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Abstract

Mobility is often a problem for providing security services
in ad hoc networks. In this paper, we show that mobility
can be used to enhance security. Specifically, we show that
nodes that passively monitor traffic in the network can de-
tect a Sybil attacker that uses a number of network identi-
ties simultaneously. We show through simulation that this
detection can be done by a single node, or that multiple
trusted nodes can join to improve the accuracy of detection.
We then show that although the detection mechanism will
falsely identify groups of nodes traveling together as a Sybil
attacker, we can extend the protocol to monitor collisions
at the MAC level to differentiate between a single attacker
spoofing many addresses and a group of nodes traveling in
close proximity.

1 Introduction

NUMEROUS protocols exist for forming ad hoc net-
works among cooperative mobile, radio-equipped

nodes [25, 14, 13]. Many ad hoc routing protocols have
been secured using reputation schemes [3] or threshold se-
curity schemes [32, 16, 15] that rely on there being a lim-
ited number of attackers in the group and that assume each
radio represents a different individual. However, the broad-
cast nature of radio allows a single node to pretend to be
many nodes simultaneously by using many different ad-
dresses while transmitting.

This attack, an example [22] of what is called the Sybil at-
tack [10], can easily defeat reputation [9] and threshold [10]
protocols intended to protect against it. Douceur has shown
that there is no practical defense against the attack; even a
central authority (such as a PKI) must ensure that each iden-
tity is actually one entity — this requires costly manual in-
tervention, which restricts the number of identities that can
be managed. In contrast, protocols for detection do not suf-
fer from such limitations. Moreover, detection is comple-
mentary to any method that attempts protection.

In this paper, we show that the mobility of nodes in a
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wireless network can be used to detect and identify nodes
that are part of a Sybil attack. We rely on the fact that while
individual nodes are free to move independently, all identi-
ties of a single Sybil attacker are bound to a single physical
node and must move together. We propose two initial meth-
ods, both passive, that can be run on standard, inexpensive
equipment without any special antennae or hardware and
with only very loose clock synchronization.

In the first method, called Passive Ad hoc Sybil Identity
Detection (PASID), a single node can detect Sybil attacks by
recording the identities, namely the MAC or IP addresses of
other nodes it hears transmitting. Over time, the node builds
a profile of which nodes are heard together, which helps re-
veal Sybil attackers. We show through simulation that in
networks with sufficient connectivity and mobility PASID
can produce close to 100% accuracy in identifying the vari-
ous attacker identities while avoiding any false positives. As
the network becomes more dense, with more nodes in less
space, the false positive rate increases; as it becomes more
sparse, the accuracy rate declines as each node has fewer
chances to hear its neighbors. To combat this, we show that
multiple trusted nodes can share their observations to in-
crease the accuracy of detection over a shorter time or in a
more-sparsely connected network.

Our second method, PASID with Group Detection
(PASID-GD), extends our approach and reduces false posi-
tives that can occur when a group of nodes moving together
is falsely identified as a single Sybil attacker. By monitoring
collisions at the MAC level we show that we can differen-
tiate these cases. This approach is successful because an
attacker operating over a single channel can transmit only
serially, whereas independent nodes can transmit in paral-
lel, creating detectably higher collision rates.

Our work follows an increasing body of work that sees
mobility itself as an opportunity for improving the perfor-
mance of mobile networking [8, 6].

2 Related Work

The Sybil attack can occur in a distributed system that op-
erates without a central authority to verify the identities of
each communicating entity [10]. Because each entity is only
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aware of others through messages over a communication
channel, a Sybil attacker can assume many different iden-
tities by sending messages with different identifiers.

An entity in the system can attempt to determine if some
set of entities are distinct by testing their resource limits, but
this is problematic. If a single Sybil attacker pretends to be
multiple entities, it may not have the same computational,
storage, and bandwidth capabilities as multiple independent
entities. However, testing based on such an assumption re-
quires an accurate model of the attacker’s resources. A Sybil
attacker that has more resources than expected can imper-
sonate a number of entities proportional to the amount its
resources are underestimated. Similarly, a set of entities
that are more resource-constrained than expected may fail
to prove their independence.

The testing entity might also attempt to verify identity
and independence indirectly by asking entities to vouch for
each other. This strategy is prone to the Sybil attack be-
cause multiple entities can be the multiple identities of one
or more Sybil attackers.

