HIP — A Protocol for Hierarchical Multicast
Routing *

Clay Shields, J.J. Garcia-Luna-Aceves

{clay, jj} @cse.ucsc.edu
Computer Engineering Department
School of Engineering
University of California — Santa Cruz
Santa Cruz, CA 9506/

Abstract

This paper presents a new, flexible approach to inter-domain multicast routing. The
HIP protocol introduces the idea of “virtual routers” as a method of organizing the
control of an entire domain so as to appear as a single router on a higher-level shared
tree. HIP then routes between domains using the Ordered Core Based Tree (OCBT)
protocol, and allows recursive application of virtual routers to create a multi-leveled
hierarchy while providing efficient methods of distributing the location of the center
point for the tree. The advantages of this approach include improved robustness,
the ability to route between heterogeneous domains, and a significant reduction in
the amount of bandwidth consumed in control traffic and in the amount of state
stored at each router over existing hierarchical multicast protocols.

1 Introduction

There are two compelling reasons for developing hierarchical multicast routing
protocols. The first is to provide a means of routing between heterogeneous
domains that might use any multicast protocol internally. The second, and
perhaps more pressing, is that the protocol currently being used for multi-
cast routing on the Internet, the Distance Vector Multicast Routing Protocol
(DVMRP) [9], is unable to scale with the exponential growth of the Inter-
net. DVMRP computes and maintains its own unicast routing table between
DVMRP capable routers; as the number of multicast capable subnets has
grown exponentially, so has the size of the table maintained at each router.

* This work was supported in part by DARPA under Contract No.F30602-97-1-0291

Preprint submitted to Elsevier Preprint 13 September 1999

This table is rapidly growing too large to be easily stored and, unless some
solution is found, it will become increasingly difficult for any single host to
maintain the routing information it needs to function properly. A well known
solution to this problem lies in reducing the amount of information that needs
to be stored by routing hierarchically. The goal of a hierarchical multicast pro-
tocol is to build a single distribution tree across all receivers, but to do it in
such a way that the control information regarding the tree is limited to a par-
ticular domain or level. A hierarchical scheme can also allow for heterogeneity
of multicast protocols at different levels.

There have been two general ways proposed to build a hierarchical multicast
tree: a tree of trees, in which the leaf nodes of a higher-level tree can each
be the root node of a lower-level tree; or trees within trees, in which a node
of a higher-level tree actually contains a lower-level tree. The first approach
was one of the motivations for creating the Ordered Core based Tree protocol
(OCBT) [11]. OCBT is a hard-state protocol, so once a branch of the tree
is constructed, it is not removed until a link failure occurs on the branch or
all receivers lower on a branch quit from the tree; this reduces the control
traffic required to construct and maintain the tree. Additionally, OCBT uses
the existing unicast routing table to make its routing decisions; routers do not
need to maintain a separate table to locate other multicast routers. OCBT
functions similarly to the Core Based Tree protocol (CBT) [1] in that a router
wishing to join the tree sends a join request towards the closest core. When
the join request reaches that core or an on-tree router, the receiving router
generates a join acknowledgment that traverses the reverse path of the join
request and instantiates that branch of the tree. In OCBT, every core and
on-tree router also maintains an integer logical level. The level of each core is
fixed and the level of the router is set by the returned join acknowledgment,
which is marked with the level of the core or on-tree router that was reached.
When a lower-level core receives a join request and it is not already part of the
multicast tree, it must join to a higher-level core, and does so in the same way
by sending a join request towards the next highest core. The join request is
marked with the level of the core for which it is intended; if it reaches a branch
of the tree of that level or higher, then the join acknowledgment is marked
with that level and builds a branch of that level back to the sender. If the
request reaches a lower-level branch, that branch breaks to allow formation
of the higher-level branch. It is this labeling and breaking mechanism that
ensures that OCBT remains loop free.

