
COSC 240, Fall 2017: Problem Set #3

Assigned: Thursday, 9/28/17.
Due: Wed, 10/11, at the beginning of class (hand in hard copy).
Lectures Covered: 8 to 10.
Academic Integrity: You can work with other people in the class but you must write up your own answers
in your own words. You can also use the textbook and talk to the professor. You may not use any other
resources (e.g., material found online) or talk to people outside the class about these problems. See the
syllabus for details on the academic integrity policy for problem sets.

Problems

Assume you run a testing center where students arrive throughout the day to take the GRE. (For simplicity,
assume students never leave). Your testing center has a classroom of size 2i, for each i ≥ 0. You only have
one proctor, however, so all students at the test center at any given time must be in the same classroom. You
have also noticed that students perform poorly if a room seems empty, so you insist on the rule that the room
containing the students at any given time must have more full than empty seats.

To accommodate these constraints you use the following algorithm to handle each new arrival of a student:

• Start the day using the smallest available classroom (which is size 20 = 1).

• Once you run out of space in a classroom of size 2i (e.g., the room is full and then a new student
arrives), move all of the existing students and the new student to the classroom of size 2 · 2i = 2i+1.

You are concerned about the cost of this room scheduling policy. In particular, you calculate the cost of each
student arrival to be the number of students that must be moved (including the new student) to accommodate
the arrival. More formally, consider a sequence of n arrivals. Let ci be the cost of the ith student arrival.
You can define ci = 1 +mi where:

mi =

{
i− 1 if i− 1 is a power of 2

0 otherwise

The four questions that follow ask about this above scenario. The purpose of these questions is to explore
how amortized analysis might help you more accurately understand the arrival costs.

1. To better understand the worst case behavior of this scheduling algorithm answer the following:

(a) Provide a concise and clear argument why the definition of ci properly captures the arrival cost
of new students.

(b) Argue that in a sequence of n operations, ci = Θ(n) in the worst case.

2. Prove that arrivals have a constant amortized cost by using the aggregate analysis technique discussed
in class (and Chapter 17.1 of the textbook).

3. Prove that arrivals have a log n amortized cost, assuming n total students arrive, by using the account-
ing method technique discussed in class (and Chapter 17.2 of the textbook).

1



4. Refine your answer from the preceding problem to show that arrivals have constant amortized cost
using the accounting method.

(Hint: students who arrive after a classroom expansion might want to help the students who arrived
before the expansion regain the credit they will need to pay for their movement in the next expansion.)

5. In class, we discussed the aggregate analysis and accounting method techniques for amortized anal-
ysis. A third such technique is called the potential method. To prepare for this question, please read
the discussion of this method in Chapter 17.3 of your textbook. Then answer the following question:

Consider a simple unary counter that counts from 1 to k before wrapping back around to 1 (for some
k ≥ 1). One way to implement this counter is with an array A of size k. Initially A[1] = 1 and
A[j] = 0, for 2 ≤ j ≤ k. A variable p keeps track of the smallest position in the array that currently
stores a 0. If there are no 0’s in the array, then p = k + 1. We initialize p← 2.

To INCREMENT the counter, there are two cases. If p = k+ 1, loop through A and set each position
to 0, then set A[1]← 1 and p← 2. Otherwise, if p ≤ k, then set A[p]← 1 and p← p+ 1.

Let ci be the cost of the ith INCREMENT. If we focus only on changing array entries when calculating
cost, we can use the following definition for ci:

ci =

{
1 if i is not a multiple of k,
k+1 else.

In the worst case, therefore, ci = k + 1. Prove that INCREMENT has constant amortized cost using
the potential method.

6. In the lecture notes on hashing, I introduced the load factor α as a way to measure the potential
performance of a hash table with m entries containing n total elements. Assume I claim to have
a great hash function h that guarantees the following: if you use h to implement a hash table with
chaining, then every list is always strictly smaller than the load factor. Prove this is impossible.

7. At the end of the lecture notes on hashing, I discussed implementing hash tables with open addressing.
Open addressing requires an extended hash function that maps each key to a permutation of the values
0, 1, ...,m− 1. Consider the following simple definition of an extended hash function h:

∀k ∈ U : h(k) = 〈0, 1, 2, ...,m− 1〉.

Given an open address hash table implemented with h, how many probes are required for an unsuc-
cessful SEARCH, assuming that α < 1?

2