Newsome, et al [22] proposed several methods for de-
tecting Sybil entities in a sensor network. They present an
excellent discussion of the threat the Sybil attack poses to
sensor networks, all of which apply to routing for ad hoc
mobile networks. In contrast to the methods we propose,
the detection techniques they proposed are active tests that
require the participation of the neighboring nodes by asking
them to respond to queries on assigned channels or to carry
pre-distributed keys. Such query/response resource tests are
a challenge to undertake in a mobile environment where
neighbors legitimately may change with great frequency and
without notice. Pre-distributing keys in an ad hoc network
may not be possible if the nodes to not originate from the
same source or are not all present for a key initialization
phase. Regardless, a reliance on keys to detect or prevent a
Sybil attack is based on a significant assumption: that each
entity has been assigned exactly one key, which is difficult
to ensure in practice in general, as we discuss below.

Our methods of detecting Sybil attackers are related to
malicious attacks against anonymous routing protocols [19]
called intersection attacks [1, 26, 31]. Anonymous routing
protocols allow an identity to remain indistinguishable from
other nodes in the system. An attacker that wishes to deter-
mine the identity of an initiator can track the membership
of the group over time. Each time the attacker identifies a
message, it records the group membership. As membership
changes due to nodes joining or leaving the group purposely
or because of network failures, the intersection of all the
recorded memberships converges to only the initiator. Our
work in this paper is an application of the intersection attack
applied to geographic location in an ad hoc network.

Similarly, a Sybil attacker wishes to keep her multiple
identities are indistinguishable from others in the system.
However, there are differences between a Sybil attacker and
legitimate nodes in a mobile wireless scenario, particularly

in that independent nodes are mobile but the identities of a
Sybil node move together. This provides the opportunity to
identify a Sybil attacker using a location-based intersection
mechanism because the Sybil identities will always be part
of the intersected group.

In the remainder of this section, we present an overview
of the security problems that the Sybil attacks pose to ad hoc
networks in particular.

2.1 Sybil Attacks in Ad hoc Networks

An ad hoc network is composed of mobile, wireless de-
vices, referred to as nodes, that communicate only over a
shared broadcast channel. An advantage of such a network
is that no fixed infrastructure is required: a network for rout-
ing data can be formed from whatever nodes are available.
Nodes forward messages for each other to provide connec-
tivity to nodes outside direct broadcast range.

Ad hoc routing protocols are used to find a path end-to-
end through the cooperative network [25, 14]. Each node
needs a unique address to participate in the routing. Often
addresses are assigned as an IP addresses or a unique media
access channel (MAC) address. Because all communica-
tions are conducted over the broadcast channel, nothing but
these identifiers are available to determine what nodes are
present in the network.

In unsecured routing protocols, such as DSR or AODV,
these address-based identifiers can be easily falsified by ma-
licious nodes, which presents an opportunity for a Sybil at-
tack. However, allowing unauthenticated address presents
a series of other attacks, including route direction, spoof-
ing, and error fabrication [12]. Our methods work whether
addresses are authenticated or not, though given the wide
range of attacks possible against unauthenticated networks,
Sybil attacks may not be the most significant problem
present. Our methods will also work on disruption tolerant
networks (e.g., [6]), however, just as such networks incur an
extreme routing delay, there will be a corresponding large
delay in successful sybil attack detection.

Secured ad hoc networks can be classified into three
broad groups, each of which can be susceptible to the Sybil
attack.

• PKI-based protocols. Much of the initial work in ad
hoc network security focuses on secure routing [12, 28,
13, 11, 24, 23]. A variety of protocols have been pro-
posed to counter routing attacks, some of which re-
quire a central authority or other mechanism to dis-
tribute cryptographic material to nodes in the system
prior to or during deployment. Systems involving a
central authority are less flexible, and installing a cen-
tral authority removes the chief advantage of ad hoc
networks: the ability to form spontaneously from what-
ever nodes are available. Allowing nodes to join with-
out pre-distributing keys leaves a potential Sybil attack.



• Threshold-based protocols. To avoid the untenable
requirement of a PKI, other protocols use threshold
cryptography. In such scheme, a group of trusted
nodes distributes cryptographic material only if a sub-
set of that group agrees on the trustworthiness of new
members [16, 32, 15]. Sybil attackers can additionally
defeat schemes that rely on threshold cryptography be-
cause verifying the true number and independence of
nodes in the network is difficult. If a Sybil attacker can
generate identities to meet the threshold requirements
it can effectively control the routing of the network.

• Reputation Schemes. Other security mechanisms for
ad hoc networks include protocols for determining and
maintaining reputation information about nodes in the
group [3, 18, 2, 21, 27]. Each node can develop trust
in the other nodes that it believes are routing correctly.
The Sybil attack undermines these protocols because
a node can use multiple identities to falsely vouch for
or otherwise support an identity that would otherwise
gain a bad reputation.