If it were possible to define each logical level of core as an actual level of a
hierarchy, it would be an simple task to create such a tree. However, both
OCBT and HPIM [7], a similar construction for PIM [2,3], suffer in hierar-
chical application from the fact that it is very difficult to come up with a
hierarchical placement of cores or RPs without extensive knowledge of the
network topography and the receiver set. This type of hierarchy also suffers

from the fact that it is homogeneous; it does not easily provide for multicast
protocols or domains of other than OCBT or PIM, except as leaf nodes of the
tree.

Most hierarchical proposals therefore use the second method and construct a
tree from domains that contain trees themselves. Under this type of hierarchi-
cal scheme, a single flat routing region is divided into several non-overlapping
domains, each of which runs its own internal routing protocol. These domains
are connected and packets are routed between them by another routing proto-
col at the higher level. Each member now routes packets only to subnets in its
domain, and to reach subnets in other domains each member sends packets to
the interface of the higher level of the hierarchy, which forwards the packets
to the appropriate domains. The end result is that each member only has to
keep routes to the subnets in its domain, resulting in smaller routing tables
and lower overhead. This method still creates a single spanning tree; at the
highest level it appears as a tree of domains.

Hierarchical DVMRP (HDVMRP) [12] divides the current flat routing region
into disparate parts and assigns each a unique name. DVMRP is then used
within each routing domain for intra-domain routing and between each region
for inter-domain routing. Data packets travel normally within a domain, but
are encapsulated for routing between domains to prevent the packet from be-
ing processed as a native data packet, which could result in duplicate packets
being delivered to hosts. However, the encapsulated packets might traverse
the same links as unencapsulated packets; this is a weakness because every
multicast protocol tries to prevent data packet from being sent multiple times
across the same link. In fact, in the worst case, it is possible to have a du-
plicate packet for every level of the hierarchy in this scheme. HDVMRP also
introduces additional network traffic by duplicating the unicast routing. As
many more routers become multicast capable, the unicast and multicast to-
pographies in the Internet converge, and the separate routing performed by
DVMRP becomes an unnecessary burden on network bandwidth.

Just as using shared trees allowed reduction in router state and in control
traffic for a flat routing domain, using shared trees reduces router state and
control traffic in a hierarchical scheme. There are other compelling reasons
to use shared trees at a higher hierarchical level. Domains are relatively
static, and running a separate unicast routing protocol between them can
consume bandwidth unnecessarily. Domains are also generally connected by
fewer higher-speed links, which reduces the inherent shared-tree problem of
link congestion. Recognizing these benefits, the IDMR working group of the
IETF has been developing a shared-tree, hierarchical protocol currently called
the Border Gateway Multicast Protocol (BGMP) [8]. Along with the Multi-
cast Address Set Claim protocol (MASC), BGMP proposes a mechanism for
building associating groups of multicast addresses with particular domains

and then building a single level tree of domains to the domain associated with
that multicast address.

This paper presents a new protocol called the HIP protocol (HIP) that uses
OCBT as the inter-domain routing protocol in a hierarchy that can include
any multicast routing protocol at the lowest level. The goal of HIP is to pro-
vide hierarchical multicast routing at a highly reduced cost in terms of network
traffic and storage requirements at routers. The HIP protocol introduces the
idea of a wvirtual router (VR) that is formed by all border routers of a do-
main operating in concert to appear as a single router in the higher-level tree.
Virtual routers provide a convenient level of abstract on and enhanced robust-
ness, while providing a data delivery service that does not duplicate packets
over any link. A domain can use any multicast protocol internally while acting
as a virtual router on the higher-level tree. OCBT is used to route between
actual and virtual routers at a higher level in the multicast routing hierar-
chy, and if more hierarchical levels are required, an OCBT domain containing
virtual routers can itself be made into a virtual router for a higher-level tree.
Additional functionality gives HIP the option to allow a convenient and effi-
cient method of center point location!. HIP’s functionality comes primarily
through the operation of a domain’s border routers, and is therefore amenable
to easy deployment by aligning the multicast domains with existing domains.
HIP always attempts to maintain short paths by choosing the border router
with the shortest path to the center point to provide connectivity for the entire
domain. Furthermore, HIP also provides additional robustness at the highest
level by replacing a single center point of the shared tree with several routers
that operate together in a distributed fashion and can tolerate failure. HIP
also provides a possible framework for center-point location distribution at a
domain level.

