
COSC 240, Fall 2018: Problem Set #6

Assigned: Wednesday, 11/14.
Due: Monday 11/26, at the beginning of class (hand in hard copy).
Lectures Covered: 19 to 21
Academic Integrity: You can work with other people in the class but you must write up your own answers
in your own words. You can also use the textbook and talk to the professor. You may not use any other
resources (e.g., material found online) or talk to people outside the class about these problems. See the
syllabus for details on the academic integrity policy for problem sets.

Problems

1. Draw a connected undirected weighted graph G that contains an MST T and pair of nodes (u, v) such
that the shortest path between u and v in T has a larger weight than the shortest path between u and
v in G. To receive credit you must identify the MST T and pair (u, v) in G for which this property
holds.

2. Assume p = 〈u1, u2, ..., ui〉 is a shortest path from u1 to ui in some weighted graph G that contains
only positive weights. Prove that p cannot contain a cycle.

(Hint: start by assuming for the sake of contradiction that p does contain a cycle.)

3. Consider the class of connected undirected weighted graphs where each edge is weighted with a
value from {1, 2, ..., k}, for some integer k > 1. Describe clearly and concisely in words (i.e., no
pseudocode needed) an algorithm that solves the single source shortest path problem on graphs from
this class in O(k · |E|) time. Make sure you describe how to calculate both the distance (d) and
predecessor (π) fields for each node in the input graph. You can use the BFS algorithm we studied in
class as a subroutine.

(Hint: The solution I had in mind does not apply the BFS subroutine to the weighted input graph G,
but instead applies it to an unweighted graph G′ my solution constructs based on G.)

4. Describe a flow network G and flow f such that G has 5 nodes and every edge in Gf has resid-
ual capacity 5. To receive credit you must draw both the flow network (with flow values) and its
corresponding residual network (with residual capacities).

5. This question has two parts, both of which concern the time complexity analysis of the Ford-Fulkerson
algorithm (with integer capacities) that we studied in class.

(a) In the time complexity analysis, I argued that each iteration of the main while loop must increase
the value of the flow f by at least 1. Why is this?

(b) We proved that the algorithm we studied requires O(|f∗| · |E|) time, where f∗ is a maximum
flow in the network. Consider the following “optimization.” Starting with integer capacities, we
reduce each capacity by a factor of 1/k. That is, we replace each c(u, v) with c(u, v)/k. We then
calculate the max flow g∗ on this reduced-capacity graph. It is clear to see that |g∗| = |f∗|/k, so
to get the final answer we multiply all resulting flow values by k.
At first glance, it might seem like this optimized version of the algorithm will run in O(|g∗| ·
|E|) = O(|f∗|/k · |E|) time—potentially a big improvement for large k. But this first glance
analysis is wrong. Explain why this is wrong and provide a more accurate time complexity upper
bound.

1