A reliance on cryptographic certificates or keys does not
prevent the Sybil attack in general because one entity may
be in possession of multiple keys. For example, if PKI cre-
dentials are simply purchased (e.g., through VeriSign), the
PKI is reduced to a resource test of each identity’s wealth,
which can be without bound. Unfortunately, implement-
ing a stronger approach is problematic. This is because
in practice it is untenable to create a foolproof system that
can scale to a significant number of users to check iden-
tities for independence before the keys are issued. Deploy-
ing a foolproof systems touches on issues including physical
security and attacks involving social engineering or physi-
cal force. It would require checking a person against some
set of unforgeable documents; but even government-issued
documents are forged regularly.

3 Detecting the Sybil Attack
The identities established by a Sybil attacker — whether
represented by IP addresses, MAC addresses, or public keys
— differ from those of an honest node in several ways. Be-
cause the resources of a single node are used to simulate
multiple identities, any particular assumed identity is re-
source constrained in computation, storage, or bandwidth.
Douecer has shown that a Sybil attacker cannot be prevented
by tests of finite resources [10]. However, unlike separate
entities, all identities of a Sybil attacker must share the same
set of resources, and this sharing can be detected in some
scenarios [22].

In the mobile environment, a single entity impersonating
multiple identities has an important constraint that can be
detected: because all identities are part of the same physical
device, they must move in unison, while independent nodes

are free to move at will. As nodes move geographically, all
the Sybil identities will appear or disappear simultaneously
as the attacker moves in and out of range. Assuming an at-
tacker uses a single-channel radio, multiple Sybil identities
must transmit serially, whereas multiple independent nodes
can transmit in parallel. The latter two differences form the
basis of the Sybil attack detection scheme proposed here.

A single attacker with multiple radios will not be identi-
fied as such; however, there may be analogous methods for
detecting multi-radio Sybil attackers, which we discuss in
Section 6.

3.1 Overview

In our scheme, individual nodes that wish to detect Sybil
attackers monitor all transmissions they receive over many
time intervals. These intervals are chosen long enough to
capture behavior from all the Sybil identities of an attacker,
including data transmissions, HELLO and keep-alive mes-
sages, and routing requests and replies. The node keeps
track of the different identities heard during the interval.
Having made many observations, the node analyzes the data
to find identities that appear together often and that appear
apart rarely. These identities likely comprise a Sybil attack.

Like all detection systems this protocol produces accurate
and desirable true positive results when it determines that a
particular identity is part of a Sybil attack and true nega-
tive results when it correctly labels a independent node as
such. It produces false positives by identifying an indepen-
dent node as being part of the Sybil attack and false nega-
tives by concluding a Sybil identity is just an independent
node.

Each false result has several potential causes. False neg-
atives can be caused by insufficient sampling time, so that
transmissions from all the Sybil identities are not captured
in each interval. Similarly, if the Sybil attacker does not
transmit using all its different identities within an interval
the results will be skewed. Sybil attackers may actively
thwart detection by changing identities frequently. How-
ever, doing so limits the effectiveness of an attack when
false identities would best be long-lived, for example to foil
a reputation scheme or to defeat threshold cryptography.

False positives can be caused by using Sybil identities
that belong to other nodes in the network. An attacker can
corrupt trust in legitimate nodes in this way. False positives
can also occur if a collection of nodes moves together in uni-
son in close proximity, either accidentally or intentionally.
For example, a military unit with many members maneuver-
ing in formation, each of whom has a wireless device, will
appear as a Sybil attacker based on their physical proxim-
ity. We show in Section 5 that we can reduce the rate of
false positives in these cases by analyzing the rate of packet
collision at the MAC layer.



Assumptions Several assumptions underly our protocol
design. The first is that it should run on any normal node
and not require any unusual hardware, nor does it require
any directional antennas or specialized clocks. The protocol
requires only that a node be able to receive transmissions.
Later, when the protocol is extended to multiple nodes, it
also requires they be able to share data among them by for-
warding it, and that each node have a similar notion of what
time it is to within a few seconds, both of which are part
of the normal operation of the network. Because the hard-
ware simplicity is low, the protocol can easily be widely de-
ployed. Secondly, we assume that the Sybil attacker main-
tains its identities over time rather than disposing of them
and creating new ones; that is, it is a simultaneous Sybil at-
tacker [22]. This assumption is reasonable for Sybil attack-
ers wishing to thwart long-lived protocols, such as those that
use threshold cryptography or maintain reputation informa-
tion. Finally, for the purposes of this paper, we confine dis-
cussion to networks with only a single Sybil node. We are
confident this protocol can adapt to discover multiple attack-
ers; however, we leave this as future work.

