
Gossiping in a Multi-Channel Radio Network
An Oblivious Approach to Coping with Malicious Interference

(Extended Abstract)

Shlomi Dolev1, Seth Gilbert2, Rachid Guerraoui3, and Calvin Newport4

1 Ben-Gurion University,
dolev@cs.bgu.ac.il

2 MIT CSAIL, EPFL IC, seth.gilbert@epfl.ch
3 EPFL IC rachid.guerraoui@epfl.ch

4 MIT CSAIL, cnewport@mit.edu

Abstract. We study oblivious deterministic gossip algorithms for multi-channel
radio networks with a malicious adversary. In a multi-channel network, each of
the n processes in the system must choose, in each round, one of the c chan-
nels of the system on which to participate. Assuming the adversary can disrupt
one channel per round, preventing communication on that channel, we establish
a tight bound of max

“
Θ

“
(1−ε)n

c−1
+ logc n

”
, Θ

“
n(1−ε)

εc2

””
on the number of

rounds needed to solve the ε-gossip problem, a parameterized generalization of
the all-to-all gossip problem that requires (1− ε)n of the “rumors” to be success-
fully disseminated. Underlying our lower bound proof lies an interesting con-
nection between ε-gossip and extremal graph theory. Specifically, we make use
of Turán’s theorem, a seminal result in extremal combinatorics, to reason about
an adversary’s optimal strategy for disrupting an algorithm of a given duration.
We then show how to generalize our upper bound to cope with an adversary that
can simultaneously disrupt t < c channels. Our generalization makes use of se-
lectors: a combinatorial tool that guarantees that any subset of processes will be
“selected” by some set in the selector. We prove this generalized algorithm opti-
mal if a maximum number of values is to be gossiped. We conclude by extending
our algorithm to tolerate traditional Byzantine corruption faults.

1 Introduction

Malicious adversaries pose a particular threat to radio networks. Due to the shared na-
ture of the communication medium, an adversary can prevent any information exchange
between honest processes by jamming the channel with noise. The first attempts to
tackle this problem assumed that the malicious adversary could only corrupt honest
processes, but not interfere with communication [1–3]. Another approach assumed that
the adversary interferes only in a probabilistic manner, causing either random tran-
sient message corruption [4], or random permanent process corruptions [5]. More recent
work allows malicious interference—but bounds the number of times that the adversary
can disrupt communication [6, 7].

In this paper, we place no such restrictions on the adversary. Instead, we shift our
focus to multi-channel radio networks in which each process can make use of any one

2

of c available channels in each round. The adversary can disrupt communication by
broadcasting concurrently on a channel with an honest process, causing a collision.
This setting is appealing because of its practicality. Almost every major commercial/in-
dustrial/military radio device—including sensor motes, laptops running 802.11, and
bluetooth-enabled devices—has the capability to switch between multiple communi-
cation channels. These multi-channel networks have been studied previously in the
context of communication capacity and throughput (e.g., [8, 9]). They have also been
studied in the field of Cognitive Radio Networks [10–12], where algorithms attempt to
adaptively compensate for (semi-permanently) disrupted communication channels.

The Gossip Problem. We study the fundamental problem of gossip in which processes
attempt to exchange rumors. Variants of this problem have been well-studied in (syn-
chronous) single-channel radio networks: for broadcast in a fault-free network, see, for
example, [13–16]; for omissions and crash failures, see, for example, [17,18]. We intro-
duce a parameterized version of the gossip problem, called ε-gossip, in which (1− ε)n
rumors must be disseminated to at least n− 1 processes. (As we later show, it is impos-
sible to disseminate even a single value to all n receivers in this setting). The ε-gossip
problem is a generalization of classical all-to-all gossip (0-gossip) that allows for flex-
ibility in the number of rumors that need to be spread—a desirable feature for many
applications (e.g., when only a majority vote is needed).

Basic Setting. We assume that honest processes maintain no shared secrets (e.g., infor-
mation unknown to the adversary). The honest processes could use such information
to derive a transmission pattern that appears random to an outside observer. (Military
communication systems, like those used by the MILSTAR satellite system, use such a
scheme to evade eavesdroppers). We omit this possibility for three reasons. First, we
are interested in deterministic solutions that guarantee correctness even in the worst
case. Second, for low-resource devices—such as RFID tags or tiny sensor motes—
cryptographic calculations (particularly of the public-key variety) and secure key dis-
semination may be prohibitively expensive. Third, shared secrets are hard to maintain
when the adversary can corrupt and hijack honest devices (addressed in Section 9).

With such devices in mind, we focus on oblivious algorithms—those in which a
process’s decision to transmit or listen in a given round on a given channel is a func-
tion only of its unique identifier, the round number, and the number of processes and
channels in the network. Oblivious algorithms are appealing because they are consid-
ered easy to construct and deploy. (In Section 10, we briefly discuss randomized and
adaptive solutions.)

Results. We prove that max
(
Θ

(
(1−ε)n

c−1 + logc n
)

, Θ
(

n(1−ε)
εc2

))
rounds are neces-

sary and sufficient to solve ε-gossip in a setting where the adversary can disrupt one
channel per round, and n is the total number of processes. We demonstrate necessity by
first reducing ε-gossip to a graph-theoretic game—(n, ε)-clique destruction—in which
a player tries to remove enough edges from an n-clique to destroy any clique of size
greater than εn, and then proving a lower bound on this game by appealing to Turán’s
Theorem [19], a seminal result in extremal combinatorics.

