Towards Proactive Forensic Evidentiary Collection

Clay Shields
Department of Computer Science

Georgetown University
Washington, D.C., 20057
clay@cs.georgetown.edu

Abstract

Forensic investigations have traditionally relied on
data that exists as a by-product of normal operating sys-
tem and application operation on a system following an
incident. We propose a research agenda targeted at ex-
panding the information available to an investigator in
computing environments in which software can be in-
stalled on the target systems ahead of any incident. In
these cases, information can be preserved proactively
and stored until needed for examination. In our first on-
going project, we are working to modify a file system
to selectively recover disk blocks that are less likely to
contain useful information when space is needed for a
new file. In our second, we are keeping small amounts
of information about files on a system that are deleted,
copied, or modified. This allows us to perform certain
types of investigations on files that are overwritten or
otherwise missing from the system.

1. Introduction

Computer forensics is historically a reactionary en-
deavor. Investigators respond to allegations of misuse
or criminal activity once it has occurred and gather ev-
idence to support or refute a hypothesis about what oc-
curred on the system. They are dependent on the arti-
facts that are left on the system, either as a byproduct
of normal operation or as part of the system logging. In
many cases this evidence is sufficient to allow the inves-
tigators to reach a conclusion; in others it is not. The
difference often lies in non-deterministic computer ac-
tivity that can overwrite or otherwise destroy potentially
valuable evidence. It is currently difficult or impossible
to determine what evidence might remain and for how
long.

In this paper we present a research agenda to make
forensic evidence gathering proactive. We argue that
in many environments, especially centrally administered
networks under corporate or government control where
the bulk of forensic investigations occur, it is possible

to make changes to computer systems that will either
preferentially preserve data with potential evidentiary
value or will purposefully collect forensic data in ad-
vance of any activity which would trigger an investiga-
tion. We present two ongoing projects that are pursing
this agenda.

In the first effort we are working towards modifying
computer file systems so that deleted information that
is more likely to be of forensic interest is less likely to
be overwritten for new files. In a file system with these
modifications, we maintain metadata about each deleted
file, including the file owner and file type. When the op-
erating system needs to reclaim disk blocks containing a
deleted file, we use this metadata to select blocks that are
less likely to be of interest to an examiner. We are cur-
rently working on a method of measuring the longevity
of deleted files on a variety of operating and file systems
using real-world file system traces. Once we are able
to accurately measure the differences between file sys-
tems, we will modify a Linux file system to evaluate the
effectiveness of this approach.

In the second project, we are developing a system
that creates and stores information about files as they
are deleted. Using information retrieval techniques, we
create a signature for each deleted document which is
stored in a database. A file signature contains metadata
about the file along with one or more fingerprints of the
file. A file fingerprint, which is typically just a few hun-
dred bytes or less, is created based on the contents of
the document so that it is robust against small edits to
the file. This means that given a particular document
we can probabilistically find all systems across a net-
work that ever contained a copy of that document, even
if the document is not in electronic form. This is use-
ful for intrusion investigations in which a particular at-
tacker tool is recovered, as all other systems that had that
tool are easily identifiable. It is also useful in counter-
intelligence operations where recovery of a leaked docu-
ment can be used to identify systems that contained that
document for further investigation. Additionally, some

fingerprints store information about keywords that were
in documents so an investigator can search across sys-
tems to find which contained documents matching a par-
ticular set of keywords. This can be used to determine
which machines on a system require a full forensic ex-
amination, making better use of expensive investigative
resources.

In the next section, we describe differences in the en-
vironments in which forensic response occurs and how
those environments provide new opportunities for data
collection. In Section 3. we describe a proactive ap-
proach involving file system modifications. In Section 4.
we describe a proactive approach in which we use in-
formation retrieval techniques to record information that
allows us to recognize or search files even if deleted or
overwritten.

2. A Proactive Approach to
Computer Forensics

The popular image of computer forensic examination is
that of police or intelligence agencies seizing comput-
ers from a crime scene or intelligence target and then
extracting from them information vital a case or to the
security of the nation. While this undoubtedly happens
and is an important part of computer forensics, it is most
likely not the common case.

Instead the majority of forensic response comes in
settings where the systems being examined are under
prior control of the organization performing the inves-
tigation. There are many examples of this kind of inves-
tigation. Corporations need to respond to allegations of
misuse, evidence of intrusion, or simply to preserve data
in response to legal demand. Governments addition-
ally often need to investigate potential insider activity.
In these cases the computers being examined are under
control of the organization, and most often the human
subjects are employees and are subject to the policies of
the organization.

