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I. ABSTRACT

Forensics examiners frequently try to identify duplicate
files during an investigation. They might do so to identify
known files of interest, or to allow more rapid review of
documents that appear to be similar. Current forensic tools
for detecting duplicate files operate over the low-level bits of
the file, typically using hashing. While this can be a fast and
effective method in many cases, it can fail due to differences
in file format. We introduce sdtext, a tool developed to
identify similar files based on their textual contents, which
is robust to changes in format. We show that sdtext is
far more accurate than existing tools in matching files that
contain the same text in different formats.

II. INTRODUCTION

As technology improves and prices fall, the amount of
digital media found in a forensic examination increases. For
examiners in the field, this can create problems as they may
recover a large amount of digital media requiring triage
to determine what is interesting or relevant. One method
of isolating interesting media is to identify which media
contains files similar to those already known to be of interest.
Similarly, identifying near-duplicate material can allow an
examiner to more quickly work through large amounts of
data by examining similar documents at the same time rather
than piecemeal as they are encountered.

One approach to finding similar files is done on the basis
of hashes that operate over the bits of the file [1], [2]. In
many cases, however, this approach can fail to identify file
containing similar content in different formatting or encod-
ings. An example of this is a Microsoft Word document that
has been exported as a PDF. While humans would perceive
the same text, hashing will likely not identify documents as
being similar. Other examples might be different classes of
documents with similar text, like web pages from the same
source or documents with similar boilerplate text.

To improve the state of the art in matching documents
that contain similar text, we have developed a tool named
sdtext, which is available under an open-source license
at sdtext.com. It operates by extracting text from files,
constructing a dictionary of statistically important terms,
then parsing files and recording the presence or absence of

those terms. Digests are either hashes of the set of dictionary
terms or a bit vector representing which terms are in the
dictionary. Digests are portable and can be shared between
investigators, and they can be matched against each other to
find files that have similar content.

Below, we describe how existing approaches work, and
then provide more detail about the operation of sdtext. We
then present an experimental comparison of sdtext and
sdhash : first, in a general case; next, over files containing
text; and finally over files consisting of extracted text. We
show that sdtext is able to identify similar files that
are textual with much higher accuracy than existing tools,
particularly in cases in which the same text is present in
different file formats.

A. Similarity Hashing

Existing forensic approaches to duplicate document de-
tection operate based on the bits that encode the file. In the
simplest case, cryptographic hashes are used to identify files
that are bit-for-bit identical. This is used most often to iden-
tify known child pornography and to identify known system
and application files to exclude from further examination [3].
These techniques do not work if even a single bit is changed
in the file and consequently they fail to identify similar files
that have been subjected to even small edits.

There have been a number of approaches taken to allow
hashing to match file based on similarity. All involve break-
ing the file into smaller pieces and hashing those pieces,
then comparing the piecewise hashes to find matches. The
difference is in how pieces are created for hashing.

The simplest approach is to use pieces of fixed size, as is
used in dcfldd [4]. This allows an examiner who is taking
a forensic image to verify that image piecewise; if some
piece is corrupted, the integrity of other pieces is maintained.
When applied to document recognition, this approach suffers
from an alignment problem. Should a single bit be added or
deleted from the file, that block and all following blocks will
have differing hashes.

A better approach is called context triggered piecewise
hashing (CTPH), and was built into a forensic tool named
ssdeep [1]. First used for spam detection [5], CTPH uses
a rolling hash to determine when to trigger computation of a



piece hash. The effect of similar files is to trigger the rolling
hash in the same places even if some portions are altered. In
practice enough similarities remain that many of the piece
hashes match.

An issue with CTHP is determining how often to create
piece hashes; this frequency is related to parameters con-
trolling the rolling hash. Rather than attempting to deter-
mine an optimal frequency, a more accurate approach is to
compute hashes for many different average piece sizes at
once, then to compare among pieces computed using the
same parameters. This approach is used in multi-resolution
similarity hashing [2], which operates over a byte stream and
creates multiple hashes on that stream with differing rolling-
hash parameters. The resulting piece hashes are placed in
Bloom filters [6], one for each parameter chosen. Later,
when other files are compared, their hashes are compared
against previously computed hashes in the Bloom filter.

