COSC 545, Spring 2012: Problem Set #4

Due: Wed., 3/28, at the beginning of class (hand in hard copy).
Covers: Lectures 14 to 17.
Collaboration: You may collaborate with classmates. Every student must write up his or her own answers and list collaborators. No sources outside of the assigned textbook may be consulted.

Note: To keep things fresh, I am trying something different with this problem set. Instead of offering 6 − 7 problems of easy to medium difficulty, I am instead offering 3 problems of easy to medium difficulty (problems 1 − 3) and one problem that I believe to be of hard difficulty (problem 4).

Problems

1. The P Complexity Class: In the following problem, let \(\text{mix}(S) \), for set \(S \) of symbols, be the set consisting of every string made up of symbols from \(S \), such that no symbol appears more than once in the string. Fix some \(\text{CFG} \) \(G = (V, \Sigma, R, S) \). Prove that the language \(A_G = \{ S \subseteq \Sigma, \forall s \in \text{mix}(S) : s \in L(G) \} \) is in \(P \).

2. NP-Completeness: Problem 7.17 from Sipser.

 (Note: The definitions of languages \(\text{PATH} \) and \(\text{UHAMPATH} \) can be found in Chapter 7 of Sipser; also, a simple path in a graph is a path in which no node is repeated.)

4. Tricky NP-Completeness: We say an assignment to a 3cnf-formula is balanced if the assignment satisfies the formula and at least one literal in each clause evaluates to 0. Let \(BSAT \) be the collection of 3cnf-formulas that have a balanced assignment. Prove that \(BSAT \) is NP-complete.