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ABSTRACT
A seminal 1998 paper by Kushilevitz and Mansour [10] proved
that for any randomized radio network broadcast algorithm,
there exists a network in which the algorithm requires an
expected time of Ω(D log (n/D)) rounds, for network size n
and diameter D. In this study, we apply a new technique
to generate a shorter and stronger version of this proof. In
more detail, our new version fits in two pages, and it strictly
strengthens the existing result by now allowing for active
collision detection and an unlimited number of communica-
tion channels—assumptions which break the proof argument
of [10].

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless Com-
munication
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1. INTRODUCTION
Broadcast in radio networks has been studied from an

algorithmic perspective for over 25 years (e.g., since [3]).
Work on randomized distributed solutions to this problem
build on three seminal papers written between 1987 and
1998: (1) the O(D logn + log2 n) randomized broadcast al-
gorithm of Bar-Yehuda et al. [2], for network size n and
network diameter D (a result which was later optimized
slightly to O(D log (n/D) + log2 n) [9, 4]); (2) the Ω(log2 n)
lower bound of Alon et al. [1], which proves the Bar-Yehuda
bound tight for small D; and the (3) Ω(D log (n/D)) lower
bound of Kushilevitz and Mansour [10], which proves (op-
timized) Bar-Yehuda optimal for larger D. Of these three
important bounds, the proof argument by Kushilevitz and
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Mansour is the longest and arguably the most complicated
(which perhaps explains the long gap between this bound
and the Ω(log2 n) bound of [1] that preceded it).

In this (purposefully) brief paper, we demonstrate a sur-
prising reality: the core technical argument of Alon et al. [1]
can be used to prove a strengthened and much simplified
version of the Kushilevitz and Mansour bound. (That is,
the authors of [1] had, probably without knowing it, all the
pieces necessary to prove the full Bar-Yehuda result opti-
mal.) To support this claim, we leverage a core result of [1]
to prove Ω(D log (n/D)) rounds are necessary to solve dis-
tributed broadcast. Our proof, which uses a different ap-
proach than [10], requires only two pages (including discus-
sion). Furthermore, the result is strictly stronger than the
original, as it now holds even if we assume active collision
detection (i.e., active nodes can use collision detection) and
provide the nodes access to an unlimited number of orthog-
onal communication channels. Both of these additional as-
sumptions break the proof argument in [10]. In fact, before
this paper, it was an open question whether D log (n/D)
rounds are needed for broadcast in the presence of collision
detection or multiple channels: both these assumptions, for
example, have been shown to speed up leader election in
radio networks [7, 5], so it stands to reason they would do
the same for multihop broadcast.1 We prove here—perhaps
surprisingly—they do not.

Related Work.
We are not the first to simplify the complex bound of

Kushilevitz and Mansour. This effort was previously un-
dertaken by Liu and Prabhakaran [11], who simplified the
result of [10] by first bounding a key deterministic behavior,
then translating the result to the randomized setting using
Yao’s minimax principle. Though this approach differs from
ours in its specifics, it shares the same general attack: find-
ing a way to bound the progress of the message through a
layered network without having to argue directly about the
behavior of the randomized algorithm (the main source of
complexity in the original proof). Whereas Liu and Prab-
hakaran leverage a connection to determinism in this effort,
we instead work by reducing randomized broadcast to an
easily bounded combinatorial game. We also note that their
solution assumes a graph structure that does not satisfy ge-

1In fairness, the leader election algorithms of [7, 5] assume
all nodes start the execution active, whereas the broadcast
problem requires nodes to remain inactive before receiving
the message, so these strategies do not directly translate to
the broadcast setting.



ographic constraints such as the unit disk graph property,
while our bound, as in the original bound of Kushilevitz and
Mansour, still holds under such restrictions.

Model.
We model a multihop radio network as an undirected con-

nected graph G = (V,E), where the n = |V | nodes in V
correspond to the wireless devices, the edges in E indicate
which devices are within communication range, and we use
D to describe the graph diameter. An algorithm consists of
n randomized processes. An execution begins with an adver-
sary assigning the processes to nodes in V . It then proceeds
in synchronous rounds. In each round, each node decides
whether to transmit or receive, based on its corresponding
process definition. A node u receives a message m in a given
round r, if and only if : (a) u decides to receive in r; and (b)
exactly one neighbor of u transmits in r and it transmits
m. In the standard version of this model, a node cannot
distinguish between silence and collision. Below, we define
a type of collision detection for which our lower bound still
holds.