There are several advantages to using hashes to find
similar documents. They are file-format independent, and
can be used across many different file types. They are fast
to compute and do not require significant storage as well.

Their disadvantage is that they do not reflect the way
computer users see files, which is based on file content
and not their encoding. For example, a Word document can
be saved in a variety of file formats, such as text, PDF
or HTML. Those files would be considered identical to a
person, but would not be similar enough on a bit level to be
seen as a match using existing tools. This creates problems
for the forensic examiner, who might be trying to match
similar files between systems. For example, on one system
the file might be an email message in text or .eml format;
on the other it might be part of an HTML cache file holding
the page from a webmail server. Current similarity tools
might miss this, and we show many instances where the
probability of such a miss is high.

To help rectify this, we introduce sdtext, which
matches files based solely on content, allowing a much
higher accuracy.

III. SIMILARITY MATCHING WITH sdtext

The operation of sdtext is based on principles from
information retrieval, the general area of computer science
research that powers search engines such as Google and
Bing [7]. The techniques used are those used in duplicate
document and plagiarism detection [8] and are novel only in
their application to forensics problems. While the IR com-
munity has studied duplicate document detection, most work
has been on finding similar documents in a single collection
of files. This differs from some forensic applications in that
an examiner may require a portable digest that can be shared
with other examiners without sharing the full set of files
from which the digest was first created.

A. Overview of operation

sdtext operates by performing some statistical analysis
of the files that are to be compared or of files which are ex-
pected to be similar to those being compared. This analysis
consists of computing the inverse document frequency (IDF)
of each term found in a file, which, for each term T in a
set of documents D, where a document containing term T
is denoted as DT , is defined as:
idfT = log (|D|)

1+|DT |
The result of this analysis is a dictionary that contains

a list of statistically significant terms. As described below,
this dictionary is then used in creating file digests. Each
digest contains some information about the file as well as
a bit array representing information about which dictionary
terms were found in the file.

To approximately compare two digests, sdtext uses
cosine similarity. This treats each bit array as a vector in
space where the number of dimensions is the same as the
number of bits in the array. The two digests are considered
similar if the cosine of the angle of the vectors falls within
a specified range. This range is a user-selectable parameter
that allows the examiner to tune the results they see. This is
analogous to looking down the list of results on a search
engine; the lower-ranked results might also be a match,
though the lower the score the less the likelihood.
sdtext therefore operates in three distinct rounds. First,

a dictionary must be created, which requires reading files and
performing statistical analysis. Second, digests of files are
constructed using this dictionary, which can also be shared
with other examiners so that they can create digests as well.
Third, digests are compared in order to find matches. We
describe each of these operations in more detail below.

B. Text Extraction

The operation of sdtext is predicated on being able to
extract text from files found during an investigation. While
simple in concept, the number of file formats that exist can
make this difficult in some cases. Fortunately, however, there
are variety of approaches that can be used, particularly for
common file formats.

For files that contain text but have a proprietary file
format, a technology like Oracle’s OutsideIn [9] can be used
to extract the text. We have included the necessary hooks in
sdtext to operate with OutsideIn, but do not distribute
OutsideIn with sdtext due to licensing limitations.

For more common file formats, such as Microsoft Office
documents or PDF files, there are a wider variety of choices
for text extraction. One can use native versions of programs
that can read the files and write them as text. A scripting
language that can interface with the program can make bulk
translation easier; for this paper, we used Applescript and
Microsoft Office to convert hundreds of Office files to text
and other processable formats.



In addition, there are other programs that have reverse-
engineered file formats and allow text extraction. We
used several, including OpenOffice and unoconv, a
command-line tool that uses OpenOffice’s libraries, to ex-
tract text from Microsoft Office Files; pdftotext, a
command-line linux program that extracts text from PDF
files; links, a command-line browser that can dump text
from HTML files and web sites; and unrtf, a command-
line tool that extracts text from RTF files.