3

To demonstrate sufficiency, we describe a matching deterministic oblivious algo-
rithm that proceeds in two phases. During the first phase, a sufficient number of values
are disseminated to a distinguished group of listeners distributed among the channels.
The resulting construction, when considered in the context of extremal graph theory,
produces a Turán Graph. During the second phase, these values are disseminated to in-
creasingly larger sets of processes until n−1 have learned the total requisite knowledge.

We then generalize our algorithm for the multi-channel adversary that can simul-
taneously disrupt up to t < c channels. This models a network with t adversarial
processes, each potentially disrupting a different channel. Our algorithm presented for
t = 1 extends naturally to this scenario: the generalized first phase, in fact, relates to
a conjectured hypergraph-generalization of Turán’s Theorem; the second phase uses
selectors, a combinatorial device introduced by [20], to generalize the dissemination
schedule. We show this solution to be optimal for the natural case of ε = t/n (i.e.,
trying to gossip the maximum possible number of values). We conclude by describing
how to modify our algorithm to tolerate traditional Byzantine corruption faults.

2 Model

We consider a system of n honest processes, each assigned a unique identifier in the
range [1..n]. The processes inhabit a single-hop radio network comprised of c commu-
nication channels: 1 < c ≤ n. We first assume the presence of a malicious adversary
that can corrupt one channel per round. We then consider the general case where it can
simultaneously disrupt t < c channels in each round.

Synchronous Rounds. Executions proceed in synchronous rounds. In each round, each
process chooses a single channel on which to participate: it can either transmit or receive
on that channel. In each round the adversary chooses up to t channels to disrupt. If
exactly one process transmits a message m on channel k in a round, and the adversary
does not disrupt channel k, then every process receiving on channel k receives message
m. When two processes broadcast in the same round on the same channel, the message
is lost. (We do not assume that the processes have the capacity to detect collisions.)

Deterministic and Oblivious. We consider deterministic, oblivious gossip algorithms.
An oblivious algorithm is one in which the broadcast schedule is determined in advance.
Formally, a deterministic oblivious algorithm is a sequence A = 〈A1, . . . , Ar〉 where
each Ar : [1..n]→ {trans, recv,⊥}× [1..c] is a function describing the behavior of the
processes in round i. For example, when Ar(i) = 〈trans, k〉, it indicates that in round
r, process i transmits on channel k; when Ar(i) = 〈recv, k〉, then process i receives on
channel k. Without loss of generality, for the lower bound we consider full information
protocols in which processes always transmit their entire state. Also without loss of
generality, we assume each initial value is unique.

3 The Gossip Problem

Each process begins with an initial value (or “rumor”) which it attempts to disseminate
to the other processes. In this paper we consider the (ε, δ)-gossip problem in which all

4

but δn processes must receive a common set of all but εn of the initial values. This
definition is a generalization of commonly considered communication primitives: for
example, all-to-all gossip is (0, 0)-gossip and one-to-all broadcast is (1− 1

n , 0)-gossip.
Formally, algorithm A solves the (ε, δ)-gossip problem if and only if, for all possible
adversarial choices, at least (1 − δ)n honest processes successfully receive a common
set of at least (1− ε)n initial values.

In this setting, it is clearly impossible to ensure that all n honest processes success-
fully receive even one common initial value. Assume there existed such an (ε, 0)-gossip
algorithmA, and consider the adversarial strategy C in which the adversary always dis-
rupts the channel on which process 1 either transmits or receives. Under these condi-
tions, process 1 can never successfully transmit or receive any value: it neither learns
the initial value of any other process, nor does any other process learn its initial value,
implying that A does not solve (ε, 0)-gossip. By the same argument, it is impossible to
solve (0, δ)-gossip.

Hence, we focus on solving the (ε, t/n)-gossip problem where t/n ≤ ε ≤ 1, that
is, the problem in which all but εn initial values are disseminated to all but t processes.
(Considering larger values of δ does not allow for significantly faster termination for
most values of ε.) For the remainder of the paper, we refer to the (ε, t

n)-gossip problem
where t/n ≤ ε ≤ 1 simply as: ε-gossip.

Roadmap. In Sections 4, 5 and 6, we address the case where t = 1. In Section 4 we
present a lower bound, in Section 5 we present a matching algorithm, and in Section 6
we outline the proof. In Section 7, we extend our algorithm to tolerate a multi-channel
adversary that can block an arbitrary t < c channels. In Section 9, we consider a more
general model in which the adversary can corrupt honest players (rather than simply
disrupting communication). We conclude with a discussion of open questions in Sec-
tion 10.

4 A Lower Bound for ε-Gossip where t = 1

Let A be an arbitrary deterministic oblivious algorithm for ε-gossip where t = 1. We
show that A requires

max

„
Θ

„
(1− ε)n

c− 1
+ logc n

«
, Θ

„
n(1− ε)

εc2

««
rounds to terminate. The first term dominates when ε ≥ 1/c (i.e., only a small number

of values need to be disseminated), and it follows from the observation that at most
c − 1 values can be broadcast in each round. In this section, we focus predominantly
on the (more interesting) case where ε < 1/c. For every execution α of algorithm
A, let round Rtrans(α) be the minimum round such that the following is true: at least
(1−ε)n of the honest processes have broadcast without being disrupted by the adversary
in the prefix of α through round Rtrans(α). We show that for some execution α of A,
Rtrans(α) ≥ Ω(n(1−ε)

εc2). It follows that the protocol cannot terminate in α prior to round
Rtrans(α)—implying the second term of our bound.