The next section describes the construction and operation of virtual routers
and how they are used to build a single level of hierarchy. Section 3 details
HIP’s recursive application of OCBT to create a multi-level hierarchical tree
and mechanisms for center-location distribution. Section 4 presents an example
of how HIP distributes center-point information and builds a hierarchical tree.
Section 5 offers a proof of HIP’s correctness.

Router

Exit

(O Router .\

O
. Border . Router
Router Border
-) . Router
\, Domain
| Boundary Controller
(a) An Autonomous Domain (b) Basic Router Roles

Fig. 1. The Layout of a Domain

2 The HIP Protocol

The correct operation of OCBT is not dependent on the order in which mes-
sages are received at the router, though the resulting multicast tree may differ
in shape from a tree produced by a different ordering of messages. This prop-
erty allows us to operate an entire domain such that it can accept the same
input messages as an OCBT router and produce correct, if not always iden-
tical, output. A domain is a network section that is under the administrative
control of a single entity, with well defined borders of control and connections
to the outside network. Figure 2(a) shows a simple domain, with the internal
and border routers differentiated by color. By carefully organizing the border
routers(BR — those routers that define the edge of the domain and “speak”
the protocol of both the internal and external domains), the input arriving
on the external interfaces can be processed collectively in such a way that
the output of the virtual router can simulate the output of a single router
in place of the domain. This organization turns out to be very simple. For
each multicast group, one border router is selected to be the controller for the
group. Figure 2(b) shows the selection of the controller for the domain. This
selection can be dynamic, with all border routers agreeing by communicating
over an All-Border-Routers (ABR) internal multicast address, which is a single
multicast address which will deliver a single packet to all the border routers
in Figure 2(a), or it can be pre-configured. All other border routers, called
subordinate routers, forward all virtual router control traffic to the controller,
which keeps all state for the virtual router and sends instructions back to the
border routers. The controller can communicate with the border routers over
individual TCP connections to insure that control messages are not lost, or
over the ABR address using some reliable multicast protocol. A simple analogy
can be drawn between an OCBT router and an OCBT virtual router: a nor-

! Note that we designate the router that forms the root of the tree as the center
point (CP) rather than the core to avoid confusion with cores that may be local to
a single domain and do not effect the entire tree.

mal router keeps all the routing state and sends messages to its neighbors via
given interfaces; a virtual router controller keeps almost all the routing state
and communicates with it neighbors via given border routers. The only state
that subordinate routers maintain is their own list of on-tree interfaces so that
they can forward data as it arrives without it going through the controller.
The subordinate routers do not change any state on their own. Only the con-
troller makes state changes and notifies the subordinates when to change their
state.

When a virtual router is part of the tree, the controller selects which subor-
dinate will serve as the ezit router to connect the domain to its parent on
the higher-level shared tree, and always chooses for this role the border router
with the shortest path to the given center point. Selecting the exit router
in this way helps maintain short paths from lower to higher levels. The con-
troller chooses the exit router by sending a message asking each BR to query
its routing table for the distance to a specified address, and then chooses the
BR with the shortest reported distance as the exit router. Border routers that
have on-tree links for a particular group outside the virtual router must join
the same multicast address internally. This way, when data is received from
outside the VR, it is forwarded across the internal multicast domain to other
border routers and then onto the other links attached to the virtual router.
Data flows just as it does on a single-level shared tree. The actual internal
operation of the virtual router will differ depending on the internal multicast
protocol used. Source-routed protocols, such as DVMRP and PIM-DM, use
reverse path forwarding checks to accept or drop a packet. Data may arrive
and be distributed from different BRs than those that pass the reverse path
forwarding (RPF) checks. In these cases, some data packets might need to
be encapsulated and forwarded to the correct border router for distribution
internally so that the RPF checks are passed. Shared tree protocols, such
as PIM-SM and CBT can use whatever core dissemination mechanism they
choose internally, and the border routers can connect or send directly to core
or RP as needed. For OCBT, the border routers themselves can be used as
cores, with the exit router serving as a level two core and all other BRs as level
one cores. This way, the internal routers can be pre-configured to contact any
BR as a core, and the tree formed from there as required. This is illustrated
clearly in Section 2.2.

