacceptmes-
sages), associated with a given proposal number. A proposalnumber is atag (initially 0) and the node’s
id. The pairs are compared lexicographically. A key detail in any PAXOS deployment is the conditions un-
der which a proposer chooses a new proposal number and startsover the proposal process. In wPAXOS, a
proposer starts over when its change service locally callsGenerateNewPAXOSProposal(). At this point it in-
creases itstag to be1 larger than the largest tag it has previously seen or used. Ifthis new proposal number is
rejected at either stage,andthe proposer learns of a larger proposal number in the systemduring this process
(i.e., because an acceptor appended a previous message to its rejection),and it is still the leader according
to its leader election service, it increases its tag number and attempts a new proposal. If this new proposal
also fails, it waits for the change service before trying again. In other words, a proposer will only try up to2
proposal numbers for each time it is notified by the change service to generate a new proposal.

To disseminate theprepareandproposemessages generated by proposers we assume a simple flooding
algorithm (due to its simplicity, we do not show this pseudocode in Figure 3): if you see a proposer message
from u for the first time, add it to your queue of proposer messages torebroadcast. To prevent old proposers
messages from delaying new proposer messages we have each proposer maintain the following invariant
regarding the message queues used in this flooding: At all times, the queue is updated to ensure: (1) only
contains messages from the current leader; and (2) only contains messages associated with the largest proposal
number seen so far from that leader.

7There is sometimes a third role considered, calledlearners, that are responsible for determining when a decision
has been made. As is common, however, we collapse this role with the role of the proposer. When a proposer determines
it can can decide a value—i.e., because a proposal for this value was accepted by a majority of acceptors—it does so
and floods this decision to the rest of the network.
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Acceptors.We now consider the acceptors. When acceptorv generates a response to aprepareor propose
message from proposeru, v labels the response with the destinationparent[idu] then adds it to its acceptor
broadcast queue. This message is then treated like a unicastmessage: even though it will be broadcast (as
this is the only communication primitive provided by our model), it will be ignored by any node except
parent[idu]. Of course, ifv = u then the message can skip the queue and simply be passed over to the
proposer logic.

To gain efficiency, we have acceptors aggregate messages in their acceptor queue when possible. In more
detail, if at any point an acceptorv has in its queue multiple responses of the same type (positive or negative)
to the same proposer message, to be sent to sameparent: it can combine them into a singleaggregated
message. This single message retains the the type of responses as well as the proposal number the responses
reference, but replaces the individual responses with a count. We can combine aggregated messages with
other aggregated messages and/or non-aggregated messagesin the same way (i.e., given two aggregated
messages with countsk1 andk2, respectively, we can combine them into an aggregated message with count
k1 + k2).

Notice, PAXOS sometimes has acceptors respond to apreparemessage with a previous proposal (i.e.,
combination of a proposal number and value). When aggregating multiple messages of this type (i.e., con-
taining previous proposal) we keep only the previous proposal with the largest proposal number. We also
assume PAXOS implements the standard optimization that hasacceptors, when rejecting a message, append
the larger proposal number to which they are currently committed. We aggregate these previous proposals
in the same way we do with positive responses to prepare messages—by maintaining only the largest among
those in the messages we are aggregating.

Finally, as with the proposers, the acceptors keep their message queue up to date by maintaining the in-
variant that at all times, the queue is updated to ensure: (1)only contains messages in response to propositions
from the current leader; and (2) only contains responses associated with the largest proposal number seen so
far from that leader.

Deciding. When a proposer learns it can decide a valueval (i.e., because it has learned that at least
a majority of acceptors replied withacceptto a proposal containingval), it will decide val then flood a
decide(val) message. On receiving this message, a node will decideval.