5

We prove this result by exploiting an interesting connection between oblivious ε-
gossip and graph theory. An oblivious algorithm can be imagined as a sequence of edge
removals from an n-clique, and the adversary’s optimal strategy can be described by
the largest clique that remains after these removals. Accordingly, we turn to the field of
extremal combinatorics and apply Turán’s Theorem [19] to argue precisely about the
size of the cliques that remain in a graph, which in turn tells us the adversary’s best
strategy.

Definition 1 (The (n, ε)-Clique Destruction Game). Let G = (V,E) be a graph de-
scribing a clique on n nodes. We say that a subset of edges S ⊆ E is a solution to the
(n, ε)-clique destruction game if and only if the graph G′ = (V,E − S) contains no
clique of size greater than εn.

Turán’s theorem relates the largest clique in a graph and the number of edges in a graph:

Theorem 1 (Turán’s Theorem [19]). If graph G = (V,E) has no subgraph that is a
clique of size k + 1, then |E| ≤ (1− 1/k)

(
n2/2

)
.

From this we derive an immediate corollary:

Corollary 1. Fix S ⊆ E a solution to the (n, ε)-clique destruction game. Then |S| ≥
n(1− ε)/(2ε).

Proof. By Theorem 1 where k = εn: subtract from the
(
n
2

)
edges in an n-clique the

maximum number of edges in a graph with no cliques of size εn+1, as per Theorem 1,
to get the minimum size of S.

We next connect the (n, ε)-clique destruction game to the ε-gossip problem:

Lemma 1. If for every execution α of algorithm A, Rtrans(α) ≤ r, then there exists a
solution S to the (n, ε)-clique destruction game such that |S| ≤ c2r.

Proof. Without loss of generality, assume thatA assigns exactly one process to transmit
on each channel in each round. Construct S as follows: add edge (a, b) to S if, for some
round r′ ≤ r, processes a and b both broadcast in round r′. Since for each r′ ≤ r there
are at most

(
c
2

)
such pairs, we conclude that |S| ≤ c2r.

Suppose, for contradiction, that nodes V ′ ⊆ V form a clique of size > εn in the
residual graph. We construct the following strategy to thwart A: whenever a process in
V ′ attempts to broadcast on channel k, the adversary disrupts channel k. This is always
possible as no two processes in V ′ broadcast in the same round (by the construction of
S). This violates the correctness of A, implying a contradiction.

We combines these two lemmas to obtain our final bound:

Theorem 2. For any deterministic oblivious algorithm, A, that solves ε-gossip,

|A| ≥ max

„
Θ

„
(1− ε)n

c− 1
+ logc n

«
, Θ

„
n(1− ε)

εc2

««
.

6

Proof. If A solves ε-gossip, then for every execution α of algorithm A, there exists a
round r such that Rtrans(α) ≤ r. We begin by establishing the first term of the bound.
Since at most c − 1 values can be transmitted without disruption in each round, it is
clear that r ≥ (1− ε)n/(c− 1). Let r′ be the round in which the last of these (1− ε)n
values is transmitted. For each of the n− 1 processes that ultimately learn all (1− ε)n
values, there must be some round ≥ r′ in which it listens on a non-disrupted channel.
Let r′′ be the latest of these rounds. We know r′′ ≥ r′ + logc n − 1, as over the first
logc n− 1 rounds there are only clogc n−1 < n− 1 different channel-listening patterns
a process can follow; by the pigeonhole principle this results in two processes listening
on the same channels for these first logc n− 1 rounds, allowing the adversary to block
both processes. Together these two pieces form the first term of the lower bound.

For the second term of the lower bound we turn to our Turán-derived results. From
Lemma 1 we know there exists a set of edges S that solves the (n, ε)-clique destruction
game, such that c2r ≥ |S|. By Corollary 1 we know: |S| ≥ n(1− ε)/(2ε). This implies
r ≥ Θ

(
n(1−ε)

εc2

)
.

5 An Upper Bound for ε-Gossip where t = 1

In this section we describe a deterministic oblivious algorithm for solving the ε-gossip
problem when ε < 1/c. In Section 8, we discuss the (simpler) case where ε ≥ 1/c. For
the sake of concision, we make a few simplifying assumptions. First, we assume that
n > 6c. For smaller values of n, the algorithm can simply restrict itself to a subset of
the channels. Second, we assume that the number of channels c is even. For odd c, the
algorithm can restrict itself to c−1 channels. Finally, we assume that ε ≥ 2c+1

n (slightly
larger than the trivial ε ≥ 1/n lower bound for ε). In Section 5.3 we describe how to
remove this last assumption.

5.1 The Gossip Protocol

The gossip protocol (see Figure 1) constructs an oblivious algorithm that solves the
ε-gossip problem for ε < 1/c. Recall, an oblivious algorithm is a sequence A =
A1, A2, . . . where each Ai is a function from processes [1 . . . n] to actions {trans, recv}
and channels [1 . . . c]. Throughout the description, we use the notation divide(S, k) to
refer to a partition of the set S into d|S|/ke sets of size k, one of which may have fewer
than k elements if |S| does not divide evenly by k. Also, i [b] refers to the bth bit of the
binary representation of i. Our protocol proceeds in two parts.