In this paper we will present a research agenda
that takes advantage of the opportunity to deploy ad-
ditional software to the systems far in advance of any
potential incident. This already done by some orga-
nizations which employ commercial tools on their net-
work. These tools are typically forensic tools designed
for a stand-alone investigation modified to operate in a
client-server fashion over the network, such as EnCase
Enterprise or Access Data Enterprise. An investigator
can examine and image a system remotely, speeding the
acquisition process. This saves travel time and process-
ing time associated with physically imaging the disk.
What it does not do is provide any additional informa-
tion to help solve the case. Only the artifacts normally

produced by the computer system are available to ad-
dress hypotheses about what occurred on the system.

What is not common, and what presents a tremen-
dous opportunity for information systems and computer
scientists, is modifying systems to collect and preserve
evidence well in advance of any investigation. We know
what the most common types of investigations are. We
know what evidence can be useful to prove or disprove
some hypothesis. We know that digital storage is in-
creasingly cheap, particularly compared to the time and
expense involved in training or hiring forensic investi-
gators. There seems to be no reason not to collect and
store potentially relevant data ahead of time. The cost
overhead is low when we can harness otherwise unused
computer resources. Even when additional computing
equipment is needed, the cost can be very low relative to
the savings in investigative resources.

This approach raises several questions: In what sit-
uations is it possible to perform proactive preservation?
What evidence should be preserved? What resources are
available or required?

Computing Environment It would be absurd to ex-
pect miscreants who are misusing computers to volun-
tarily install ahead of time any software that would help
identify and catch them. Individuals who have con-
trol over their computational resources and suspect they
might be investigated should instead be expected to do
the opposite and make their systems delete and over-
write evidence that would expose their actions. This is
in fact the assumption that is commonly made in cases
where computers are seized by investigators from out-
side an organization.

In the agenda being pursued in this paper, however,
we are targeting only computing environments in
which the systems being investigated are not config-
ured nor administered by the likely human subjects
of the investigation. We assume in our work that the
users of the computers are employees of an organization
that provides computing resources to the users. These
resources are assumed to be centrally administered and
as a result the software provided to the users can be se-
lected and installed when provided. The users then have
no legitimate ability to alter the system configuration.
Because of this, it is reasonable to assume that proactive
evidence collection can occur as configured by admin-
istrative policy without easy interference from a system
user. A proactive evidentiary collection system could be
installed that would continuously collect and preserve
information.

A user might try and defeat the monitoring by tak-
ing a variety of actions. They might attempt to gain ad-
ministrative access to disable any ongoing evidentiary

collection or to alter any evidence that has been col-
lected. They might try to generate enough activity to ex-
ceed the storage resources available for proactive collec-
tion. In either case proactive evidence may be unavail-
able. However, we argue that in these cases we are no
worse off than we would otherwise be, because even if
the additional evidence was not available we would still
have all of the normal operating system artifacts avail-
able. Additionally, there might be evidence of the activ-
ity that led to the compromise of the proactive collection
system. This in itself could be evidence of the user’s
bad intentions; thus while detailed evidence would not
be available, evidence of wrongdoing might be.

There also will be cases in which an outside intruder
accesses a system remotely. There are two expected out-
comes to this. In the first, the intruder enters the system
using credentials of a non-privileged user. The intruder
will thus be subject to the normal restrictions on users.
In the second, the user either enters the system with ad-
ministrator privileges or gains them after entry. In this
the intruder will likely have the ability to modify the
system software to defeat any proactive collection and
potentially to alter or delete any evidence stored locally.
We argue that in the first case the proactive system is
a plus, as we would have evidence of the intruder’s ac-
tions. In the second case, we again are no worse off than
we would have been simply relying on other artifacts
produced by the system.

Evidence Selection Given that we can preserve evi-
dence in advance of an incident, what should we pre-
serve? The answer to this question depends on the types
of investigations that are expected to occur in a partic-
ular environment. If there is a specific type of incident
that is expected to occur then the collection should fo-
cus on the data needed to investigate that type of inci-
dent. In the absence of a particular type of investigation
we can preserve general information about user actions.
This would mean preferentially preserving data created,
used, or viewed by the user while limiting preservation
of data that was unrelated to their activity. For example,
files that were created or modified by the user would
likely provide more useful information than an operat-
ing system update. Information about user commands
would be more useful than details about normal system
operation. At the very least, we can ensure that the nor-
mal artifacts produced by the system are retained longer
than they would be otherwise.