There are advantages and disadvantages to the virtual router approach. Clearly,
a message arriving at a border router needs to travel to the controller and the
reply returned before the subordinate can reply for the VR. This increases the
response latency of the virtual router. For an OCBT virtual router, the maxi-
mum incurred delay will the twice the round trip time from the receiving BR
to the controller (as the control message is forwarded and an answer received),
plus the maximum round trip time from the controller to the furthest border
router (if the controller needs to query the subordinates to receive routing

distance information). While this latency grows as the domain size increases,
there is a simple trade-off between bandwidth and latency that might help.
Each time a border router receives a message likely to cause the controller to
issue a request for routing information, that border router can transmit the
address to be looked up on the ABR address as it forwards the control mes-
sage. When the controller receives the control message, it then needs only to
wait for the replies and does not have to send out a request itself; unnecessary
replies can just be dropped. This will lower the latency to twice the round trip
time from the receiving BR to the controller, plus a time less than or equal to
the maximum time from the receiving BR to any other BR plus the maximum
time from any BR to the controller.

The other disadvantage of a virtual router set up is that the overall paths
traversed by a link can be made much longer by the need to traverse a virtual
router. If a connection to a center point encounters a virtual router, then the
path needs to traverse the VR, even if a short path is available. As an example
of this, look ahead to Figure 3(b) and assume that some undrawn router one
hop from router D and outside the VR wants to join the multicast group at the
center point shown. Because the VR has chosen the border router E' to contact
the parent, the path for our imaginary router will go one hop to D, three hops
internally to E, and two more hops to the center point. This will occur even
though there is a shorter path to the center point for our imaginary receiver
that avoids traversing the virtual router. This seems to be a problem with any
shared tree hierarchical protocol; as a particular domain may have only one
parent on the shared tree, some receivers within the domain or connecting
through the domain will have worse paths than they might have in a flat
routing scheme. This is the design tradeoff — lower state and lower control
overhead in exchange for longer paths, just as might be intuitively expected
by changing from a source tree to shared tree. The actual delay incurred by
the longer paths is dependent on the network topography, though it appears
that the difference between a source tree and shared tree might not be as
significant as intuitively expected.

While using virtual routers can increase join latency and transmission delays,
these are known design trade-offs to gain the benefits that virtual routers
can bring. Virtual router provide a convenient level of abstraction in building
hierarchical protocols. Many protocols exist that provide flat multicast routing
and there is significant experience with these protocols. Using virtual routers
allows these protocols to be used in an inter-domain role without significant
modification. Additionally, virtual routers can be configured as desired on a
policy basis; the domains that are routed between are configured manually
rather than automatically. While this imposes a small burden in configuration
it should not be excessive, as most organizations are fully aware of their domain
boundaries and where the border routers are. This can be a major benefit as
the virtual router can be made to use policy-based unicast routing scheme,

JR Join Request

JA Join Acknowledgement
QN Quit Notice
FL Flush

JR
JR Rl
ON
QN
FL

FL

Fig. 2. OCBT state transitions for a non-core router.

JR Join Request

JA Join Acknowledgment
QN Quit Notice

FL Flush

Fig. 3. OCBT state transitions for a core router.

such as BGP [10], to route to other domains. The scheme is also flexible enough
to allow for virtual routers within virtual routers if necessary. This can be
used for as many levels of hierarchy as needed or desired, as demonstrated in
Section 3. Finally, use of virtual routers can significantly reduce the amount of
state maintained by routers and the amount of control traffic between them,
depending on what routing protocol is used between domains. To this end we
propose using OCBT as the inter-domain routing protocol.