In cases in which other methods fail, it is possible
to extract text from printable files using optical character
recognition. In our experiments below, we used the open-
source OCR program tesseract-ocr to extract text from
PDF files.

We also note that not all text is the same as there exist
a variety of possible encodings and line endings. Some
of the most commonly encountered include ASCII, ISO
8859-1, and UTF-8. Different operating systems also use
different markers to indicate line endings. As part of our
experiments, we varied the encoding and line endings. We
used iconv to convert between encodings; dos2unix to
change line endings; and fold to shorten long lines by
adding additional line endings.

It is important to note that not all text-extraction mech-
anisms produce identical text. Optical character recognition
adds many additional characters as noise, and other methods
treat special characters, like ligatures or smart quotes, differ-
ently. Because of this, any method that works to recognize
text needs to be robust against small differences in the text.
We show below that sdtext is robust in this way, whereas
sdhash - due entirely to design differences - is not.

C. Tokenization

During processing, each file that is read is tokenized. The
tokenization process splits the text into smaller segments,
typically words or lines, each of which is one of the units
used in making digests. We note that it is necessary to extract
text from files during this process, and described approaches
to recovering text in section III-B, above.

The tokenization to be performed can and will vary,
particularly by language. Tokenizers are generally used as a
set; each file that is read is passed through all the tokenizers.
In sdtext, each tokenizer has a name that reflects its
function, and the first tokenizer in the list must be able
to read the file to be processed. The current tokenizer
set includes file-reading tokenizers that can read from text
and gzipped text files; can use Oracle’s OutsideIn for text
extraction from a variety of file formats; and which can
use Apache Lucene [10] for processing Chinese and Arabic
language documents.

Other tokenizers then filter this text by performing such
operations as splitting tokens on punctuation or numerals
or filtering tokens based on length, which can be useful
in removing tokens that are a byproduct of text extraction,

such as when unencoded or base64 encoded text is part
of a document. Some languages, such as English, benefit
from stemming, which is the process of removing word
endings but leaving the root. This helps ensure that words
like “ensured” match “ensuring”. sdtext includes the
frequently-used Porter Stemmer [11] to accomplish this.

D. Dictionary creation

Creating a dictionary requires a sample of files that are
expected to be similar to those being matched. This can be
the entire set of documents to be compared, rather than some
prior collection, but a set of files in the same language can
suffice. Dictionaries are created by processing all files and
discovering what tokens appear in which documents. We
then extract statistically important terms using the inverse
document frequency, or IDF, as described above.
sdtext then trims the set of gathered tokens by IDF,

dropping the low IDF and the high IDF terms. The reason
for this is that low-IDF terms are very common and require
storage space while not adding significantly to the process of
differentiating files. Similarly, high-IDF terms are removed
as they are so uncommon as to appear in only one or a few
different documents in the collection. While they can help
identify those few files that contain those terms, they are
useless otherwise and can be dropped to preserve space.

Determination of appropriate IDF settings can be made
by experimentation, or the examiner can use a heuristic.
sdtext includes the ability to test a variety of IDF ranges
to determine which would produce the most accurate results,
though this can be computationally expensive. Alternatively,
it is possible to use language-based heuristics. For example,
a normalized IDF range of approximately 0.3 to 0.6 often
works well for English language documents, and is used in
our tests below.

E. Digest creation

Once the dictionary has been created, text digests can
be created. Each document is tokenized to extract tokens
of interest. From this set of tokens, we currently support
two different types of digests. First, sdtext supports hash-
based digests that are made by taking all dictionary terms
that are present, alphabetizing and concatenating them, then
hashing the resulting string. This is the approach used in
I-Match [12], and produces compact hashes which can be
used only for exact matches between files.