4.2.2 Analysis

We now prove that our wPAXOS algorithm solves consensus inO(D · Fack) time—matching the relevant
lower bounds. In the following, let amessage step(often abbreviated below as just “step”) be an event
in an execution where a message or ack is received. Notice, because we consider deterministic algorithms
and assume that local computation does not require any time,the behavior of an algorithm in our model is
entirely describe by a sequence of message steps. Let apropositionbe a combination of a proposer, a proposer
message type (i.e., eitherprepareor propose), and a proposal number. For a fixed execution of wPAXOS: let
a(p), for a given propositionp, be the number acceptors that generate an affirmative response to proposition
p; and letc(p) be the total count of affirmative responses for propositionp received by the originator ofp.
Similarly, letc(p, s), for steps, be the total count of affirmative responses top received by the end of steps.

Safety. In the standard asynchronous network model, PAXOS takes forgranted that proposers properly count
the relevant responses to their propositions, as the model reliably delivers each response, labeled with the
acceptor that generated it. In wPAXOS, however, we aggregate responses using shortest-path trees that might
change during throughout the execution. Before we can leverage the standard safety arguments for PAXOS,
we must first show that this aggregation in dynamic trees doesnot compromise the integrity of the proposer
response counts.

Lemma 4.2. Fix some execution of wPAXOS. Letp be a proposition generated byu in this execution. It
follows thatc(p) ≤ a(p).

Proof. In this proof, for a fixed execution, propositionp, nodev, and steps, we defineq(p, v, s) be the sum
of the following values: (1) the total count of affirmative responses to propositionp in nodev’s acceptor
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message queue after steps; (2) the total count of the affirmative responses top in the messagev is in the
process of sending to somew after steps, assuming thatw has not yet received the message at this point; (3)
1, if the acceptor atv will generate an affirmative response top at some later steps′ > s in the execution.
Similarly, letQ(p, s) =

∑
v∈V q(p, v, s). Fix some propositionp with originatoru. To prove our lemma it is

sufficient to prove the following invariant:

(*) For every steps ≥ 0: Q(p, s) + c(p, s) ≤ a(p).

We prove (*) by induction ons. Thebasis(s = 0) of this induction is trivial: by definitionQ(p, 0) = a(p)
andc(p, 0) = 0. For theinductive stepwe assume (*) holds through steps. There are three cases for step
s+ 1 that are relevant to our hypothesis.

Case1: Assumes + 1 has some acceptorv 6= u receive a message that causes it to generate a response
to p. This action transfers quantity1 from q(p, v, s) (contributed from element (3) of the definition ofq) and
transfers it either to the messages inv’s queue, or, if it is not in the process of sending a message whens+ 1
occurs, into a message being sent byv. In either case, this value of1 now shows up inq(p, v, s + 1) either
from element (1)or (2) of its definition/ It follows thatQ(p, s+ 1) = Q(p, s) andc(p, s+ 1) = c(p, s).

Case2: Assumes + 1 has some acceptorw 6= u receive a messagem from v that contains affirmative
responses top andv addressed the message tow. In this case, the count of affirmative responses contained
in this message was moved unchanged fromq(p, v, s) to q(p,w, s + 1). Once againQ(p, s) = Q(p, s + 1)
andc(p, s + 1) = c(p, s).

Case3: Assume steps hasu receive a message withk affirmative responses top that is addressed tou.
In this case,u addsk to its count and discards the message. It follows thatQ(p, s + 1) = Q(p, s) − k and
c(p, s + 1) = c(p, s) + k.

The below lemma comes from [31], where Lamport shows that proving this lemma provides agreement.
If we can prove this below lemma, in other words, then we can apply the arguments of [31] to establish
agreement. Notice, this proof leverages Lemma 4.2.

Lemma 4.3. Fix an execution of wPAXOS. Assume proposeru generates a proposal with valueval and
proposal numberx. It follows that there exists a setS consisting of a majority of acceptors such that either:
(a) no acceptor inS has accepted a proposal with number smaller thanx, or (b) val is the value of the
highest-numbered proposal among all proposals with numbers less thanx accepted by the acceptors inS.