Evidence Storage If we are to store data we clearly
need to put it somewhere where a the user of the system
cannot access it. We have the option of providing spe-
cific additional storage resources; reserving resources on

the system; or using space for which there is no other de-
mand. There are different costs associated with each op-
tion that need to be balanced against the potential benefit
of having the data available.

Most computer systems have been shown to have
significantly more storage space available than is
used [8]. As the cost of disk space has decreased and
the size of disks had increased this is likely more true
than ever. This makes the otherwise unused space at-
tractive for intentional retention of forensic data as the
hardware cost has already been incurred. All that needs
to happen is to ensure its use. There have been proposals
made in the past that can be adapted to this end [7]. The
downside is that the space available varies at the desire
of the user. Someone who wants to limit the forensic in-
formation being kept can fill the disk, reducing the free
space available.

Adding dedicated storage in the device provides a
more robust but expensive option. An organization
might install multiple drives into a computer, or a large
drive might be split into multiple partitions. One disk
or partition would be used to store forensic information
and protected from the user by disallowing access us-
ing the operating system permissions. This guarantees
an amount of space for forensics storage, but a user or
intruder who gains administrative access can modify or
delete the stored information.

The safest but most expensive storage location is on
a remote server. This has several advantages. First, de-
vices that lack sufficient internal storage, such as mobile
phones, can offload the storage to where it is more con-
venient. Second, all forensic information is in one place
making investigations simpler. The disadvantages are
that the cost is higher, since server space and network
connectivity are required, and the lack of a network con-
nection can require a fallback to a local storage location.

Related Work on Proactive Evidence Collection
The notion of continuous collection of data to assist in
investigations is not is not new. It is common in com-
mercial aviation, in which aircraft data and crew com-
munications are preserved for several hours. In the event
of a crash or other incident, the data is recoverable for
investigation of the accident. It is increasingly common
in automobiles that contain electronic that maintain in-
formation about the car and its operating conditions for
extraction after a wreck.

Most operating systems also continuously collect in-
formation as part of the operating system logs. While
these are valuable sources of information they are not
specifically designed to support forensic investigation.
As an example, the author was performing an exami-
nation of a laptop and was asked if certain files were

burned to a CD. While the logs showed when burning
started and ended, it was impossible to determine what
information was copied.

Other work has discussed approaches to proactive
forensics, though there has been no common agreement
on what the term should mean. Some have used it to
mean data collection in advance of an incident to detect
an insider threat based on user behavior [2, 3, 16, 19].
Others use it in the sense of continuous collection and
call for the type of research we are conducting [12] and
describe in the next section.

3. Preferential Data Preservation on Disk

Current forensic investigative tools and techniques
gather file system and operating system artifacts to sup-
port or refute hypotheses about past user actions [5].
These tools can be very effective when artifacts related
to the investigation are present. However, there is no
guarantee that information relevant to some particular
investigation will be preserved for any length of time.

Many forensic investigations hinge on the presence
or absence of a particular file on a system. Knowing
this, the subject of an investigation will often attempt to
delete incriminating files. Operating system reclamation
of disk blocks is somewhat random, and the longevity
of such artifacts as deleted files are the result of non-
deterministic system interactions. A deleted file may
remain for a period of time or be quickly overwritten.
Unfortunately, blocks with potentially valuable forensic
information are often overwritten when there are other
forensically meaningless free blocks available on the
disk.

As part of this research agenda, we are working to
change this by dedicating specific file system and oper-
ating system resources to maintaining forensic data that
will persist over longer periods of time.

Previous Work While there has been past work in file
systems to retain more complete information, none has
been specifically been designed to improve forensic in-
vestigative capabilities. Instead, the most closely related
work has focused on versioning and checkpointing file
systems, with some work on auditable file systems. A
variety of file systems have been proposed that record
all changes in files over time, such as Elephant [20,21],
which was designed to allow users to undo file system
actions.

On the surface, this would be be the ideal file sys-
tem for forensic investigations if it were never allowed
to discard old files. While Elephant does keep more in-
formation than a standard file system, Elephant was not
designed for forensics and it does not keep copies of all

files as its name would suggest. Instead, it keeps some
files permanently, some for a limited time, and some
only while they are not deleted. By design, it specifi-
cally excludes storage of things like cache files that are
often a valuable investigative artifact. We believe that a
file system specifically designed for forensics could pro-
vide better forensic performance at a lower system cost.