We study the broadcast problem, which requires a desig-
nated source node to propagate a message to every node in
the network. In this problem, a node is inactive until it first
receives the broadcast message; at which point it becomes
active and can participate in the algorithm. We say a graph
satisfies the unit disk graph property if there is a way to as-
sign nodes locations in a 2-dimensional cartesian plane such
that E = {(u, v) | d(u, v) ≤ 1}, for distance metric d. We say
nodes have active collision detection if they can distinguish
between silence and collisions once they become active (i.e.,
after they have received their first message). We say nodes
have access to multiple channels to describe a generalization
of the model where each node can choose a channel from a
set of multiple orthogonal communication channels in each
round, such that the message receive rules apply to each
channel individually (e.g., u receives a message on channel
i if and only if u chooses to receive on i and exactly one
neighbor of u broadcasts on i). Inactive nodes can receive
on some predetermined default channel.

2. LOWER BOUND
Alon et al. [1] proved the existence of a bipartite radio

network (V1, V2) of size N , with |V1| = n and |V2| ≈ nc, for
some constant c > 1, where delivering a message from V1

to every node in V2 requires Ω(log2 n) = Ω(log2N) rounds.
Their proof argument divided the nodes in V2 into Θ(logn)
different groups, each corresponding to a different number of
neighbors in V1. Intuitively, each set of broadcasts B ⊂ V1

can only help deliver messages to nodes in a small number of
these groups. This observation is the starting point for their
eventual argument that Ω(log2N) rounds are necessary to
get a message to every node in V2. For our purposes, how-
ever, we do not need to follow this proof to its conclusion.
We are instead content to make use of the following inter-
mediate result (recently isolated and proved in [8]), which
follows in a straightforward manner from the proof in [1]:

Lemma 2.1 (Adapted from [8, 1]). Fix any n > 0.
There exists a constant α > 0 and bipartite radio network
H = (V1, V2), with |V1| = n and |V2| > n, such that in each
round, regardless of which nodes in V1 transmit, at most an
α/ logn fraction of nodes in V2 receive a packet.

The above lemma provides the core technical result upon
which we will now build our lower bound. At a high-level,
our strategy will proceed as follows: (1) we will use Lemma 2.1
to bound an abstract game called set isolation (which we
previously introduced in [6] to derive a shorter and stronger
version of the Ω(log2 n) lower bound on the single-hop wake-
up problem); (2) we will reduce set isolation to distributed
broadcast, applying our bound from the preceding step to
achieve a bound for distributed broadcast. The set isolation
game, in other words, is the technical glue that connects the
result of Alon et al. to the result of Kushilevitz and Mansour.

The Set Isolation Game.
The k-set isolation game, defined for some k > 1, has

a player face off against an adversarial referee. At the be-
ginning of the game, the referee secretly selects a target set
T ⊆ {1, ..., k}. In each round, the player generates a pro-
posal P ⊆ {1, ..., k}. If |P ∩ T | = 1, then the player wins
the game. Otherwise, the player moves on to the next round
learning no information other than the fact that its proposal
failed. We leverage Lemma 2.1 to prove a lower bound on
the expected time to win this game:

Lemma 2.2. Fix some k > 1. There exists a referee strat-
egy for the k-set isolation game, such that for every player
strategy, the expected time to win the game is Ω(log k) rounds.

Proof. We begin by discussing broadcast. Using n = k,
fix the constant α and bipartite graph H = (V1, V2) pro-
vided by Lemma 2.1. A consequence of Lemma 2.1 is that
Ω(logn) rounds of broadcasting in V1 are needed before half
or more of the nodes in V2 have received the message. This
follows because at most (|V2|α)/ logn nodes in V2 receive the
message in each round, regardless of how we choose broad-
casters (by Lemma 2.1). It takes, therefore, a minimum of
β = blogn/(2α)c rounds before at least half the nodes in V2

can receive the message.
Now we connect this observation to set isolation. By con-

struction, k = |V1|. For use in the remainder of the proof,
assign each node in V1 a unique label from {1, ..., k}. When
playing the k-set isolation game, we can interpret each pro-
posal P from the player as the nodes P ⊆ V1 broadcasting in
H. Consider the referee strategy that chooses a node from
u ∈ V2 with uniform randomness, and then sets T = NH(u),
where NH is the neighbor function on H. It follows that the
player wins the game during the first round when u receives
a message in the corresponding broadcast simulation on H.
By our above argument, the player’s simulation will have de-
livered the message to less than half the nodes in V2 by the
end of round β−1. Because the referee chooses u at random
(without revealing this choice to the player), the probability
that the player has won the game in β−1 = O(logn) rounds
is less than 1/2. Therefore, regardless of the player strat-
egy, this specific referee strategy yields an expected time of
Ω(logn) rounds to win the isolation game.