2.1 OCBT as an Inter-domain routing protocol

OCBT has several properties that make it a good candidate for use as an
inter-domain routing protocol. Besides being proven correct and loop free at

all times, OCBT relies directly on the unicast routing protocol used to route
between domains, so that policy-based routing such as BGP can be used.
OCBT is also a very simple protocol, and can be easily represented by a
finite state machine as shown in Figures 1 and 2. In these figures, the possible
transitions are marked with the type of message that causes the transition on
top and the type of messages the router emits before changing state on the
bottom of the transition label. The italic L,E, and H indicate whether the
level of the received message is of logical level lower, equal to or higher than
that of the receiver; a comma means any of the listed levels. Under normal
operation, by which we mean in the absence of network partitions, each OCBT
router is in one of only six states, and there are only four types of messages
related to the construction and destruction of the tree. Each router also sends
periodic keep-alive messages to its parent to ensure that the link is alive and
that the state between routers is consistent. The messages themselves are
very small, the largest containing two integers representing the message type
and message level and three IP addresses representing the message source,
the message originator (if the source is forwarding a message) and the core
for which the message is destined. This is 14 bytes of information, and most
messages are smaller; many consist of only six bytes of control information.

Internally, each OCBT router needs to keep very little state for each multicast
group — two integers representing the routers state and level; the address
and interface over which to reach the parent router and, if a core, an integer
representing the level of the parent; a list of addresses of cores which will vary
in size depending on the scheme used to disseminate core information and a
single address of the current core; a list of the level, address and interface for
each child directly attached to the router and an integer for each child to track
keep-alive messages; and only two timers for generating retransmissions and
to track keep-alive messages. Assuming four byte IP addresses and single byte
integers for interface labels and for tracking levels, a core with five children
and a list of five possible cores (a reasonable value under the core scheme
in which each border router is an OCBT core) will therefore need only 66
bytes of storage and two timers for that group, not counting such things as
pointers for the storage data structures. The state that the controller of an
OCBT virtual router would need to maintain is similarly small. Instead of
maintaining children based on their ID and interface, the controller would
also need to maintain which border router was parent to the child. This would
add only one byte, given a list of border router addresses at four bytes each but
usable by all groups, that the single byte could be used to index. In addition,
the parent interface needs the same index. The controller also needs to use
the keep-alive timer to send and receive keep-alive messages over the ABR
address, and needs to keep one byte for each border router to track missing
keep-alive messages. Therefore, if there were five border routers (the same five
that the lower-level routers used as a core list) and there were still five cores for
the VR, this would still total less than 100 bytes of storage for the multicast

Router

®
‘ Router
Q Border
- Router
- ° On Tree
4 N /77N Virtual . Link
N N ,J Router N Join
® o |
) Central \
G 1 Point)
! I
N 0 / Join ° !
AN L —* Request \ b ° !
DTSR _ ABR A
Messages S~ __--7
(a) Interior Join (b) CP Redirect

Fig. 4. Interior OCBT Virtual Router Operation

group. This state can be further reduced by maintaining child lists and the
parent identity by interface only and omitting the child ID; this is certainly
very effective if there is only one child per link, but requires some modification
to the protocol to handle broadcast links with multiple group members. This
modification would remove the child ID list and reduce the OCBT state for
the example given to only 39 bytes and the VR state to 50 bytes, given the
same number of VR children and border routers.

2.2 An Ezxample of an OCBT Virtual Router

We now describe a virtual router as it might operate for a single OCBT do-
main on a higher-level tree. Although HIP can support any multicast routing
protocol running in a lowest-level domain, HIP uses OCBT at the higher lev-
els so its operation is worth understanding. In Figure 3(a) the example first
shows a receiver initiating the join for its domain and the controller determin-
ing the master router for the multicast group. Figure 3(b) shows how OCBT
can create a tree between border routers to “redirect” a join request from a
subordinate to an exit router. The sequence in Figures 4(a) and 4(b) shows
how the virtual router acts as a normal OCBT router to join the multicast
tree at the higher level.