File systems that enable checkpointing [1, 6, 10, 11,
14,15] would allow an investigator to determine if a par-
ticular file was on a file system at the time of the check-
point; it might not be able to determine if a file was
added to the system and then deleted between check-
points. In general, we feel that the overhead of these file
systems is excessive for the enterprise environment. We
hypothesize that as more data is preserved, the overhead
in terms of storage and processing increases proportion-
ately.

The closest work to an forensic file system are those
designed to produce verifiable audit records [17, 18].
Such a file system produces cryptographic hashes of ver-
sions of files which are sent to an auditor. Later, the
auditor can verify that the files on the system were not
modified based on the hashes that were committed ear-
lier. This system shows what files have been modified or
deleted prior to the audit. It does allow the auditor to de-
termine if a particular file was present by a hash, which
limits the investigation to an exact copy of the file. It
does not allow similar files to be found, nor for the audi-
tor to determine the likely contents of any particular file
that is no longer present.

Cost Trade Offs From an investigative standpoint,
keeping full copies of every version of every document
would be an optimal approach. In an enterprise foren-
sics environment, this approach would be prohibitively
expensive. Firstly, while the cost of disks is low, the
cost of administration is high. While it might be that
few users would fill their disks, those that did would im-
pose a burden. An administrator would need to refresh
their machine when that occurred, resulting in lost work
time for the user and a burden for the administrator who
would either need to choose what to delete or update the
system with a larger disk. The problems with new disks
go beyond the cost of the disk; there are licensing issues
with copies of operating system and software as well as
the time to copy the contents between the old and new
disk. Secondly, the cost of backup is already significant.
For a complete forensic information record, the size of
the necessary backups would increase significantly. The
benefits would also be small. Most individual machines
in an enterprise are never involved in an investigation.
Therefore, most of the costs associated with keeping full
information would never prove to be beneficial, as the

information stored will never be relevant.

We take an intermediate approach to improve the in-
formation retained for forensic investigators while not
significantly increasing overall costs. While some high-
security installations might choose the costs associated
with full storage, we believe that our approach will be
useful to the larger enterprise population.

Priority-based block recovery A common problem
for forensic investigators is that use of the system de-
grades the availability of forensic data. This happens
because a files are deleted, the disk blocks used to store
that file are reclaimed for other files by the operating
system. This process may not happen immediately, but
the moment at which any disk block is reclaimed is not
deterministic. Because of this, a recently deleted user
file may be overwritten very quickly, while an unim-
portant temporary file may remain on the system indefi-
nitely.

We are working to modify a file system so that
blocks from user files are preserved preferentially over
non-user blocks. We are creating a priority system for
block recovery in which blocks from user files are left
on the system as long as possible. We will test its effi-
cacy by implementing it on the ext2 [4] file system and
comparing how long a particular set of freed user data
blocks are maintained for both the original and modified
file systems under trace-driven simulation.

To test the usefulness and potential overhead of this
approach, we will modify a Linux kernel and filesystem
to implement a prototype file system that uses a two-
level priority black recovery scheme. Blocks not asso-
ciated with user data will be reclaimed for use before
block with potential forensic data.

The ext2 filesystem [4], chosen for our experiments
because it is well-understood and easy to modify, uses
a number of block groups to store information. on the
disk. Each block group contains a superblock that con-
tains metadata about the block group as well as a data
block bitmap that shows which data blocks are free or
allocated within the block group. We will extend this
by adding a second data block bitmap, which we call
the user data bitmap, which will contain the location
of blocks that contain data from deleted user files. We
refer to these blocks as preserved user data blocks, or
PUD blocks, and our goal is to prevent them from being
overwritten as long as possible.

We will then modify the Linux kernel to support the
use of this additional bitmap. Specifically, when a file
is deleted, the kernel will determine who the owner of
the file is. If it is a regular user, the data blocks will
not be marked as available in the data block bitmap as
non-user blocks will. Instead, they will be marked in

the user data bitmap. When blocks are needed for a new
file, the kernel will take them from the data block bitmap
first and the user data bitmap only if there are no others
available, preserving the user data as long as possible.
Additional metadata in the superblock will track which
user data is oldest.

Additionally, two fields will be added to the block
group superblock: one that contains the last time that a
modification was made to the user data bitmap; and a
second that contains the last time that user data blocks
were recovered to be overwritten.