3.2 Detection Protocol

In this section, we describe two versions of our first detec-
tion protocol: a single observer case and a multi-observer
case. In the next section, we evaluate both of these proto-
cols. In Section 5, we show how these basic methods can
be extended to include information from the MAC network
layer.

3.2.1 Single Node Observer

Our protocol, Passive Ad hoc Sybil Identity Detection
(PASID), is purely passive; it does not require active probing
of suspected Sybil nodes, though the techniques are compli-
mentary to active methods [22]. Instead, it operates effec-
tively on a single node that records the identities of nodes
that it hears broadcasting. In Section 3.2.2, we show how to
improve protocol performance by sharing this data among a
set of trusted nodes.

A node that wishes to detect the presence of a Sybil at-
tacker in the network starts by recording the identities of all
other nodes it hears broadcasting over a series of intervals.
A complete record of all data transfered is not needed: it is
sufficient to record only identities of the nodes heard dur-
ing each interval. The observation period, referred to as the
time bucket, is long enough to capture the likely behavior of
a normal node including: normal data flow; regular HELLO
and keep-alive messages; and periodic route requests for
nodes that have data to send but have no current route to the
destination. The length of this time period depends on the
underlying protocol employed; in our simulations 30 sec-
onds was adequate as it far exceeded the period between
routing updates and requests. A more thorough investiga-

tion of bucket times would reveal the advantages of longer
or dynamically chosen bucket times; however, we reserve
this topic for future work.

After a sufficient observation period, which consists of
a number of buckets, the node attempts to determine if it
has observed a Sybil node. The length of the observation
period depends on the amount of mobility within the net-
work; highly mobile networks need fewer intervals than
more static networks. In our simulations, 200 observations
over 6,000 seconds, or 100 minutes of simulated time, was
sufficient.

The node then determines which pairs of nodes are re-
lated. While correlation would be the most obvious candi-
date for doing so, it suffers from the fact that nodes that are
never seen together will be highly correlated. In this case,
however, nodes that are not seen together cannot be assumed
to be related; they might be in separate parts of the network,
unheard by both the observing node and each other. We
therefore tried a number of different techniques to measure
the relationship between nodes, including machine learning
tools [30].

Our final and simple solution reflects the intuition that,
during some observation period, seeing a pair together pro-
vides some evidence they are related; that seeing one but
not the other of a pair provides stronger evidence they are
not related; and that not seeing either of a pair nodes pro-
vides no evidence, because it is not possible to tell if they
appear together elsewhere or separate elsewhere. Our solu-
tion also reflects that having more observations of the nodes
in question provides more evidence than fewer observations.

After a period of observation, the detection algorithm
then works in a series of simple steps:

1. We calculate Aij , the affinity between nodes i and j,
as

Aij = (Tij − 2Lij)
Tij + Lij

N
(1)

where Tij is the number of intervals in which nodes
i and j were observed together, Lij is the number of
intervals in which either i or j were observed alone,
and N is total number of intervals in the observation
period.

2. After the affinity between each pair of nodes has been
computed, the observer constructs a graph in which
the node identities are the vertices and the undirected
edges are weighted with the affinity values between
them. Only edges that are greater than a specific
threshold parameter are included. Using our measure
of affinity, we recorded our results using a threshold of
0.1.

3. Depth-first search (DFS) is then run over each vertex
to discover the connected components. Each of the
components found represents a possible Sybil attacker.
While there can be several different connected compo-
nents, we took only the largest to be a Sybil attacker, in



line with the working assumption that there was only
one per network. If there were more, they would ap-
pear as separate components.

Note that this approach is clearly not optimal; DFS can
have a long running time for large numbers of nodes. We
will look to improve the scalability of the analysis algorithm
in our future work.

The justification for this affinity measure is that each
identity of an attacking node must transmit often enough to
participate in the protocols that operate the network, includ-
ing routing. If the observation periods are long enough, the
attacker will be forced to transmit within a single period to
maintain the fiction of multiple identities. For example, in
AODV, routes that are not used for 3 seconds are dropped,
thus our observation period is set to 30 seconds in our eval-
uations to catch route re-formations. Accordingly, we ex-
pect that for most realistic scenarios, the attacker will find it
difficult have identities transmit individually in separate pe-
riods. In situations where this is not the case, the period can
be lengthened or the weights of observations together and
apart can be adjusted to account for the change in difficulty.

3.2.2 Multiple Node Observers

Though observations from a single node can accurately
identify a Sybil attacker, any single observer is inherently
limited in the area that can be monitored. Collaborating ob-
servers are not only able to cover a larger area, but might
be able to determine that different identities are not related
because they are seen in different areas at different times.
PASID should, therefore, increase in accuracy as we add
observers to the network.