A better approach to similarity matching, however, uses
bit vectors. Each bit in the vector represents the presence
or absence of a dictionary term in the file being processed.
In a sense, these are a semantic representation of the file
in a lossy format. These digests allow more flexibility
in matching, as files that contain a sufficient number of
matching terms with a smaller number of non-matching
terms will still result in a high similarity score.
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Figure 1: All-pairs matching of the T5 data set

F. Digest Matching

Digests can be matched against each other. For bit-vector
digests we use a cosine similarity measure, which is the
measure of the cosine of the angle between two vectors
represented in n space. Investigators can specify a parameter
that represents the maximum cosine of the angle between
the two vectors that can be considered a match, making it
possible to control the precision and recall of their searches
to a degree. Increasing it results in higher precision but a
lower recall. An investigator can use this fact to perform
initial, highly precise searches then expand the scope of the
searches by decreasing the matching parameter. These later
searches will return a wider variety of matches which are
less accurate but contain more possibilities.

G. Score Interpretation

As output, sdtext and other similarity matching tools
produce an integer number between 0 and 100. While this
number has mathematical meaning, the fact that two files
have a 100 score does not guarantee that they are identical,
and in fact there can be significant differences between such
files. It is common for files that have a specific boilerplate to
match, though the topics may be different. For example, in
our data set, described below, we find that web pages from
the same site often match, as do calls for grants from the
same agency as they contain standard text.

A better way of thinking about the scores relates to search
engine performance. Matching in sdtext is essentially
performing a query based on the terms recorded in the digest
against the terms in other digests. A high score means it
is likely the match will be of interest; a lower score less
so. In general, for English text, an sdtext score of above
60 seems to be worth examining. For our experiments with
sdhash, we use the cut-off of 20 as a reasonable value as
cited by Roussev [13].

IV. MATCHING PERFORMANCE

We first compare the performance of sdtext against
that of sdhash using the methodology and data corpus
described by Roussev [13] using a variety of text extraction
techniques. We show that in the general case composed of a
corpus that contains a significant proportion of non-textual
files, such as images, sdtext does not perform as well as
sdhash, as one would expect. We then move on to files that
are primarily textual and show that sdtext outperforms
sdhash in terms of accurate matching of files that contain
similar text in different formats.

We do not include performance comparisons in this paper.
In performance, sdhash is far superior. Where as sdtext
may need to read the files twice - once for dictionary creation
and once for digest creation - sdhash only has to read
the files once. Once digests are created, sdtext must
individually compare all digests of interest, resulting in an
O(n) or O(n2) operation. In contrast, sdhash can place
all digests in a Bloom Filter and do an O(1) operation to
determine if there are any matches. That being said, sdtext
is highly threaded and text processing is a relatively fast
operation. Our experience with sdtext shows that it runs
fast enough, even over large data sets, to be of practical use.

A. t5 corpus

Past work by Roussev has compared the performance
of similarity tools [13]. We add to that body of work
by performing the same tests using the t5 data corpus he
produced and comparing them to the results from the most
recent version of sdhash. We do not expect sdtext to
perform well on this dataset, as it includes a variety of files
including many that do not contain text.

We show the results in this section as a histogram of
scores of individual files from the test set. In general, the
more high scores the better the result; as a heuristic, a
sdhash score of 20 or greater would indicate a likely
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(b) sdtext

Figure 2: All-pairs matching, doc corpus

match, for sdtext a score of 60 or greater might. The
results for sdhash are shown in Figure 2a, and those for
sdtext in Figure 2b.

For this experiment, we used version 3.3 of sdhash and
sdtext version 0.4 with automatic text extraction produced
using OutsideIn. In configuring sdtext, we used minimal
tokenization in that we removed tokens with punctuation,
limited the length of tokens to between 3 and 10 characters,
and performed Porter Stemming. We then compared created
digests of each file in the t5 corpus and did an all-pairs com-
parison between digests and recorded the resulting scores.
We performed a similar operation for sdhash, setting the
minimum score to report to zero and selecting the option to
generate an all-pairs comparison, again recording the scores.

For each tool, the vast majority of pairs do not generate
a matching score. For sdhash, 1,073 of 9,965,880 score
above the sdhash cut-off score of 20, which is about
0.01%. In comparison, sdtext reports fewer total matches,
providing scores for only 5,095,020 pairs. The reason for
this is because many of the files in the t5 corpus produce
no text when OutsideIn processes them. Files that do not
produce text do not produce digests, as such digests would
be useless, so they are not included in the matching process.
Of the scores reported, 3,389 were above the sdtext cut-
off score of 60, which is about 0.07%. Figure 1a shows the
results for sdhash; Figure 1b shows those for sdtext.