When the kernel needs space to write a file, it will
use its normal procedure to find a sufficient number of
blocks on the disk, which entails examining the data
block bitmap for each block group until enough unused
blocks are found. In the event that there is enough free
space on the disk, new files will not overwrite deleted
user files. However, if a sufficient number of free blocks
are not found, the OS will have to recover some of the
PUD blocks pointed to by the user data bitmap. In this
case, the kernel will examine the superblocks of each
block group to find one which has old user data and
which has not had user data recently recovered from it
as indicated by the dates added to the superblock. It will
then recover a large enough number of PUD blocks by
removing them from the user data bit map and adding
them to the data block bitmap. The algorithm by which
the blocks are selected will be part of our experimen-
tation; because the overhead associated with keeping a
modification date for each individual file and the bits
in the bitmap associated with it would be excessive, we
hypothesize that we will be able to simulate a least-
recently used approach using the two dates added to the
superblock.

We believe that this approach will be effective for
several reasons. First, most modern disks on individual
user machines rarely approach full capacity. Because
of this, it is likely that user data will be retained for a
longer amount of time than under an approach where
blocks were overwritten randomly. Second, users will
not be able to effectively overwrite the preserved blocks
because in an enterprise environment users can be pre-
vented from having administrative access to their indi-
vidual systems. However, users can mount an attack
against the system by creating many large files to at-
tempt to fill the disk to capacity. This will cause the op-
erating system to reclaim first all available data blocks
then all blocks that contain user data. While this attack
will be easily detectable and would be an indication of
guilt, it could eliminate other useful data. To prevent
this, we will investigate using a configurable parameter
that allows an administrator to specify how much of the
disk should be used to keep preserved blocks. If this op-

tion is selected, the OS would not allow all such blocks
to be recovered. Instead, If this option is selected the
OS would keep the specified portion of the disk for PUD
blocks and not allow those to be overwritten.

This approach may not be as satisfactory for systems
with many users, as all user data is forced to share the
same user data bitmap. This means that one active user
could cause another user’s preserved data blocks to be
overwritten. While it would be possible to use a separate
user data bitmap for each user, the overhead might be
excessive and the number of users known in advance at
the time the disk was formatted.

3.0.1 Performance measurement

To examine the performance of this approach, we will
implement the system described above and test its per-
formance by both benchmarking and trace testing. We
will use the Andrew benchmark [13] to determine the
cost of overhead compared to a stock file system.

We are currently implementing a system that can
measure the effectiveness of maintaining user data by
trace-driven simulation. We have low-level traces of
file system access from the Harvard SOS project [9,22].
From these traces, we recreate the state of the file sys-
tem. We then seed the file system with a number of files
written with recognizable patterns of data, and scan the
disk to find the blocks written with our data. Next, we
delete those files and subject the file system to trace-
driven writing and deleting of files to simulate normal
system use. Periodically we stop the traces and deter-
mine how much of the original data remains.

Our initial work will be to provide a direct com-
parison of existing file systems using the methodology
above. We can then use that as a baseline for perfor-
mance measurement.

4. Collecting Information about Deleted
Files

We are also working on novel techniques to allow pro-
active collection of forensic information within a net-
work. For every file that is created, copied, moved, or
deleted, we create a document signature, which consists
of metadata about the file as well as a document finger-
print, which is a small representation of the contents of
the file. Signatures are small enough to be cheaply and
securely stored, and can be queried to determine which
machines on a network contain or have ever contained a
particular file. This supports a variety of investigations,
as examiners can limit expensive manual examination
techniques to systems that have a high-probability of
providing useful information. Using our approach, a

network manager can quickly identify any system on the
network that ever had a copy of a particular document,
or perform a search to identify any system that ever had a
documents containing a set of keywords even if the files
are deleted and overwritten. The benefits of this system
are lowered investigation costs and faster investigation
speed, as it makes it possible to determine what set of
computers needs to be examined.

The system requires that small software agents be
hooked into the operating system. Figure 1 shows a dia-
gram of the system operation, Installation of the agents
occurs in parallel with training on existing documents in
the network, and a dictionary of selected words, email
addresses, and other tokens is created and provided to
the agents. This dictionary is typically a few megabytes
in size. Thereafter, as documents are deleted, modified,
or copied, document signatures are created. A signature
consists of information such as: the date and time of
record; the file name; the user or owner information; and
one or more document fingerprints, which are a small
number of bits computed based on the contents of the
file that form a small, non-reversible representation of
the file. These signatures are stored securely, either on
a remote database or locally in a manner not accessible
to the user. Thereafter, searches on the document signa-
tures can show which users or machines held particular
files. Keyword searches across signatures are also pos-
sible.