We assume a subset of the legitimate nodes in the net-
work can share observations periodically using the normal
data transmission capabilities of the ad hoc network, and
that these nodes can trust each other to perform this task
honestly. Each node again tracks all other nodes that it hears
over many time buckets. At the end of the observation pe-
riod, it exchanges the information of what identities were
heard during what time periods with the other nodes it trusts
in the calculations. Note that this exchange does not have to
occur often; in our simulations, it would only happen every
100 minutes. We do not simulate the exchange in our sim-
ulations, and assume that there is sufficient connectivity for
all trusted nodes to reach each other; if this is not the case,
detection will be delayed until node movement allows one
or more nodes to accumulate the results of all observations.
We will see, however, that the accuracy increases even if
only some of the additional observations are received.

When using observations from more than one node, the
counts are totals over all observing nodes and the last term
of Equation 1 is at most 1. We let G represent the number
of nodes sharing observations with one another. We modify
our other variables to account for the multi-observer case.
Now, Tij(n) is number of intervals in which nodes i and j

were observed together by node n, defined as

Tij =
∑
n∈G

Tij(n).

We let Lij(n) is the number of intervals in which either i or
j were observed alone by node n, defined as

Lij =
∑
n∈G

Lij(n).

N is still the total number of intervals in the observation pe-
riod. Accordingly, the affinities for the multi-observer case
are calculated as follows.

Aij = (Tij − 2Lij) wij

where

wij =


Tij + Lij

N
if Tij + Lij < N,

1 otherwise

4 Evaluation
To demonstrate the effectiveness of our first detection pro-
tocol, we simulate a series of ad hoc networks using the ns2
network simulator [20]. We evaluate the single-observer and
multi-observer cases. Following this section, we introduce
a modification to the protocol that makes use of MAC layer
information. We show that a single node can accurately
identify the various identities of a Sybil attacker, and that
cooperating nodes can increase the accuracy of the process.

Kotz, et al [17] have expressed concerns about using ns2
to simulate mobile networking. However, we believe the
evaluations we present below are sufficient as a preliminary
exploration of our method. This is because our sybil detec-
tion approach relies on simple observations and is not de-
pendent on the actual throughput or bit error rate of a chan-
nel or the particular efficacy of some routing or MAC proto-
col. In other words, at a minimum, our simulations clearly
show the feasibility of our approach; more realistic mod-
els or evaluations over real traces would refine performance
numbers. Additionally, we model mobility using the ran-
dom way point model, which has also come under scrutiny.
However, this model is reasonable here because it does not
restrict mobility along some path or sub area for any partic-
ular node. Changing the mobility model would not affect
operation of the protocol, though it would again refine the
results.

4.1 Evaluation Assumptions
Each node in the network sends traffic to one other randomly
selected node using constant bit rate traffic at 10Kbps. The
Sybil node uses several 10Kbps connections — one for each
node it tries to impersonate. Since the Sybil attacker is



Simulation Parameter Value Simulation Parameter Value
Number of nodes 5, 10, 25, 40 ns parameter: netif Phy/WirelessPhy
Topography size (m) 250, 500, 1000, ns parameter: mac Mac/802.11

2000, 3000, 4000 ns parameter: ll LL
Number of Sybil identities 5, 10, 20 ns parameter: ifqlen 50
Simulation time (sec) 6000 ns parameter: traffic type level
Time bucket length (sec) 30 ns parameter: packet size 512
ns parameter: chan WirelessChannel ns parameter: packet interval .25
ns parameter: prop TwoRayGround ns parameter: packet max 1,000,000
ns parameter: seed 0.0 ns parameter: start time 1.0
ns parameter: adhocRouting AODV ns parameter: pause time 10
ns parameter: ant Antenna/OmniAntenna ns parameter: max speed 5
ns parameter: ifq DropTail/PriQueue

Table 1: Simulation Parameters

simulated using data streams, routing and control packets
are under-represented in our simulations. Therefore, our
simulations represent worst-case results. Although we use
the AODV [25] mobile ad hoc routing protocol, we ignore
HELLO messages because not all ad hoc routing protocols
use them; to count them would skew the results. In practice,
a Sybil attacker would have to accurately simulate control
traffic to avoid detection based on aberrant behavior, and
PASID would be more effective than shown here.