Surprised at the seeming effectiveness of sdtext in
a situation where we did not expect it to perform well,
we took a closer look at the results. We noted that the
high scores in the 99 and 94 columns consisted almost
entirely of JPEG images. Checking the text extracted, we
found that OutsideIn was reporting standard language EXIF
headers that were causing a match. Removing the image
files from comparison gave us the results shown in Figure 3.
Examining the remaining hits showed reasonable results: for
example, the top hit was between web pages from the same

site; the second hit data sets in the same format.
Overall, however, sdtext doesn’t perform as well in

the general case as sdhash, which is fully expected. In
particular, sdtext was unable to create digests for many
files due to the lack of text to be extracted. In the next
section we describe experiments on textual files and show
that sdtext outperforms sdhash in this specific, textual
domain.
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Figure 3: sdtext scores over T5 data set, score > 40,
images removed

B. Experiments with Textual Files

As sdtext is designed to operate effectively over text
files, we designed and conducted experiments to demonstrate
performance on pure text files. We developed a test corpus,
as described below, and converted the text in each Microsoft
Word document to PDF, HTML, OCR’ed text, and text.
We then compared each Word document against all other
versions of the same document using sdtext and sdhash.
Performing experiments in this manner allows us to have a
solid ground truth. Each different format of the same file
should, ideally, match each other, as they contain the same



text when viewed by humans with the appropriate viewing
software.

Corpus Creation: We first selected a random subset of
500 Microsoft Word files from the GOVDOCS [14] corpus.
From this set, we removed documents that were only one
page, as many of those were blank forms with little text.
We then briefly examined each document to ensure it was
in English and that when saved as PDF it created a single
document; many of the .doc files created two or more PDFs
when printed. Though we had a goal of 300 text documents,
we ended up with 299 as late in testing it was determined one
was in Spanish, so its results were removed. This resulting
set of documents, which we will refer to as the doc corpus,
are available for download from anonymized-for-review.

Format conversion: For each document, we converted
it from Word format to PDF by using the option to print
as PDF through Microsoft Office on a Macintosh desktop
through a small program written in Applescript. We similarly
converted the documents to HTML in the same manner,
keeping only the HTML portion and not the correspond-
ing subdirectories. The PDF files were then run through
tesseract-OCR to produce a text version through optical
character recognition.

1) All pairs doc files: Our initial test was to compare each
doc file against all others. The results are shown for sdhash
in Figure 2a and for sdtext in Figure 2b. For sdtext, we
used OutsideIn’s text extraction, removed tokens with punc-
tuation, limited the length to 3-10 characters and performed
Porter Stemming. This is a demonstration that, for the most
part, the set of files extracted are not generally self-similar.
It also shows that sdhash identifies matches that sdtext
does not.

To determine why this was the case, we examined all
sdhash matches that scored above 20 and all sdtext
matches that scored above 60. For sdhash, there were 108
such matches. Of those, a brief examination of each match
revealed that 49 appeared to be legitimate, mostly due to
cases in which the documents were produced by the same
agency and had identifying header text and embedded logo
image. The other 59 matches were apparent false positives.
Interestingly, most of these false positives involved the same
10 or so files. A hypothesis is that there may be some
embedded code that is not visible, perhaps something like a
font definition, that is triggering those matches.

In contrast, sdtext had 4 matches above a score of 60,
three of which were documents from the same organization,
and the fourth of which (and the lowest scored) was a false
positive. This shows that each approach has a strength, as
sdhash found many matches that sdtext did not at the
cost of many false positives. Meanwhile sdtext found one
match sdhash did not, but was more precise in what it
reported.

2) Comparison between doc and PDF: We next moved
on to comparison of the same text in different formats. We

tested each document only against its re-formatted copy.
As mentioned above, this experiment provides a strong
measure of ground truth, as each comparison should be
true. We started by comparing each doc file against the
corresponding PDF file. For this, and all the comparisons
between formats below, we used OutsideIn’s text extraction,
removed tokens with punctuation, limited the length to 3-
10 characters and performed Porter Stemming. The results
are shown for sdhash in Figure 4a and for sdtext in
Figure 4b.