In the example topography, routers D and E are the border routers of the
OCBT domain and the virtual router consisting of the border routers and the
other single-lettered routers. At some point in time, as shown in Figure 3(a),
router A determines that it has members on some subnet that wish to receive
a particular multicast group that has a given CP address associated with it.
Router A initiates a normal level-zero OCBT join request for the designated
CP. This request travels to router B, which consults its unicast routing table
for the best next hop towards the center point. Though there are two equal

(a) Ext. Join (b) Ext. Reply

Fig. 5. Exterior OCBT Virtual Router Operation

paths, B chooses the next hop according to its routing table and happens to
select the border router, D, as the next hop. In this case the border router is
not yet part of the multicast tree. So far, this is all normal OCBT operation,
but when the request reaches the border router, HIP causes a slightly different
behavior. Because any router on a shared tree can have only one parent, and
because HIP attempts to build shortest-path trees, the virtual router controller
must determine which will be the exit router for that multicast group based
on proximity to the groups designated center point. The controller sends a
message requesting both the border router D and E’s unicast distance to the
given center point. The subordinate routers reply with that distance (if and
only if its next hop to the center point is outside of the domain, otherwise it
returns a message that it has no external path), at which time the controller
determines that F is closer to the center point, and is thus chosen to be the
exit router for the domain to that CP.

The border routers are now configured to build the shortest-path tree for
the domain; however, the join request from A that started the process has
reached the wrong router to reach the CP through the chosen exit router.
This is not a problem because we use OCBT. In every OCBT virtual router,
the subordinate routers act as a level-one cores while the exit router acts as
a level-two core. Figure 3(b) shows how the router D simply sends a level-
one join acknowledgment back to router A, instantiating a level-one branch
from the subordinate router to A, then sends a level-two join request towards
the exit router E to form a branch from itself to E so that it can deliver
data on the level-one branch. As it happens, the route from the master router
to the subordinate traverses part of the level-one branch. Because OCBT
breaks existing lover-level branches to allow formation of higher-level ones, the
link between D and B becomes part of the level-two branch that is forming
along the path from B to C to the exit router. Router A still receives data
from B over the level-one link once the level-two branch is in place, which
occurs when the exit router receives the request and sends the appropriate join

acknowledgment back to B. At this point, D realizes that it has no children
and does not want to receive this multicast group, so it quits from the tree
resulting in the internal tree structures shown in Figure 4(a).

The virtual router still must join the external tree. This is straight forward; the
exit router sends a normal OCBT level-zero join request to the CP; as shown
in Figure 4(b), the CP replies with a level-one join acknowledgment that forms
the branch back to the virtual router. If in the future, the subordinate router
D receives a join request on an external interface, it need only resend the
internal level-two join request towards the exit router to rejoin the internal
tree.

3 Hierarchical Routing and Center Point Dissemination

The previous section shows that HIP can be used to build a single level hi-
erarchy, first by constructing virtual routers from domains and next building
a shared tree, without discussing how to provide multiple levels of hierarchy
or the details of how the center point location is distributed or even what
the center point is. In HIP, it is a simple matter to provide multiple levels of
hierarchy if desired or needed. Assume that a large organization runs it own
network. Smaller parts of the organization each have their own subnetworks
which run different multicast protocols internally. In order to route between
the subnetworks, the organization has made each subnetwork its own virtual
router and is routing between them internally. Now the organization wants to
route multicast traffic to other organizations, requiring another level of hier-
archy. Recursive application of the virtual router protocol solves this problem.
The organization places its entire network into a single virtual router and
places that virtual router on the shared tree between organizations. A three-
level hierarchy is now in place without making any modifications other than at
the border routers of the organization. This recursive application can be ap-
plied as many times as necessary or convenient. Distributing center points for
higher-level shared trees requires some additional work. The following sections
describe center points and their dissemination in detail and give an example
of the recursive application of HIP and its CP mechanisms.