Our results are averaged over many simulation runs. We
create ad hoc networks in which nodes wander in square to-
pographies. Topography size is given by the length of the
square’s side. The number of legitimate nodes varies be-
tween 5, 10, 25, and 40, and the number of identities as-
sumed by the Sybil attacker, in those experiments with an
attacker, varied between 5, 10, and 20. The simulations each
run 6,000 seconds and the duration of each observational
time bucket is 30 seconds. Each combination of the above
parameters was repeated 20 times for each topography, for
a total of 1,440 runs that took over a day to complete on
a 32-node computing cluster. Other simulation parameters
are show in Table 1.

4.2 Single Node Observer
Figure 1(a) shows the rate at which a single node observer
will falsely identify other nodes as Sybil attackers when
Sybil nodes are present, averaged over all experiments for
each topography size. The true positive rate is zero be-
cause there are no Sybil identities present. For topogra-
phies smaller than 1000m-by-1000m, the false positive rate
is high because all nodes are frequently within range of each
other. Because of this, nodes will be very frequently heard
together even when they are not Sybil identities, and will
rarely be heard apart as they do not move out of radio range.
This leads to the false identification rate in topographies that
are denser in terms of nodes per square meter.

The accuracy and error rates for a single node observer
when a Sybil attacker present is shown in Figure 1(b).
Again, in smaller topographies there is insufficient mixing
to separate Sybil identities from real nodes, and the error
rate is high, as is the detection rate, because all nodes are
seen as part of the same identity. As the topography size

increases, the number of meaningful observations that a sin-
gle node can make increases, and the true positive rate stays
high, on the order of 95%, while the false positive rate drops
significantly. As the topography size increases further, the
number of observations that a single node can make is re-
duced as all nodes are spread far apart, and the accuracy of
identifying the Sybil identities decreases.

It is important to note that this is a single node, acting
alone, using only minimal hardware in a passive manner.
This initial result indicates that the technique can work, and
work well in some circumstances. As we show in the fol-
lowing sections, the accuracy increases as we add additional
observers.

4.3 Multiple Observers
To test the effectiveness of multiple observers sharing data,
we used the data from the simulation runs shown above, but
we calculated the detection accuracy for different sizes of
collaborating groups of nodes. Because the number of non-
attacking nodes in the simulations vary between 4 and 39,
we measured the number of collaborating nodes as a per-
centage of group membership instead of an absolute num-
ber. The graphs in Figure 2 show the false positive and
true positive rates for increasing percentages of collaborat-
ing nodes. The error bars, representing the 95% confidence
interval, are larger than the graphs in Section 4.2 because
the results shown are averaged over fewer number of simu-
lation runs: as it was computationally prohibitive to test all
possible sets of collaborating nodes, we instead randomly
chose 10 different groups for each measurement.

The results show that adding independent observers in the
network can significantly increase the accuracy of identify-
ing the identities being used by a Sybil attacker. With at
least 20% of the nodes in the network sharing information,
it is in some cases possible to achieve 100% accuracy with
0% false positives. This sweet spot lies between the area in
which there is not enough mixing of nodes to do detection,
and the area in which the network is sparse that nodes do not
encounter each other frequently enough to make meaningful
observations. Our simulation data shows that this is increase
in accuracy is true regardless of the number of nodes in the
network.
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(b) Single Sybil attacker present

Figure 1: Accuracy rates vs. topography size for a single observer
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(b) 20% Trusted Observers

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

Rate

Topography Size (m)

mean average accuracy

3

3

3

3

mean average false positive

+

+ + + +

+

(c) 30% Trusted Observers
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(d) 50% Trusted Observers

Figure 2: Accuracy rates for various percentages of observers

4.4 Discussion

In this initial approach, there are a number of parameters
that must be determined in order for PASID to function ef-
fectively, including how long the sample period should be,
how many are needed, and what the threshold should be.
These parameters will vary depending on the conditions of
the individual network. In this work, we determined these
on an informal basis by trying different values until we had
what seemed to be reasonable results. A better approach

might be to have a trusted node openly perform the Sybil
attack itself, and then to use the data collected from that ex-
periment to tune the parameters to optimize detection. Com-
bined with receiver operating characteristic (ROC) analysis
to tune the parameters to the specific network, this could
potentially increase detection rates.

The technique of combining data from many different
trusted observer nodes also currently requires that all nodes
act correctly; the formula used to determine the relationship



between is very prone to an increased error rate if one of
the trusted nodes behaves maliciously. Our future work in-
cludes investigating other formulae that better reflect statis-
tical models and that are more resistant to malicious input.

This work also assumes that the Sybil attacker maintains
the same identities over the entire observation period. We
believe this to be a reasonable assumption, particularly for
reputation schemes. However, a Sybil attacker that suspects
it is being monitored might try a variety of things to thwart
this process. This might include not using some of its iden-
tities at different times; changing identities over time; or
using the identities of existing nodes at different times, if
possible. Our future work includes an examination of the
effectiveness of these techniques and how PASID might be
improved to deal with them.