Proof. Fix some executionα. Let p′ be a proposal proposition generated byu for proposal numberx. Let
p be the prepare proposition fromu with this same numberx that must, by the definition of the algorithm,
precedep′. LetA be the set of acceptors that commits top. Let s be the step at whichc(p, s) becomes greater
thann/2 for the first time. We define a directed graphG(α, p, s) = (V,E′) as follows. Add(w, v) to E′ iff
at some steps′ ≤ s in α, acceptorw sent a message about a positive response top to v. LetAu ⊂ A be the
subset ofA that have a path tou in G(α, p, s).

Consider the case where at least one node inAu had previously committed to a proposal numberx̂ when
p arrived. We knowx̂ < x as this node subsequently committed tox. Let xmax ≥ x̂ be the largest such
proposal number of a previous commitment andvalmax be the corresponding value. LetP be the set of
previous proposals thatu receives in response top. We argue that(xmax, valmax) is in P and has the largest
proposal number of any proposal inP . If this is true, it follows thatu will adopt valmax for its proposalp′,
as needed by the lemma.

To show this is true, letvmax be an acceptor inAu that previously committed to that proposal. By the
definition ofG(α, p, s), there is a casual path of messages on which this proposal could travel tou. The only
way it could be discarded before arriving atu is if at some point a larger proposal in response top joins the
path fromvmax to u, beforethexmax proposal has been sent forward. By assumption, however, no process in
Au has a larger proposal number. It follows that this larger proposal must have originated from somev′ /∈ Au.
However, if this previous proposal can intercept the path fromvmax tou beforevmax’s messages have passed
that point, then, by the definition ofG(α, p, s). u must have a path tou in G(α, p, s), and therefore must be
in Au.
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We have now shown that properties (a) and (b) hold’s forAu. To prove the lemma, we are left to show
thatAu must hold a majority of acceptors. Assume for the sake of contradiction that|Au| ≤ n/2. At steps,
however, proposeru hasc(p, s) > n/2. By the definition ofG(α, p, s), there is no causal path of messages
being sent and received from nodes inV \Au to u that arrive atu before it counts a majority of acceptances.
Therefore, the executionα′ in whichnonode inV \Au commits top is indistinguishable fromα with respect
to u through steps. In α′, however,|A| ≤ n/2 and thereforea(p) ≤ n/2. In this same execution, we also
know c(p) > n/2. The result: inα′, c(p) > a(p). This contradicts Lemma 4.2

Part of the difficulty tackled by wPAXOS is efficiently disseminating responses form acceptors even
though the messages are of bounded size (i.e., can only holdO(1) ids). If message size was instead un-
bounded, we could simply flood every response we have seen so far. Given this restriction, however, we must
make sure that the proposal numbers used by proposers in wPAXOS do not grow too large. In particular,
we show below that these proposal numbers always remain small enough to be represented byO(log n) bits
(messages must at least this large by the assumption that they can hold a constant number of ids in a network
of sizen).

Lemma 4.4. There exists a constantk such that the tags used in proposal numbers of wPAXOS are bounded
byO(nk).

Proof. Each nodeu can only locally observeO(n2) change events. its leader variable can only haven
possible values and these values strictly increase. And foreachv, dist[v] at u can only haven values it
strictly decreases. Each change event can lead to at most2 new proposal numbers at each node in the network
(recall: the algorithm restricts a proposer to attempting at most2 new numbers in response to a given call of
GenerateNewPAXOSProposal). We also note that there aren total nodes and the tags in proposal numbers
are increased to be only1 larger than the largest tag previously seen. A straightforward induction argument
bounds the largest possible tag size as polynomial inn as needed.

Liveness. We now establish that all nodes in wPAXOS will decide by timeO(D · Fack). The main idea in
this proof is to consider the behavior of the algorithm afterthe tree and leader election service stabilize. WE
show this stabilization occurs inO(D · Fack) time and after this point the leader will continue to generate
proposals and end up reaching a decision within an additional O(D · Fack) time.

Lemma 4.5. Fix some execution of wPAXOS. Every node decides inO(D · Fack) time.