Reducing Set Isolation to Distributed Broadcast.
We have used a lower bound regarding the existence of

slow broadcast graphs to generate a lower bound for our
abstract set isolation game. We will now use our set isolation
game bound to generate a lower bound for the expected time
for distributed broadcast. The following theorem statement
is strictly stronger than the statement from [10]:



Theorem 2.3. For every broadcast algorithm A, number
of processors n > 1, and diameter D > 0: there exists a
network in which the expected time to complete broadcast is
Ω(D log (n/D)) rounds. This holds even if we restrict our-
selves to network topologies that satisfy the unit disk graph
property, and assume unique ids, active collision detection,
and any number of available communication channels.

Proof. We proceed by reduction from a variant of set
isolation. In more detail, let (k, k′)-multi-set isolation, for
1 ≤ k′ ≤ k, be a variation of set isolation in which we run
k′ consecutive instances of (bk/k′c)-set isolation, requiring
the player to win instance i ∈ {1, ..., k′ − 1} before pro-
ceeding to instance i + 1. Two technical points that aid
the below argument: assume the referee selects all k′ tar-
gets at the beginning of the game, and that the referee re-
veals the target for instance i in the round when the player
wins that instance. For a given execution of a player and
referee strategy for (k, k′)-multi-set isolation, let Xi, for
i ∈ {1, ..., k′}, be the time required to win instance i of
the game, and let Y = X1 + X2 + ... + Xk′ be the time
required to win the full multi-set game. By linearity of ex-
pectation and our result from Lemma 2.2, we note there is
a referee strategy that allows us to bound E[Y ] as follows:

E[Y ] = E
[∑k′

i Xi

]
=
∑k′

i E[Xi] = Ω(k′ log (k/k′)).
Assume that A solves broadcast in f(n,D) rounds, in ex-

pectation, in networks of size n and diameter D. We now
devise a (n,D)-multi-set isolation player strategy that simu-
lates A to win the game in expected time f(n,D) as well. In
more detail, the player simulates A on a network consisting
of D + 1 layers, L1, L2, ..., LD, LD+1, where the first D lay-
ers each include bn/Dc nodes, and the last layer includes at
least 1 node (if D divides n evenly, then we can add an ex-
tra node to the system to populate LD+1, without affecting
the asymptotic bounds below; otherwise we add the leftover
nodes from the smaller layers). For the sake of construction,
for each Li, assign unique ids from {1, ..., k} to the nodes in
Li. Let Ti be the target chosen by the referee for instance i.
In our construction, we connect Li and Li+1 by including an
edge from every node in Li corresponding to a value in Ti to
every node in Li+1. Notice, the player simulating this net-
work does not know these Ti values, but we will now show
this does not matter. Finally, the nodes within each layer
are connected as a clique. (Notice that this graph clearly
satisfies the unit disk graph property.)

The simulation begins with the player choosing some node
in L1 as the source. In each round r of the simulation, let î
be the largest value of i such that the nodes in Li are active
(i.e., have the message). Let Br

î
be the nodes in Lî that

broadcast in r, if any. If we are assuming multiple channels,
let Br

î
be the nodes in Lî that broadcast on the default chan-

nel where inactive nodes listen. The player uses Br
î

as its
proposal in this round of the mutli-set isolation game. The
key insight of this reduction is that the player only needs to
simulate communication between Lî and Lî+1 if exactly one
node connecting Lî to Lî+1 is in Br

î
. When this occurs, the

player will learn of this fact, because its corresponding guess
in the set isolation game will win this instance of the game
(and once it wins instance i for the first time, it learns Ti, so
it can, moving forward, successfully simulate all future com-
munication between these two layers). Collision detection
and multiple channels break the original proof of [10] be-
cause their argument requires that nodes in the same layer
receive silence in all rounds before they advance the mes-

sage. If the active nodes in a layer had collision detection,
for example, they could quickly achieve some communication
using collisions, at which point the argument of [10] fails.
Our argument can tolerate such intra-layer communication
as it focuses only on the externally observable behavior of
the layer: i.e., which nodes broadcast and whether or not
they help advance the message.

We conclude by noting that the player using this strategy
will win the multi-set isolation game when the message ar-
rives at LD+1. By assumption, this occurs in expected time
of f(n,D) rounds. By our above bound on E[Y ], it must
follow: f(n,D) = Ω(D log (n/D)), as needed.
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