3.1 Virtual Center Points

The hierarchical nature of HIP dictates that a domain that contains a CP
within itself must become a virtual CP for the shared tree at its level. The
shared tree at each level will then have a CP with which to connect. To see
that this is necessary, consider the arrival of a join message on the external

interface of a border router destined for a particular internal router that is
designated as the physical CP for a multicast group. Forwarding the request
to join inward across the domain border and onto the inner shared tree would
be a violation of the hierarchy. Therefore, the border routers must reply to
the join message as if they were the CP. The ability to serve as a virtual
CP is already a necessary part of the encapsulation protocol that completely
simulates a single router, as being a core is one of the possible router states.
After acknowledging the external request, the border routers then can send
a join message inwards towards the real CP, which may connect directly or
may be received by some interior virtual CP. Border routers must be able to
determine which center points are within their domain in order to recognize
requests destined for an internal center point.

HIP’s use of virtual center points is a major advantage when router failures
are considered because each virtual router can be made up of several physical
routers that can provide redundancy. A single CP is a likely point of failure
in a shared-tree protocol, and though such protocols take this eventuality
into consideration, the solutions to the problem can be expensive in terms of
overhead and network traffic. Because the virtual router is made up of several
border routers that work in concert to provide the same service, the failure
of one or more of the border routers does not constitute failure of the virtual
CP, and remaining border routers can maintain the functionality.

3.2 Center Point Location Distribution

A disadvantage of receiver initiated multicast protocols is that a receiver must
be able to determine the location of the center point associated with the group
address in order to join that group. There are four approaches to distributing
this information [4]: advertisement at the application level; advertisement at
the router level; a distributed directory supporting center point lookup; and al-
gorithmic mapping. Each has advantages and disadvantages; application level
advertisements can be protocol dependent, distributed lookups can introduce
startup delay for receivers, router level advertisements require a significant
change to the multicast model and algorithmic mapping can require signifi-
cant network traffic to implement and can create very poorly shaped trees over
many levels of hierarchy. While there is no best answer to CP location dissem-
ination, HIP uses a combination of several approaches that minimizes network
traffic, reduces the information that any individual router must have, and lim-
its the delay before a member of the multicast group can start transmitting.
HIP does not require that this particular method of CP location be used if
other methods are made popular. For example, the Multicast Address Set
Claim [5] provides a method of distributing a mapping of multicast addresses
to particular domain which act as center points and could be used with HIP

without significant modification; however our methods allow for easy mixing
of sender and receiver initiated protocols.

To help distribute center point locations effectively, HIP defines an additional
multicast address within each higher-level domain. This address, known as the
all-virtual-router (AVR) address, can be subscribed to by any virtual router
that encapsulates a sender-initiated domain at the lowest level. Any domain
that has internal AVR receivers joins the AVR address in the higher-level
domain. Using the ABR and AVR addresses across the hierarchical domains,
we can create an efficient means of distributing information about available
multicast groups and their CP locations. To minimize the amount of traffic
required to distribute the group address to center point location mapping,
we combine two approaches. In the first and most conservative approach, an
advertisement with the mapping is transmitted by the new CP (or by the
creator of the multicast group) to the ABR address. One of the border routers
receiving the advertisement caches it and then forwards it on its external ABR
address. This process continues until the advertisement reaches the highest
level, where it is either flooded across the entire level or delivered to some
directory service available to the highest level routers and virtual routers. Each
router is configured with the addresses of its border routers; when a receiver
wishes to receive the multicast group, its router sends a join request towards
any border router. The border router that receives the request acknowledges
it and then commences locating the proper center point of the group. If the
receiving group of border routers does not contain the CP information in
their cache, the controller for that domain creates and forwards a CP location
information request towards the higher levels on its external ABR address. As
the border routers of each higher level receive the lookup request, they check
their distributed cache and forward the information back to the requester or
forward the request up. This process continues until the request reaches the
top level or a level where some border router has the information cached. The
border router at the level containing the information sends it down along the
reverse path of the request. The reply is cached by each successive set of border
routers and forwarded along the reverse path until it arrives at the requesting
virtual router. That virtual router is then free to join the tree using a process
discussed in Section 3.3.