Document Fingerprints and Signatures Finger-
prints are at the heart of our research. They are not
simple cryptographic hashes, as those are brittle and fail
to match if any single bit is changed in the document.
Instead, fingerprints are computed over the contents of
the file in an intelligent way similar to the mechanisms
that allow indexing of documents for Google and other
search engines. To be effective, fingerprints must: re-
quire little storage space; be easy to compute; accurately
identify files based on contents; and match files even
across small edits.

To create document fingerprints, we first parse the
document into individual tokens, where a token is a
word, number, email address, or other series of letters
and numbers. Once tokenized, tokens that are interest-
ing or useful are kept, and others discarded. Tokens of
interest may include, but are not limited to:

e All words
e Phrases
e Selective parts of speech, such as nouns or verbs

e Proper nouns: names, places, etc.

Words longer than a fixed number of characters

e Words found within a certain set of predefined list
of words

Words based on inverse document frequencies (his-
togram)

‘Words based on collection statistics

Given the full token set, we then sort the tokens and
compare them to a dictionary of tokens developed from
a training set. In practice, this set would be created from
existing documents on the network during system instal-
lation. We then create a bit vector in which each position
in the vector indicates whether a token from the dictio-
nary was present in the file of interest or not. This bit
vector is the fingerprint for that document and typically
very sparse, thus compressing well. A single signature
can consist of multiple types of fingerprints. For exam-
ple, a signature of an email might contain a bit vector of
known addresses, another of all nouns, and another of
particular acronyms.

Once signatures are computed, they are stored se-
curely where the user cannot modify or delete it. The
most efficient way is to upload them a central database
for ease of searching. For devices that were not online,
signatures could be stored on the local file system in a
location inaccessible to the user until database connec-
tivity was available.

While our discussion has focused on files on individ-
ual computers, there are many other applications. Fin-
gerprints can be created for emails that are sent or re-
ceived, to allow tracing of email senders and receivers.
A similar approach can be kept for information that
is stored in any database, and signatures created when
records change. Potentially, changes to virtual machine
file systems could be understood and indexed as changes
occur. Removable media could have signatures created
as it is mounted or unmounted. Compressed or archived
files could be parsed and have signatures made. It can
also be possible to create and store signatures for net-
work traffic, by using a proxy firewall and creating sig-
natures of traffic passing through. This includes traf-
fic like: emails entering and exiting the network, with
signatures of attachments created separately; the con-
tents of instant message conversations; the contents of
file transfers; and the contents of web pages or files as
they are downloaded.

Investigations Once signatures are stored, there are a
variety of methods that can be used to analyze them. We
expect that the most common would be to locate all in-
stances of a particular file by creating its signature and

comparing it to other known signatures, or by doing key-
word searches. This will locate all devices that held a
copy of that file. Note that for any file, the electronic
copy is not needed and that text could be transcribed
and a signature generated from the text, regardless of
formatting. This ability can be very useful for a system
administrator.

The direct benefit will be to simplify future forensic
investigations. For a network intrusion, an examiner can
recover the remnants of an attack, and then immediately
determine what other machines on the network contain
the same traces of attack, even if the relevant files were
deleted by the attacker. Alternatively, it is possible to
identify every system that ever had a particular email.
For other investigations, an examiner might choose spe-
cific sets of keywords and find the machines that ever
had files with those keywords. This can be helpful in
determining which machines to further examine, based
on a specific topic of investigation.

With the signature information centrally available,
more advanced techniques are possible. We hypothesize
that data mining and machine learning techniques can be
used on the database of signature and user information
for a wide variety of other applications. For example,
user profiles of access patterns for files could be created.
The profile could be done on the basis of individual pat-
terns, or on the basis of their position or role within the
organization. These would allow anomaly detection if
users start accessing files outside their normal range.

We also believe that the system can be used to de-
termine when a file logging system has failed. Many
systems log accesses to restricted material, though po-
tentially that material could be copied and distributed
through mechanisms outside the logging mechanism.
Our system could detect such occurrences, providing an
additional layer of security for the logging system.

Current Work We are currently working on a pro-
totype to prove the concept and allow for performance
measurement. The prototype consists of four compo-
nents, as shown in Figure 1:

e A mechanism for extracting text and creating a sig-
nature for a document

e An extension to the OS that can be configured to
create a signature for a file when certain actions oc-
cur

e A mechanism for storing a generated signature

e A mechanism for querying a system to see if any
signature matches

...