Part I: Initially, the processes are divided into two sets: a set of 2c listeners, con-
sisting of processes P` = {1, . . . , 2c}, and a set of (at least 4c) transmitters Ptran,
consisting of the remaining processes. Each channel is assigned a pair of two listeners.
Next, the InfoTransfer(ε′) routine is used to transfer all but ε′n+2c of the initial values
to some pair of listeners. (The additive 2c represents the listeners’ values that are not
transmitted.) By choosing ε′ = ε − 2c/n, this ensures that all but εn initial values are
known to some pair of listeners (in Section 5.3 we discuss how to allow the listeners to
participate).

7

Figure 1: An algorithm for solving the ε-gossip problem (ε < 1/c).

1 Gossip(ε)
2 ; Part I: Transfer info from transmitters to listeners.
3 P`← {i | 1 ≤ i ≤ 2c}
4 Ptran← {i | 2c < i ≤ n}
5 channel-assignment← divide(P`, 2)
6 InfoTransfer(ε− 2c

n
, Ptran, P`, channel-assignement, 〈A1,. . . 〉)

7

8 ; Part II, Step 1: Create c knowledgable sets in two steps.
9 Psets← divide(Ptran, dPtran/ce)

10 for (chan = 1 to c/2) do
11 disseminate2(channel-assignment[chan], Psets[chan], chan, chan+c/2, 〈B1, . . . 〉)
12 for (chan = c/2+1 to c) do
13 L← channel-assignment[chan]
14 disseminate2(channel-assignment[chan], Psets[chan], chan-c/2, chan, 〈C1, . . . 〉)
15

16 ; Part II, Step 2: Combine channels.
17 r← 1
18 while (|Psets| > 1) do
19 newPsets← ∅
20 s← b|Psets|/2c
21 for (i = 1 to s) do
22 P← combine(Psets[i], Psets[i+s], i, i + c/2, 〈Dr, . . .〉)
23 newPsets← newPsets ∪ P
24 ; If the size of Psets is odd, we let the last set pass through uncombined.
25 if (2s+1 = |Psets|) then
26 newPsets← newPsets ∪ Psets[2s+1]
27 Psets← newPsets
28 r← r + 6d log n e + 36
29 return A.B.C.D

Part II: The goal of the second part is to disseminate the information acquired by
each pair of listeners to all but one process. We say that a set is knowledgeable with
respect to some set of initial values if all but one process in the set has received the
initial values. The second part of the gossip protocol proceeds in two steps. First, the
transmitter processes are divided into c sets, one per channel. (The variable Psets stores
these c sets). The two listeners associated with each channel disseminate the informa-
tion acquired in Part I to the set of transmitters assigned to that channel. This dissem-
ination step uses two channels, and thus we can run c/2 instances in parallel: in the
first dlog ne rounds, we perform the dissemination for channels 1, . . . , c/2; in the next
dlog ne rounds, we perform the dissemination for channels c/2+1, . . . , c. In each case,
this dissemination is accomplished using the disseminate2 routine. At the end of this
step, each set of processes in Psets is knowledgeable with respect to the set of values
known to the listeners on their channel.

In the second step, we repeatedly combine pairs of knowledgeable sets (via the
combine routine) into larger knowledgeable sets in which the processes know values

8

Figure 2: Routines to transfer information from transmitters to listeners.

1 InfoTransfer(ε′, Ptran, P`, channel-assignment, 〈A1, . . .〉)
2 ; Assign listeners to channels.
3 for every round r, for every channel k do
4 {a, b} ← channel-assignment[k]
5 Ar(a)← 〈recv, k〉
6 Ar(b)← 〈recv, k〉
7 ; Assign transmitters to channels.
8 r← 0
9 for every B ∈ divide(Ptran ∪ P`, 1/ ε′) do

10 Bsubs← divide(B, c/2)
11 for every (S1, S2) ∈ Bsubs ×Bsubs do
12 chan← 1
13 for every i ∈ S1 ∪ S2

14 Ar(i)← 〈trans, chan〉
15 chan← chan+1
16 r← r+1

Figure 3: A routine that disseminates data from listeners to arbitrary sets.

1 disseminate2(L, P, c1, c2, 〈A1, . . .〉)
2 {a1,a2} ← L
3 for b = 1 to dlg ne
4 Ab(a1)← 〈trans, c1〉
5 Ab(a2)← 〈trans, c2〉
6 for b = 1 to dlg ne
7 for each i ∈ P
8 if i[b] = 0 then
9 Ab(i)← 〈recv, c1〉

10 else if i[b] = 1 then
11 Ab(i)← 〈recv, c2〉

from both of the original sets. We continue combining sets until we are left with a
single set in which the processes know the required (1− ε)n values.

The Information Transfer Routine. The goal of the InfoTransfer routine (Figure 2) is to
ensure that all but ε′n + 2c of the initial values are received by some pair of listeners.
Each channel is assigned two listeners, and we assign transmitters to each channel in
each round such that the resulting induced graph, as formulated in terms of Lemma 1
and the clique destruction game, forms a Turán Graph.5

We divide all processes into sets {B1, B2, . . . , Bε′n} of size 1/ε′; there are ε′n such
sets. Our goal is to ensure that all but (at most) one transmitter in each set Bi succeeds
in transmitting its value to a pair of listeners. We proceed as follows: For each set Bi,
we sub-divide Bi into subsets of size c/2, and schedule each of the

(
(2/ε′c)

2

)
pairs of

5 A Turán Graph for value k (say, k = εn + 1), is the unique graph, as proved by Turán, to
contain no cliques of size k and to contain the maximum number of edges for which this
condition can be true, as established by the theorem of the same name.