5 Sybil attackers and proximate
groups

PASID is predicated on the fact that all identities of a sin-
gle Sybil attacker must appear to move together over time,
while other independent nodes move individually. However,
there are clearly cases in which a group of distinct mobile
nodes might move together in unison. For example, a mil-
itary unit that was equipped with mobile nodes might all
move as a group for long periods of time. In cases like
these, a group moving in close proximity will be detected
as a Sybil attacker, and each individual node will be mis-
taken for a Sybil identity.

There is a detectable difference between nodes moving
together and a Sybil attacker, however. A Sybil attacker with
a single radio can only transmit messages for all its identi-
ties in serial, while a group of radios will be able to transmit
in parallel. While it would be possible to detect this by ac-
tive probing of the suspected Sybil attacker’s resources, it
is also possible to detect this passively. A group transmit-
ting in parallel will cause collisions at the multiple access
channel (MAC) level when different nodes try to transmit
simultaneously. Serial transmissions from a Sybil attacker
will result in fewer such collisions.

In this section, we first show that groups traveling to-
gether are accurately detected by PASID. We then show that
groups generate higher MAC collisions rates than Sybil at-
tackers, and that we can use the collision rate to differentiate
between a group moving together and a Sybil attacker.

5.1 When nodes move together
Nodes that move in close proximity will be detected as a
Sybil attacker using PASID. To show this, we ran the same
simulations as in Section 4; however, we replaced the Sybil
attacker with a group of nodes moving in close proximity.
The number of nodes in the group was the same as the num-
ber of different identities being presented by the Sybil at-

tacker. The nodes were spaced one meter apart, and placed
randomly within the smallest square possible centered on
where the Sybil attacker moved. For example, a group of
20 nodes was placed randomly within a 5 by 5 meter area,
1 meter apart. The group maintained their relative positions
as the followed the same path taken by the Sybil attacker in
the prior simulations.

Figure 3 shows the results of the simulations with groups
in place of Sybil attackers. Comparison with Figures 1 and 2
demonstrates that groups are detected with approximately
the same accuracy as a Sybil attacker. Given the goal of de-
tecting a Sybil attacker, this means that any legitimate group
will generate a false alarm. We discuss how to avoid this in
the next section.

5.2 Differentiating between groups

A single Sybil node differs from a group of individual nodes
in two ways. First, its identities must be located physically
in the same place. Second, it can only transmit messages
serially. We have shown in Section 4 that it is possible to
identify all individual Sybil identities based on their loca-
tion; in this section, we show that it is possible to differen-
tiate between a Sybil attacker and a group moving together
by detecting whether transmissions occur serially or not.

While it is possible to test for serial transmissions ac-
tively [22], we follow our low-overhead and passive ap-
proach, and instead monitor collisions at the MAC level.
Because it is a shared broadcast channel, individual nodes
do not coordinate when messages are sent. Instead, they
each send data as it becomes available, and on occasion
individual senders sometimes start transmitting simultane-
ously. This is called a collision, and when it occurs neither
message is received because the two transmissions interfere
with each other. The intuition behind our second method,
named PASID-GD for PASID with Group Detection, is that
a Sybil attacker, limited to serial transmissions, will cause
fewer collisions than a group of independent nodes trans-
mitting in parallel.

To test this, we again used the simulation data from Sec-
tion 4. To verify the intuition, we first measured the num-
ber of MAC collisions for each case: base, which is our
control group with no Sybil attacker or group moving to-
gether; Sybil, which includes a single Sybil node; and ech-
elon, which is a group moving together. Figure 4(a) shows
the average number of collisions per time bucket for each of
these cases. It is clear that there is a significant difference
between the Sybil and echelon cases, with far more colli-
sions occurring when a real group is present.

Knowing that there is a difference between the two cases,
we can develop a method to detect it. However, because an
individual node can only operate in the basis of the trans-
missions it witnesses, no node can know what the base rate
of collisions would be if the group was not present. Instead,
PASID-GD of detection operates by measuring and compar-
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Figure 3: Accuracy rates for various percentages of observers, Group moving in Unison
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Figure 4: The use of MAC collisions to differentiate Sybil attackers from groups

ing the rate of collisions when a detected group is present to
when it is absent. This requires keeping a count of all colli-
sions received during each time bucket.

After a group of identities is detected based using PASID,
each node determines an average collision rate for the time
periods when the group was present and when the group was
not present. It then compares the ratio of the two. If this is
above a particular threshold, 1.5 in our simulations, then it
assumes that it is a group moving together; otherwise the
node assumes it is a Sybil group.

