
COSC 240, Fall 2018: Problem Set #3

Assigned: Monday, 10/1
Due: Wed, 10/10, at the beginning of class (hand in hard copy).
Lectures Covered: 8 to 9 (with some leftover problems from 7).
Academic Integrity: You can work with other people in the class but you must write up your own answers
in your own words. You can also use the textbook and talk to the professor. You may not use any other
resources (e.g., material found online) or talk to people outside the class about these problems. See the
syllabus for details on the academic integrity policy for problem sets.

Divide-and-Conquer Problems

1. Consider the problem in which you are provided an array of bits and the goal is to count the number
of 0 bits in the array. Describe with pseudocode a randomized divide-and-conquer algorithm that
satisfies the following two properties:

(a) For the worst-case random choices, it requires Ω(n2) steps.

(b) Its randomized step complexity is Θ(n).

Your algorithm must be fully recursive and cannot use any loops. You are allowed, however, to
call a subroutine busy-work(A, i, j), that when passed the input array A of size n, and two indices
i ≤ j ≤ n, has a step complexity of Θ(j − i + 1), and does not modify any values in A.

(Hint: My solution flipped a biased coin at the beginning of the initial call—i.e., when the subproblem
size is the same as the size of the whole array—and then passed the outcome of this one flip to
all recursive calls that followed. The problem is also solvable without passing an initial coin flip
outcome to subsequent recursive calls, but the analysis for these styles of solutions is slightly more
complicated.)

2. Formally analyze the randomized step complexity of your answer to the above problem.

Amortized Analysis Problems

Assume you run a testing center where students arrive throughout the day to take the GRE. (For simplicity,
assume students never leave). Your testing center has a classroom of size 2i, for each i ≥ 0. You only have
one proctor, however, so all students at the test center at any given time must be in the same classroom. You
have also noticed that students perform poorly if a room seems empty, so you insist on the rule that the room
containing the students at any given time must have more full than empty seats.

To accommodate these constraints you use the following algorithm to handle each new arrival of a student:

• Start the day using the smallest available classroom (which is size 20 = 1).

• Once you run out of space in a classroom of size 2i (e.g., the room is full and then a new student
arrives), move all of the existing students and the new student to the classroom of size 2 · 2i = 2i+1.

1



You are concerned about the cost of this room scheduling policy. In particular, you calculate the cost of each
student arrival to be the number of students that must be moved (including the new student) to accommodate
the arrival. More formally, consider a sequence of n arrivals. Let ci be the cost of the ith student arrival.
You can define ci = 1 + mi where:

mi =

{
i− 1 if i− 1 is a power of 2

0 otherwise

The three questions that follow ask about this above scenario. The purpose of these questions is to explore
how the three types of amortized analysis studied in class might help you more accurately understand the
arrival costs over time in this scenario.

1. Prove that arrivals have a constant amortized cost by using the aggregate analysis technique discussed
in class (and Chapter 17.1 of the textbook).

2. Prove that arrivals have a log n amortized cost, assuming n total students arrive, by using the account-
ing method technique discussed in class (and Chapter 17.2 of the textbook).

3. Consider a simple unary counter that counts from 1 to k before wrapping back around to 1 (for some
k ≥ 1). One way to implement this counter is with an array A of size k. Initially A[1] = 1 and
A[j] = 0, for 2 ≤ j ≤ k. A variable p keeps track of the smallest position in the array that currently
stores a 0. If there are no 0’s in the array, then p = k + 1. We initialize p← 2.

To INCREMENT the counter, there are two cases. If p = k + 1, loop through A and set each position
to 0, then set A[1]← 1 and p← 2. Otherwise, if p ≤ k, then set A[p]← 1 and p← p + 1.

Let ci be the cost of the ith INCREMENT. If we focus only on changing array entries when calculating
cost, we can use the following definition for ci:

ci =

{
1 if i is not a multiple of k,
k+1 else.

In the worst case, therefore, ci = k + 1. Prove that INCREMENT has constant amortized cost using
the potential method.

4. Optional Extra Credit. Earlier, you were asked to use the accounting method to prove a logarithmic
amortized cost for arrivals. Refine your answer to use the accounting method to now prove a constant
amortized cost.

(Hint: students who arrive after a classroom expansion might want to help the students who arrived
before the expansion regain the credit they will need to pay for their movement in the next expansion.)

2