9

Figure 4: A routine to combine knowledgeable sets.

1 combine(S1, S2, c1, c2, 〈A1, . . .〉)
2 r← 0
3 for (i = 1 to 2) do
4 ; Use i and i+2 as witnesses for S1 :
5 L← S1[i] ∪ S1[i+2]
6 P← S1 ∪ S2 − L
7 disseminate2(L, P, c1, c2, 〈B1, . . .〉)
8 A← A . B
9 for (i = 1 to 3) do

10 ; Use i and i+3 as witnesses for S2 :
11 L← S2[i] ∪ S2[i+2]
12 P← S1 ∪ S2 − L
13 disseminate2(L, P, c1, c2, 〈B1, . . .〉)
14 A← A . B
15 return S1 ∪ S2

subsets to broadcast in a round (omitting listeners, which are already occupied). Since
every pair of non-listeners in Bi broadcast together in some round, the adversary can
block at most one non-listener in each set Bi from communicating its value to a listener.
Running Time: dε′n

(
2/ε′c

2

)
e.

The Disseminate Routines. The disseminate2(L,P, c1, c2, . . .) routine (Figure 3) dis-
seminates all values known by both processes in the set L to all but (at most) one
process in the set P , using channels c1 and c2. (We assume |L| = 2). First, we assign
the two processes in L to transmit on channels c1 and c2 for dlog ne rounds. In each
round b, each process in P chooses a channel on which to receive based on its identifier
i: if i[b] = 0, it chooses channel c1; if i[b] = 1, it chooses channel c2. Thus, for any
pair of processes in P , there is some round in which they receive on different channels.
Running Time: dlog ne.

The Combine Routine. The combine(S1, S2, c1, c2, . . .) routine (Figure 4) begins with
two knowledgeable sets. (We assume that S1 and S2 each contain at least 6 processes.)
Using two channels, the combine function creates a new knowledgeable set S1∪S2 such
that all but (at most) one process in the combined set knows the shared information from
both S1 and S2. The routine accomplishes this goal by running disseminate2 five times.
The first two times, it uses pairs of witnesses from set S1 to disseminate information
to set S2. Since at most one node in S1 is not knowledgeable, we can conclude that
one of these pairs of witnesses is knowledgeable. Hence after the first two calls to the
disseminate2 routine, all but one node in S1 ∪ S2 are knowledgeable with respect to
the values from S1. The next three times, it uses pairs of witnesses from set S2 to
disseminate information to set S1. Notice that there may be two nodes in S2 that are
not fully knowledgeable: one node may not be knowledgeable about S2’s values, and
one node may not be knowledgeable about S1’s values. Thus for one of the three pairs
of witnesses, both are knowledgeable, and the dissemination succeeds in informing all
but one node in S1 ∪ S2. Running Time: 5dlog ne.

10

5.2 Running Time of the Gossip Protocol

The running time for Gossip is calculated as:

[InfoTransfer] + 2[disseminate2] + dlog ce[combine] .

This equals: dε′n
(
2/ε′c

2

)
e + 2dlog ne + dlog ce(5dlog nee). We can simplify this to

Θ(n
ε′c2). Because ε < 1/c ≤ 1/2, this is equivalent to Θ(n(1−ε)

ε′c2). The modified
algorithm, presented in the next section, improves the running time (marginally) to
Θ(n(1−ε)

εc2), exactly matching our lower bound for the case where ε < 1/c. As men-
tioned, in Section 8 we provide an algorithm (matching within an additive factor of
log2 c) for the less involved case of ε ≥ 1/c.

5.3 Achieving ε-Gossip for Small ε

The algorithm presented in the previous section assumes that ε ≥ (2c + 1)/n. We now
discuss modifying the algorithm to require only ε ≥ 1/n, the minimum value of ε
for which the problem can be solved. The difficulty occurs in the InfoTransfer routine,
where the listeners do not participate in transmitting their values. Unlike the transmit-
ters, their initial values are known only to themselves, not to a pair of processes. The
first step in our modification is to schedule the listeners, P`, as well as the transmitters,
Ptran, to transmit their values during the InfoTransfer. If only one of the two listeners
assigned to channel k is scheduled to transmit in a round, then it broadcasts on channel
k, resulting in no difficulties.

Consider the problematic case where both listeners for channel k are scheduled to
transmit in the same round. Since the division into sub-blocks of size c/2 is arbitrary, we
can ensure that each of the listeners for channel k is in a different sub-block. Thus, there
is only one round for which both listeners for a channel might be forced to broadcast. In
this case, two “backup listeners” are recruited to monitor channel k during that round.
Since there are only c processes scheduled to broadcast in that round, and only 2c
listeners, there remain at least 2c processes to play the role of backup listener. Every
channel may be forced to recruit one pair of backup listeners, resulting in 4c listeners
and backup listeners whose values need to be propagated in the second part of the
protocol; the described algorithm extends immediately to this case.

6 Analysis

We now outline an argument that the algorithm from Section 5 solves ε-gossip (when
ε < 1/c). We focus on some of the key invariants satisfied by the different components
of the construction. First, we observe that the InfoTransfer routine guarantees that a
sufficient number of values are transmitted without adversarial disruption:

Lemma 2. During the first r = dεn
(
2/εc

2

)
e rounds, all but εn of the processes transmit

their values in some round ≤ r without disruption.