Figure 4(b) shows the average accuracy and false posi-
tive rates of this approach. The average accuracy is the per-
centage of times that a Sybil group is correctly identified
as such, and is close to 80% in some conditions. The false
positive rate is the percentage of time that a group mov-
ing together is identified as a Sybil node, and is always less
than 40%. Topography size has similar effects here as it
does on PASID. When the topography size is small the den-
sity of nodes increases, and the base rate of collisions high
enough that there is not a detectable difference when the



even a group moving together comes near. When the group
becomes sparse, there are so few collisions on average that
even a Sybil node causes enough to pass the threshold and
appear as a separate group, despite the fact that there are
fewer additional collisions than a group would cause. We
are examining other methods of using MAC collisions to
differentiate the two cases and are confident that the accu-
racy will increase.

6 Limitations and Future Work

We have shown in this initial work how individual mobile
nodes with very common, inexpensive equipment can detect
a Sybil attacker. This protocol is exceptionally simple and
costs very little; a single node needs only a small amount
of memory to record its observations. We also showed that
trusted, collaborating nodes can greatly improve the speed
and accuracy of identification by sharing their observations
with each other periodically. Our longer term work is to
investigate improvements in detection that more expensive
computer hardware allows.

6.1 Extensions

PASID and PASID-GD are predicated on very simple hard-
ware, and no special action other than recording and shar-
ing observations on the part of participating nodes. Given
the rapid advances being made in computer hardware, our
longer term work will determine what other capabilities that
could be common for both the attacker an observer.

The simplest boost to the protocol would be to have nodes
move in a particular pattern to best cover the entire network
and to create more opportunities for nodes to move in and
out of range. Our experiments were carried out with nodes
moving in a random pattern, which allowed some mixing,
but not as much as deliberate motion would. Multiple co-
operating nodes could organize their motion to better cover
the entire area.

If mobile nodes cooperating in detecting a Sybil node had
more accurate and closely synchronized clocks than what
we have assumed, then it is possible for the trusted nodes to
establish their relative positions using one of a large number
of localization schemes [5, 7, 4, 29]. Once the relative posi-
tion was determined, then each node could record the time
that every individual message was received. By then com-
paring these times , each node could determine the distance
from each sender. This could quickly show that different
nodes were not close together, ruling out the possibility that
they were a Sybil attacker.

As hardware costs decrease, it is likely that many mo-
bile nodes will contain Global Positioning System (GPS)
receivers. This will let nodes know their position down to
within a meter. Given just this absolute position informa-
tion, nodes could collaborate to determine the position of an

ad hoc Sybil attacker. In this case, each node could record
its position when it received a message. Later comparison
of the locations in which the same messages were received
by different nodes would quickly indicate if different iden-
tities were heard in different locations that were far enough
apart to rule out movement between them, indicating that
they were not a Sybil attacker.

Finally, as mobile node receive additional antennas that
allow from some measurement of signal direction, detect-
ing Sybil attackers should become much faster. A mobile
node can now record not only when it heard any identity,
but the relative direction of the signal. All Sybil identities
will show a correlation not only with position, but with rela-
tive distance, greatly reducing the false positive rate in many
cases. Additionally, collaborating nodes could perform tri-
angulation measurements to determine the location of many
different transmitting identities; again, this would speed the
discovery a Sybil attacker.

All the methods are completely passive in that they do not
require any active probing of the suspected Sybil attacker.
Instead, they can all be performed using passive observa-
tion and normal data communication to transmit their ob-
servations between observing nodes.

7 Conclusion
In this paper, we have presented the first completely passive
approach to detecting a Sybil attacker in a network. PASID
detects which network identities are related and likely to be-
long to the same Sybil attacker by monitoring what iden-
tities seem to be physically located together, and it can
achieve 90% or more accuracy with no false positives in
some circumstances. Adding additional observer nodes in-
creases the accuracy to 100% and increases the range over
which this accuracy is possible. We also have shown that
PASID will detect a group of nodes moving together as a
Sybil attacker, and we presented an extension to the method
called PASID-GD that monitors collisions at the MAC level
to differentiate between the single Sybil attacker and a group
moving together.

We do not investigate how multiple collaborating Sybil
attackers can thwart observers. We plan to address this in
future work, and to investigate how different mobility mod-
els of attackers and observers can affect our results and the
selection of our parameters, including using real-world mo-
bility data. For the UMass DieselNet network [6], we de-
ployed 802.11-based networking on 40 buses that roam a
150 square mile area 14 hours a day, and can use this data to
model more realistic movement. We can also easily deploy
this observation method on the buses for further experimen-
tation.
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