...

Remap OS/Applications - .
Startup Load . P App +| Await triggering
.« . to create signatures
configuration : event
per configuration
iConfigured v
ieventoccurs dentifv affected Add metadata to Insert sianature int
- > d?n'tlf};ab('ac{ta --»| fingerprints to create p| NS€ S|gtna ure into
1 .
igital objec | signature store
1
T 1
............................. beeeererneen s shenssnneqesssesasassnsnsassssnsassssnsassssnsnsassnsnsnsdsensassnsnsnsssnsnnal
AP occsesescsecesestcacscses 4. ..

from text

Create fingerprints

Store signatures
immutably

e

i1 Signature
:: storage

Query for
matching

— »| Receive »
: fingerprints

document

Find signature with
closest match to given
fingerprint

If close enough match,

Beessesseessecssccsscssscssecssccsscssccsscssscssccsscssscssncss

return signature

.t .
........ R TR PR TP TP RS

Figure 1: Signature Collection, Storage and Matching System Architecture

Our focus is on creating compact and accurate sig-
natures The other functionality already exists commer-
cially, or as part of operating system operation. Text
extraction can be done with programs such as Oracle’s
Outside In technology, which can recover text from over
400 file types. Operating systems such as Windows,
Linux, and Mac OS X have different mechanisms that
hook into the operating system to allow modification of
file operations. Storage and querying can be done with
a database like MySQL or PostgreSQL.

We are therefore working to identify which finger-
prints are most effective in terms of the storage space
required for different types of data files. We are close to
completion of an experimental test bed that allows rapid
construction of different types of fingerprints and testing
on a variety of data sets. We plan on developing finger-
prints that are effective for emails using the Enron data
set; for English text using the federal register; for for-
eign languages using the Trec data set; and for technical
documents using a genomics data set.

Our initial results using small data sets and basic fin-
gerprints that show we can achieve over 95% accuracy.
We believe that with further investigation and experi-
mentation we can dramatically improve this. Our pro-
totype can create signatures for about 30 documents a
second, including insertion into a PostgreSQL database.
We expect that this can be greatly decreased, as we are
using unoptimized java code. We can compare over
600,000 signatures a second using the same unoptimized

code. Again, this gives us great confidence that we can
create a fast and accurate system.

5. Conclusion

The field of computer forensics evolved in response to
the needs of criminal and civil investigators. Because
the field emerged to investigate existing systems most
work has been on tools to better examine legacy sys-
tems, and little has been done to improve computer sys-
tems’ ability to support forensic examinations, even in
environments where the system is owned by the investi-
gator.

With this paper we have shown that there exists a
significant research opportunity to prepare systems to
preserve information in advance. There are a variety of
computing environments in which it is possible to alter
the computer system ahead of any incident, including
government and corporate networks where many inves-
tigations occur. To better support these settings, we am
working on two distinct projects. In the first, we are
examining changes to a file system to selective retain
blocks from deleted files that are likely to be of interest
to forensic examiners. In the second, we are applying
information retrieval techniques to create small, portable
signatures of files that can be used to find any system on
the network that ever contained a particular document or
to perform keyword searches across deleted files.

We believe that these approaches can improve the
speed and accuracy of forensic investigations while low-
ering the overall costs. We also believe that there are
a variety of other solutions that can be applied to this
space, and encourage researchers in the area to examine
other methods of proactive evidence collection.

References

(1]

[2

—

[3

[

[4

—_

[5

—

[6

—_

[7

—

[8

—_—

[9

—

(10]

(11]

B. CORNELL, P. DINDA, F. B. Wayback: A User-level
Versioning File System for Linux. In Proceedings of the
USENIX Annual Technical Conference, FREENIX Track
(2004), pp. 19-28.

BRADFORD, P., BROWN, M., PERDUE, J., AND SELF,
B. Towards proactive computer-system forensics. In In-
formation Technology: Coding and Computing, 2004.
Proceedings. ITCC 2004. International Conference on
(April 2004), vol. 2, pp. 648—652 Vol.2.

BRADFORD, P. G., AND HU, N. A layered approach to
insider threat detection and proactive forensics. In An-
nual Computer Security Applications Conference (AC-
SAC) (Tuscon, AZ, December 2005).

CARD, R., Tso, T., AND TWEEDIE, S. Design and
Implementation of the Second Extended Filesystem. In
Proceedings Dutch International Symposium on Linux

(2004).