This claim follows from the construction of the schedule: for each of the εn sets, all
pairs of processes broadcast together in some round. We therefore conclude that the
listeners receive a sufficient set of values:

11

Corollary 2. At the end of the InfoTransfer routine, there exists some set of values V
of size at least (1− ε)n such that each value v ∈ V is known to some set of 2 listeners
or backup listeners.

We next observe that after the first step of Part II (i.e., after the disseminate2 routines)
each set in Psets is knowledgeable with respect to some subset of the values V :

Lemma 3. There exists a partition V1, . . . Vc of the values in V such that after the
disseminate2 routines (i.e., by line 15), each set Psets[i] is knowledgeable with respect
to Vi, 1 ≤ i ≤ c.

The proof for this claim follows from the fact that the disseminate2 routine successfully
transmits the values from the listeners (or backup listeners) to the remaining nodes in
the set; since every node’s identifier is unique, there will be some round during the
disseminate2 routine in which each pair of nodes is listening on a different channel, and
hence will receive the appropriate set of values. Finally, we observe that the combine
routine successfully merges knowledgeable sets, which concludes the proof:

Lemma 4. If Pi and Pj are knowledgeable sets with respect to some sets of values Vi

and Vj , then set P ← combine(Pi, Pj , . . .) is knowledgeable with respect to Vi ∪ Vj .

This fact follows from the correctness of the disseminate2 routine. We thus conclude:

Theorem 3. Let A be the deterministic oblivious algorithm constructed by Gossip. If
ε < 1/c, then A solves the ε-gossip problem in time O(n(1− ε)/εc2).

7 The Multi-Channel Adversary (t < c)

The algorithm described in Section 5 tolerates an adversary that can disrupt one channel
in each round. The algorithm naturally extends to an adversary that can disrupt t < c
channels. (Again, for the purpose of brevity, we focus on the case where ε < t/c, as
this is the more interesting case. The case of ε ≥ t/c is described in Section 8.) The
overall algorithm maintains the same structure as that presented in Section 5: in the first
part, the nodes transmit their values to a set of listeners; in the second part, the listeners
become transmitters and create ever-expanding knowledgeable sets.

Part I. First, we assign t + 1 listeners to each channel, instead of 2 listeners. The
InfoTransfer routine is modified as follows: The processes are divided into εn/t sets of
size t/ε (instead of εn sets of size 1/ε). Each of these sets is subdivided into subsets of
size c/(t+1) (instead of size 2). All

(
t(t+1)/cε

t+1

)
combinations of subsets are scheduled.

This ensures that any combination of t + 1 nodes in a set broadcast in the same round,
and thus that there are at most t·εn/t nodes that fail to transmit their value. The resulting
running time is O

(
net+1

cεt

)
(approximating the binomial and the fact that t < c). Notice

that the resulting schedule can be reduced to a (t + 1)-hypergraph, in the same manner
that the schedules for t = 1 could be reduced to a graph. If this construction is optimal,
then it corresponds to a hypergraph-generalization of a Turán Graph. Finding such an
entity (and proving it optimal) remains an open problem in extremal graph theory.

12

Part II. In the second part, the listeners disseminate the information to groups of nodes.
The basic routine here is a disseminate[t + 1] routine that uses t + 1 channels to dis-
tribute data from t + 1 listeners to a set that becomes knowledgeable. Each of t + 1
listeners transmits on one channel throughout the dissemination phase; the rest of the
nodes in the set are scheduled to listen on different channels in different rounds such
that any set of t + 1 nodes is scheduled in some round to listen on different channels.

To accomplish this, we need to introduce an additional tool: selectors, as introduced
by Komlos and Greenberg [20] (the term “selector” was coined later by [21]). Let S be a
family of sets, where each S ∈ S is a subset of [1, . . . , n]. For integer k ≤ n, we say that
S is a (n, k, 1)-selector if for every set A ⊆ [1, . . . , n] where |A| = k, there exists a set
S ∈ S such that |S ∩A| = 1. In [20], it was shown that there exist (n, k, 1)-selectors of
size at most O(k log n/k), and [22] shows how to explicitly construct selectors of size
O(kpolylog(n)). For this section, we use the existential bounds from [20], and assume
that for all k ≤ n, Sk is a family of selectors of size O(k log n/k).

The schedule is constructed recursively. We define T (c′) recursively to be the num-
ber of rounds needed to construct the schedule for c′ channels. In the beginning, we
are constructing a schedule for all c′ = t + 1 channels. If c′ = 2, then the recursion
terminates: schedule the remaining nodes to listen on those two channels as per the
disseminate2 routine, i.e., each node chooses a channel based on its identifier. This
takes T (2) = O(log n) rounds. If c′ > 2, then we use the family of selectors Sc′ : for
each set S ∈ Sc′ , schedule the nodes in S to listen on one channel for T (c′−1) rounds,
and recursively schedule the remaining nodes on the remaining c′−1 channels. For each
set in Sk this takes T (c′ − 1) rounds, and thus T (c′) = |Sc′ |T (c′ − 1). Since selector
Sc′ is of size at most O(c′ log n/c′), we conclude that the entire schedule for T (t + 1)
is (roughly) O((t+1)t logt n). To see that it satisfies the desired property, consider any
subset of t + 1 nodes: by definition, exactly one node is selected by one of the sets in
St+1; at the next step of the recursion, one node is selected by a set in St, one by a set
in St−1, and so on, until the recursion bottoms out at the simple two-channel case. Thus
there exists some round in which all t + 1 nodes listen in the same round.