It is clear that something about the PDF conversion
process badly affects the ability of sdhash to match a
Microsoft Word document to its corresponding PDF file, as
none of the matched pairs returned a score other than zero.
In contrast, sdtext performed quite accurately, with only
two pairs failing to meet a reasonable score, though they
were close. This is a 99.33% success rate.

3) Comparison between doc and HTML: As a conversion
to HTML can be a common transformation, we compared
each doc file to its corresponding HTML file. We note that
the HTML as produced by Microsoft Word is quite verbose,
and that a different conversion method or post-processing of
the HTML to reduce its complexity might produce different
results. The results are shown for sdhash in Figure 5a and
for sdtext in Figure 5b.

Again, sdhash performed poorly, matching only 1 pair
out of 299, for a success rate of 0.33%. sdtext did much
better, using the same tokenization as above with a 100%
success rate.

4) Comparison between doc and OCR text: Though text
extraction is possible in many common electronic formats, in
the case where the files are in image form or exist on paper
text can be retrieved using optical character recognition. This
process, while often effective, can be very noisy and error
prone. We note that our OCR corpus was produced using
existing PDF files, and is likely “cleaner” than copies that
were scanned from paper. Examination of the resulting text
files does, however, show that there are a significant number
of additional characters introduced into the file.

Again, as shown in Figure 6a and Figure 6b, sdhash
performed poorly in this specific case, showing a 0% success
rate, while sdtext missed only 3 matches for a 98.99%
success rate.

5) Comparison between doc and alternate text extractions
: Finally, we compared doc files against text files that had
been created using the “Save as text” function of Microsoft
Word. The text produced this way differs from that produced
by OutsideIn, which was the default for sdtext in this
experiment. The results are shown below in Figure 7a and
Figure 7b.

In this test, sdhash was able to match a good portion of
the files, scoring 220 out of 299 as matches for a success rate
of 73.6%. Again, sdtext did well with a 100% success
rate, showing that it is robust to small differences in text
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Figure 4: Matching doc files to PDF files
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Figure 5: Matching doc files to HTML files
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(b) sdtext

Figure 6: Matching doc files to OCR’ed text files

extraction.

6) Results: The results show that sdtext is highly
accurate at matching files containing text across a variety

of formats. While sdhash is an excellent tool in general
use, it performs less well in this specific case.
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Figure 7: Matching doc files to text files
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(b) sdtextwith Deleted Sections

Figure 8: Matching text to text with deleted sections
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(b) sdtextwith Deleted Whitespace

Figure 9: Matching text to text with deleted whitespace

C. Using sdhash on extracted text

Given that sdtext operates over extracted text while
sdhash needs to operate over all formatting, the question

naturally arises if the text extraction is what provides the
advantage. Would sdhash do as well if provided the
extracted text to operate on?
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(b) sdtextwith Character Errors

Figure 10: Matching text to text with deleted whitespace

To determine if this is the case, we ran a series of
experiments over extracted text. For sdhash, we used
english-language text and normalized it by making the text
lower case; removing punctuation; and replacing all white
space with a single space. We refer to sdhash working
over extracted text as sdhash-E. For sdtext, we ex-
tracted text; split tokens on whitespace; stripped digits and
punctuation; removed short and long tokens; then applied
Porter stemming.

We then also applied automatic error insertion into the
text at varying levels. These manipulations included deleting
a contiguous chunk of the text; deleting whitespace tokens
with a percentage chance; or changing individual characters
to random other characters with some percentage chance.
These edits were intended to represent different situations
that would occur in forensic situations. Recovering partially
overwritten files might result in only recovering a small
portion of the file. OCR of documents might result in
erroneous characters, or missed whitespace characters. We
show that each of these affects the operation of sdtext
and sdhash-E differently, but that sdtext is generally
more resilient to errors in the text.