CARRIER, B. File System Forensic Analysis. Addison-
Wesley Professional, 2005.

CHUTANI, S., ANDERSON, O.T., KAZAR, M. L., AND
W. ANTHONY MASON, B. W. L., AND SIDEBOTHAM,
R. N. The Episode file system. In Proceedings of the
Winter 1992 USENIX Conference (San Francisco, CA,
Winter 1992), pp. 43-60.

CIPAR, J., CORNER, M. D., AND BERGER, E. D.
Contributing Storage using the Transparent File System.
ACM Transactions on Storage 3, 3 (October 2007), 12:1-
12:26.

DOUCEUR, J. R., AND BOLOSKY, W. J. A large-scale
study of file-system contents. In SIGMETRICS (1999),
pp. 59-70.

ELLARD, D. Trace-Based Analyses and Optimizations
for Network Storage Servers. PhD thesis, Harvard Uni-
versity, May 2004. Harvard Computer Science Technical
Report TR-11-04.

GIFFORD, D. K., NEEDHAM, R. M., AND
SCHROEDER, M. D. The Cedar file system. Communi-
cations of the ACM 31, 3 (1988), 288-298.

HAGMANN, R. Reimplementing the Cedar File System
using Logging and Group Commit. In Proceedings of the
Eleventh ACM Symposium on Operating Systems Prin-
ciples (Austin, TX, Nov. 1987), pp. 155-162. In ACM
Operating Systems Review 21:5.

[12]

[13]

[14]

[15]

(16]

[17]

(18]

(19]

[20]

(21]

(22]

HANKINS, R., AND LIU, J. Towards a forensic-
aware file system. In Electro/Information Technology,
2008. EIT 2008. IEEE International Conference on (May
2008), pp- 84-89.

HOWARD, J., KAZAR, M., MENEES, S., NICHOLS,
D., SATYANARAYANAN, M., SIDEBOTHAM, R., AND
WEST, M. Scale and Performance in a Distributed File
System. ACM Transactions on Computer Systems 6, 1
(February 1988), 51-81.

HOwWARD, J. H., KAZAR, M. L., MENEES, S. G.,
NICHOLS, D. A., SATYANARAYANAN, M., SIDE-
BOTHAM, R. N., AND WEST, M. J. Scale and Perfor-
mance in a Distributed File System. ACM Transactions
on Computer Systems 6, 1 (Feb. 1988), 51-81.

MUNISWAMY-REDDY, K., WRIGHT, C. P., HIMMER,
A., AND ZADOK, E. A Versatile and User-Oriented
Versioning File System. In Proceedings of the Third
USENIX Conference on File and Storage Technologies
(FAST 200 4) (San Francisco, CA, March/April 2004),
pp- 115-128.

PAINTSIL, A. B. Insider threat detection: A proactive
forensic approach. Master’s thesis, Stockholm Univer-
sity/The Royal Institute of Technology, Stockholm. Swe-
den, JMay 2007.

PETERSON, Z., AND BURNS, R. Ext3cow: A Time-
Shifting File System for Regulatory Compliance. ACM
Transcations on Storage 1, 2 (2005), 190-212.

PETERSON, Z. N. J., BURNS, R., AND STUBBLE-
FIELD, A. Limiting Liability in a Federally Compliant
File System. In Proceedings of the PORTIA Workshop
on Sensitive Data in Medical, Financial, and Con tent
Distribution Systems (July 2004).

RAY, D. A. Developing a proactive digital forensics sys-
tem. PhD thesis, University of Alabama, Tuscaloosa, AL,
USA, 2007.

SANTRY, D. S., FEELEY, M. J., HUTCHINSON, N. C.,
AND VEITCH, A. C. Elephant: The File System that
Never Forgets. In Proceedings of the IEEE Workshop
on Hot Topics in Operating Systems (HOTOS) (March
1999).

SANTRY, D. S., FEELEY, M. J., HUTCHINSON, N. C.,
VEITCH, A. C., CARTON, R. W., AND OFIR, J. De-
ciding When to Forget in the Elephant File System. In
Proceedings of 17th ACM Symposium on Operating Sys-
tems Principles (SOSP ’99) (December 1999).

ZHU, N., CHEN, J., CHIUEH, T., AND ELLARD, D.
Tbbt: Scalable and accurate trace replay for file server
evaluation. In Proceedings of ACM SIGMETRICS (June
2005).