The remaining generalizations of the algorithm from Section 5 are straightforward:
the combine routine merges sets S1 and S2 as follows: first, it chooses (t + 1)(t + 1)
witnesses from set S1 and runs t + 1 iterations of disseminate[t + 1] to set S2; it then
chooses (2t+1)(t+1) witnesses from set S2 and runs 2t+1 iterations of disseminate[t+
1] to set S1. (By contrast, in the t = 1 case, there were two pairs of witnesses chosen
for the first dissemination and three pairs of witness chosen for the second.) It should
be noted that using selectors here too would result in improved performance. Thus each
combine costs O((t+1)t+1 logt n). Since each combine uses t+1 channels, it requires

c
t+1 log c iterations of the main loop to combine all c knowledgeable sets.

Noting that t < c < n, we thus conclude that the total running time of the gossip
protocol is:

O

(
net+1

cεt
+ c(t + 1)t logt+1 n

)
Lower Bound. Proving a matching lower bound for the general case remains an open
question. We can prove that the result is optimal for the natural case of ε = t/n, that is,
trying to disseminate the maximum possible number of values. Specifically, we claim

13(
n

t+1

)
/
(

c
t+1

)
rounds to be necessary for all but t nodes to transmit even once without

being disrupted. The numerator follows from the observation that in order to transmit
all but t values without interference, there must exist, for each combination of t + 1
processes, a round in which all t + 1 processes transmit concurrently (otherwise, the t
adversaries can always interference when any of these processes transmit). The denom-
inator follows from the observation that at most

(
c

t+1

)
unique sets of t + 1 processes

can transmit concurrently on c channels during a single round. This fraction simpli-
fies directly to Θ(nt+1

ct+1), matching our above bound for InfoTransfer (within a factor
of O(et)). Again, notice that proving a hypergraph-generalization of Turán’s Theorem
would result in an immediate lower bound. (See [23, 24] for more on hypergraph gen-
eralizations of Turán’s Theorem.)

8 Achieving ε-Gossip for Large ε

In this section, we describe an algorithm to solve ε-gossip when ε > t/c.
In the case where t = 1, we again divide the protocol into a transmission phase and

a dissemination phase. In the transmission phase, we attempt to ensure that (1 − ε)n
values are known to a set of 6c processes. This is accomplished by assigning six listeners
to each channel, and dividing the nodes into groups of size c; each group is assigned
one round to broadcast for (1− ε)n/(c− 1) ≤ n/c rounds, ensuring that in each round
c−1 nodes succeed. The listeners then exchange their values amongst themselves using
the combine routine described in Section 5. The total running time of the transmission
phase is O((1− ε)n/(c− 1) + log2 c).

In the dissemination phase, we repeat the following twice, each time with a disjoint
set of c “listeners” from the previous phase: each of the “listeners” broadcasts on one of
the c channels, and each of the remaining nodes chooses a channel to listen on in each
round using the “base-c” representation of its identifier. Since each identifier is unique,
we can be sure that for any pair of nodes, in one of these rounds the two nodes choose
different channels to listen on, and hence at least one receives the appropriate set of
values. The total running time for the dissemination phase is O(logc n). Thus the final
overall running time of both phases is O((1− ε)n/(c− 1) + logc n + log2 c).

When t > 1, this strategy generalizes in the natural way: we assign (2t + 1)(t + 1)
listeners in the transmission phase, and c nodes broadcast in each round; at least c − t
of them succeed, resulting in at least (1 − ε)n values being received by listeners since
(1 − ε)n/(c − t) ≤ n/c; as before, the combine routine, generalized for the multi-
channel adversary, is then used to combine the data. The total running time in this case
is (1− ε)n/(c− t) + O(c(t + 1)t logt+1 n).

9 Byzantine Adversary

The algorithms described in Sections 5 and 7 tolerate an adversary that can disrupt
communication, but not an adversary that can directly corrupt an “honest” player. It is
easy, however, to extend our algorithm to tolerate a Byzantine adversary that corrupts up
to t honest players. Each corrupt player can either disrupt a channel or send a message
in each round. (Thus, up to t channels can be disrupted, as in the previous case.)

14

The main modification involves the transmission phase: more listeners are needed
on each channel, as some may be Byzantine. Instead of t + 1 listeners on each channel,
we assign (2t + 1)(t + 1). We then run the disseminate and combine routines 2t + 1
times, each time with a different set of t + 1 listeners representing each channel. An
honest process accepts a value as authentic only if it was received in at least t+1 of the
(2t + 1) runs of disseminate and combine. The running time is increased by a factor of
Θ(t). With further care, the number of listeners can be reduced. However, we conjecture
that the problem is solvable only if n = Ω(tc), for example, in the case where t = c−1.

10 Open Questions

The problems discussed introduce several new directions for future research. First, it
remains to close the gap between the upper and lower bounds in the case of a multi-
channel adversary. Such a result would have interesting connections to a hypergraph
generalization of Turán’s Theorem, an open problem in extremal graph theory.