Proof. Let ŝ be the step that generates thefinal change in this execution. Lett(ŝ) be the global time at which
this step occurs. Repurposing a term from the study of partially synchronous model, we callt(ŝ) theglobal
stabilization time(GST) as it defines a time by which point: (a) the whole networkhas stabilized to the same
leader,ℓ; (b) the tree defined byparent[ℓ] pointers in the network has stabilized to a shortest-path spanning
tree rooted atℓ.

Considerℓ’s behavior after the GST. We know thatŝ generates a change message. Because this change
message has a timestamp as larger (or larger) than other change message in the execution, every node will
receive a change message with this timestamp for the first time somewhere in the[t(ŝ), t(ŝ) +O(D · Fack)].
This is the last change message any node will pass on to theirUpdateQprocedure in the change service. This
is significant, because it tells us thatℓ will generate a new proposition at some on or after the GST, but not
too muchafter. And, this is the last time the change service will cause ℓ to generate a proposition.

We now bound the efficiency ofℓ’s propositions after the GST. Notice, after GST only messages fromℓ
can be stored in proposer queues. Whenℓ generates a new proposition message with a larger proposal number
than any previous such messages, it will necessarily propagate quickly—reaching a major it of acceptors in
O(D · Fack) time. We can show that acceptor responses return toℓ with the same bound, as every such
response is at most distanceD from ℓ in the shortest path tree, and can be delayed by at mostO(Fack) time
at each hop (if multiple responses arrive at the same node they will simply be aggregated into one response)

Now we consider the fate ofℓ’s propositions after GST. We know from above that it generates a new
proposition with a new proposal number on or after GST. If receives enough commits to its prepare message
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for this proposal number, then it follows it will go on to gather enough accepts to decide (as no other proposer,
after GST, can have its proposals considered). If it fails togather enough commits, it will move on to the next
proposal after counting a majority of the acceptors rejecting its prepare. By the algorithm, however, it will
learn the largest proposal number that one of this set has previously committed to. Its subsequent proposal
number will be larger, and therefore this same majority willend up sending him enough commits to move on
toward decision. It follows that a constant number of propositions is sufficient forℓ to decide.

To tie up the final loose ends, we note that onceℓ decides, all nodes decide within an additionalO(D·Fack)
time, and that GST is bounded byO(DFack) as well: it takes this long for the leader election service to
stabilize, after which the tree rooted at the leader must be stabilized within in additionO(D ·Fack) time.

Pulling Together the Pieces. We are now ready to combine our key lemmas to prove the final correctness of
wPAXOS.

Theorem 4.6. The wPAXOS algorithm solves consensus inO(D · Fack) time in our abstract MAC layer
model in any connected network topology, whereD is the network diameter and nodes have unique ids and
knowledge of network size.

Proof. The validity property is trivial. Theterminationproperty as well as theO(D · Fack) bound on ter-
mination follow directly from Lemma 4.5. To satisfy agreement we combine Lemma 4.3 with the standard
argument of [31].

5 Conclusion

Consensus is a key primitive in designing reliable distributed systems. Motivated by this reality and the
increasing interest in wireless distributed systems, in this paper we studied the consensus problem in a wire-
less setting. In particular, we proved new upper and lower bounds for consensus in an abstract MAC layer
model—decreasing the gap between our results and real deployment. We prove that (deterministic) consensus
is impossible with crash failures, and that without crash failures, it requires unique ids and knowledge of the
network size. We also establish a lower bound on the time complexity of any consensus solution. We then
present two new consensus algorithms—one optimized for single hop networks and one that works in general
multihop (connected) networks.

In terms of future work, there are three clear next steps thatwould help advance this research direction.
The first is to consider consensus in an abstract MAC layer model that includes unreliable links in addition
to reliable links. The second is to consider what additionalformalisms might allow deterministic consensus
solutions to circumvent the impossibility concerning crash failures. In the classical distributed systems set-
ting, failure detectors were used for this purpose. In the wireless world, where, among other things, we do not
always assumea priori knowledge of the participants, this might not be the most natural formalism to deploy.
The third direction is to consider randomized algorithms, which might provide better performance and the
possibility of circumventing our crash failure, unique id,and/or network size knowledge lower bounds.
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