1) Deleting Sections: In the first experiment, we matched
a large number of source plain texts files from the Enron
data set [15] against the same file with a contiguous section
deleted. The results are shown in Figures 8a and 8b, which
recount the average score over multiple trials for each
deletion size. The 95% confidence interval is calculated, but
is too close to the plotted points to be visible. As a reminder,
scores above 20 are reasonably interpreted as matches for
sdhash , and scores above 60 are reasonable matches for
sdtext.

The graphs show that both sdhash-E running over
extracted text and sdtext do a good job at matching
segments of files to the original file. In this case, sdhash-E
is able to provide a high confidence score to a slightly

larger deletion percentage, on average matching documents
that had 77% of the text removed sdtext was behind,
matching on average with about 70% of the text removed.
This indicates that sdhash-E can perform slightly better
in the case of matching contiguous fragments of text to files.

2) Deleting or Changing Characters: We also considered
other edits typical of the errors that can occur in matching
noisy text, like that is created by OCR or recovered with
other noise. In this case we tried two different experiments.
In the first, we randomly deleted whitespace characters in
the file. This is one type of OCR error that is common.
The results are shown in Figures 9a and 9b. In this case,
sdhash-E performs very poorly, failing to match files
with 10% of white space removed. sdtext performs much
better, matching the files on average with as much as 40%
of the whitespace removed.

Similarly, we examined what would happen when OCR-
type errors altered individual characters. In this experi-
ment, individual characters were randomly changed with the
specified probability. The results are shown in Figures 10a
and 10b. Again, sdtext is robust against about 60% of the
characters being randomly changed; sdhash-E fails with
even 10% of characters changed.

3) Results: The results show the different approaches of
sdtext and sdhash cause different performance. Because
sdhash creates hashes over sections of text, any change
in that section means it will not match the original sec-
tion. However, given a clean hash of a small section, it
will still match the original document. This gives it better
performance than sdtext in matching segments, thought
the difference is not major.

On the other hand, sdtext is far more resilient to errors
in characters in a file than sdhash. This indicates that it
is likely preferable in situations when the type of error that
might be present in recovered text is not known
sdtext. We used the base set of text files created using

Microsoft Word as described above. We then compared these



files to the set of OCR’ed files, called the OCR set; a set of
files that was created using the unoconv utility on linux,
called the unoconv set; and the base set of text files that had
line endings changed with the dos2unix utility and the
line length wrapped to 80 characters using the fold utility,
called the folded set.

V. LIMITATIONS OF sdtext AND FUTURE WORK

While sdtext is very accurate at matching text files,
it has limitations compared to existing tools. First, the
processing overhead is higher. To match a new set of files,
sdtext must read the files once to create the dictionary,
then again for the signatures. For large data sets this can
induce a significant overhead. Second, there is an additional
overhead required to load the dictionary. In some cases,
this can be expensive, particularly when sdtext is run
repeatedly to create fingerprints, as the dictionary must load
each time. Third, the digests are not hashes and require more
computation to match. The hashes produced by sdhash and
ssdeep can be inserted into a Bloom Filter [6] that later
allows very fast checking of the presence of a matching
hash. In contrast, the digests produced by sdtext must be
checked individually to determine the score between them.
Finally, sdtext is written in Java, which does not have
the inherent performance of C or C++ which other tools are
coded in.

Our planned future work intends to address some of
these issues. First, we plan to place all tokens from each
file as it is read into a Bloom filter. Instead of reading
the file a second time, the Bloom filter will be probed to
determine which tokens from the dictionary were present,
removing the need to read each file twice. Second, we are
planning to implement an improved algorithm for all-pairs
digest scoring [16]. This approach limits the number of
comparisons that need to be made. Third, while sdtext
is already heavily threaded, we are planning on examining
other options for parallelism, including Apache Spark.

VI. CONCLUSION

Similarity matching is an increasingly useful technique
for working with large amounts of acquired evidence. Most
similarity tools work over the bitstream of the file, which,
while useful, does not do well in finding documents with
similar text in differing formats. We introduced sdtext,
which matches similar text files on the basis of their con-
tents. We showed that while sdtext is not as suitable for
finding duplicates in the general case, it is more accurate at
identifying textual file matches than current tools.
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