Second, adaptive algorithms can likely achieve better performance than oblivious
algorithms. It remains an interesting open question to determine how much efficiency
adaptiveness provides. Similarly, it is possible to achieve better performance using a
randomized algorithm, at the cost of some probability of failure. A trivial randomized
algorithm can solve 1/n-gossip in O(n log n) time (w.h.p.). Is it possible to do better?

Third, we believe the techniques developed here for single-hope networks extend to
multi-hop networks. Fourth, prior research on the problem of malicious interference has
assumed that the adversary can cause only a bounded number of collisions. It may be
interesting to consider the possibility of bounded collisions in a multi-channel network.

Finally, this paper considers an adversary who wants to prevent communication.
Other research (e.g., [25]) has considered an eavesdropper who wants to compromise
the secrecy of the information (but who may not disrupt communication). This leaves
open the question of whether it is possible to achieve reliable and secret communication
in a multi-channel network in the presence of a malicious and disruptive adversary.

References

1. Koo, C.Y.: Broadcast in radio networks tolerating byzantine adversarial behavior. In: Pro-
ceedings of the 23rd Symposium on Principles of Distributed Computing (PODC). (2004)
275–282

2. Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network. In: Proceedings of the
24th Symposium on Principles of Distributed Computing (PODC). (2005) 138–147

3. Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network: A simplified charac-
terization. Technical report, University of Illinois at Urbana-Champaign (May 2005)

4. Pelc, A., Peleg, D.: Feasibility and complexity of broadcasting with random transmission
failures. In: Proceedings of the 24th Symposium on Principles of Distributed Computing
(PODC). (2005) 334–341

5. Bhandari, V., Vaidya, N.H.: Reliable broadcast in wireless networks with probabilistic fail-
ures. In: Proceedings of the 26th Conference on Computer Communications (Infocom).
(2007) 715–723

15

6. Gilbert, S., Guerraoui, R., Newport, C.: Of malicious motes and suspicious sensors: On
the efficiency of malicious interference in wireless networks. In: Proceedings of the 10th
International Principles of Distributed Systems (OPODIS). (2006) 215–229

7. Koo, C.Y., Bhandari, V., Katz, J., Vaidya, N.H.: Reliable broadcast in radio networks: The
bounded collision case. In: Proceedings of the 25th Symposium on Principles of Distributed
Computing (PODC). (2006) 258–264

8. Kyasanur, P., Vaidya, N.H.: Capacity of multi-channel wireless networks: Impact of number
of channels and interfaces. In: Proceedings of the 11th Annual International Conference on
Mobile Computing and Networking (Mobicom). (2005) 43–57

9. Bhandari, V., Vaidya, N.H.: Connectivity and capacity of multi-channel wireless networks
with channel switching constraints. Technical report, University of Illinois at Urbana-
Champaign (January 2007)

10. Mitola, J.: Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio.
PhD thesis, Royal Institute of Technology, Sweden (2000)

11. Krishnamurthy, S., Chandrasekaran, R., Mittal, N., Venkatesan, S.: Brief announcement:
Synchronous distributed algorithms for node discovery and configuration in multi-channel
cognitive radio networks. In: Proceedings of the 20th International Symposium on Dis-
tributed Computing (DISC). (2006) 572–574

12. Krishnamurthy, S., Thoppian, M., Kuppa, S., Chanrasekaran, R., Venkatesan, S., Mittal, N.,
Prakash, R.: Time-efficient layer-2 auto-configuration for cognitive radios. In: Procedings of
the International Conference on Parallel and Distributed Systems (PDCS). (2005) 459–464

13. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. Journal of
Computer and System Sciences 43(2) (1992) 290–298

14. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in multi-hop
radio networks: an exponential gap between determinism and randomization. Journal of
Computer and System Sciences 45(1) (1992) 104–126

15. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topol-
ogy. In: Proceedings of the 44th Symposium on Foundations of Computer Science (FOCS).
(2003) 492–501

16. Kowalski, D.R., Pelc, A.: Time of deterministic broadcasting in radio networks with local
knowledge. SIAM Journal on Computing 33(4) (2004) 870–891

17. Diks, K., Pelc, A.: Almost safe gossiping in bounded degree networks. SIAM Journal on
Discrete Mathematics 5(3) (1992) 338–344

18. Kranakis, E., Krizanc, D., Pelc, A.: Fault-tolerant broadcasting in radio networks. Journal
of Algorithms 39(1) (2001) 47–67

19. Turán, P.: On an extremal problem in graph theory. Matematicko Fizicki Lapok 48 (1941)
20. Komlos, J., Greenberg, A.: An asymptotically fast non-adaptive algorithm for conflict resolu-

tion in multiple access channels. Transactions on Information Theory 31(2) (1985) 302–306
21. Bonis, A.D., Gasieniec, L., Vaccaro, U.: Optimal two-stage algorithms for group testing

problems. SIAM Journal on Computing 34(5) (2005) 1253–1270
22. Indyk, P.: Explicit constructions of selectors and related combinatorial structures, with ap-

plications. In: Proceedings of the 13th Symposium on Discrete Algorithms (SODA). (2002)
697–704

23. de Caen, D.: Extension of a theorem of Moon and Moser on complete subgraphs. Ars
Combinatoria 16 (1983) 5–10

24. Sidorenko, A.F.: What we know and what we do not know about Turán numbers. Graphs
and Combinatorics 11(2) (1995) 179–199

25. Miller, M.J., Vaidya, N.H.: Leveraging channel diversity for key establishment in wireless
sensor networks. Technical report, U. of Illinois at Urbana-Champaign (December 2005)