This approach limits the amount of network traffic needed, and only receivers
requesting the information actually receive it. The information is also cached
at each level, as it is reasonable to expect other nearby receivers may try to
join the group, and having the information cached will reduce the number of
requests traveling upwards in the hierarchy. There are two drawbacks to this
approach, however. First, each virtual router must wait for CP information
before joining the tree, increasing join latency for the domain and requiring
that the border router cache any data being sent from internal members that
are sending data. Second, a receiver must initiate the join, which is fine for

the shared-tree protocol used at the higher level, it will not work for sender
initiated domains (e.g. DVMRP or PIM-DM) that may be operating as a vir-
tual router at the lowest level. These domains must receive an announcement
that the group is available. Thus, a more widespread distribution of group
information is required to accommodate these protocols.

In the second approach, information about the availability of a group and its
center point is multicast to all border routers in the region. The CP does this
by announcing it self on both the ABR and AVR addresses within its domain.
One border router for the VR receiving such an advertisement on an internal
interface also forwards it to both the external ABR and AVR addresses; if the
advertisement is received on an external interface (as a result of being sent
to the AVR address) it is forwarded to the internal AVR address, with the
same elected border router address described above added to aid the joining
process. The information travels up to the highest level via ABR transmissions;
it travels across the highest level and to and into each domain as a result of
the AVR transmissions and eventually reaches all domains in the region. A
domain containing a sender initiated protocol will have the advertisement
(which can simply consist of the first data of the session) flooded within it
from one border router, and if the group is not pruned back entirely, a join
request will be generated by the virtual router for the group. A border router
from a receiver-initiated group wishing to join can request the CP information
via the ABR address and then commence the join process. If the request for
the multicast group information results in a cache miss, the border routers
can revert to the first method and forward the request upwards until the
information is discovered. While this protocol is robust and addresses the
need for sender-initiated protocols to be notified about group availability, it
can be very wasteful in terms of excessive control traffic if there are few sender
initiated domains.

In HIP, the method of CP information combines both approaches; receiver
initiated lookup for areas with few receivers and without sender initiated
domains, and multicast distribution for areas needing robust delivery. Only
virtual routers containing a sender initiated group or a set of border routers
that process too many requests for CP information need join the AVR address
on its external interface. Any domain with an internal receiver on this group
must become a receiver on the same address on the higher-level shared tree.
This continues up to the highest level; advertisements for service arrive at and
get sent across the highest level and down to each AVR receiver. Domains not
subscribing to this group use the first request mechanism instead.

Limiting the area of a multicast via administrative scoping is very simple in
HIP. The original advertisement announcing the availability of the group can
also contain the name of the highest domain that can carry the multicast.
When the advertisement reaches this level it is not forwarded to the higher

level. Receivers outside the scoped domain will not be able to receive infor-
mation about the group and hence will not be able to join. The information
about a scoped group must be maintained at the highest scoped level until
the group expires however; if the information were allowed to drop out of the
cache there would not be any information about the group at a higher level
to answer requests.

3.8 Building the Tree

With a mechanism for CP information distribution in place, the process of
building the tree can begin. For lowest-level domains using a source initiated
internal protocol, this occurs when the group advertisement is flooded through-
out the domain from one elected border router and is not pruned completely
back, indicating that some internal member wishes to receive the multicast.
In a receiver initiated protocol, it starts when some internal router receives an
IGMP [6] message from a subnet requesting the multicast. This physical router
sends a join request to some border router of its domain and connects to it.
If the border routers do not have the correct CP information, one retrieves it
via the method described in Section 3.2. If the contacted border router turns
out not to be the exit router for that group for the domain, it can form a
connection to the exit router as shown in Section 2.2. The exit router then
sends a join request for the group towards the appropriate center point.

This join message reaching the next higher set of border routers triggers that
virtual router to join the forming tree itself. In this case the virtual router
already has the information needed as to where to target its join message; it
was forwarded and cached previously as a result of the internal router joining.
If a virtual center point receives the request, it responds as a real CP would.
The receiving border router then sends a join inward towards the actual CP.
This join could pass through several other virtual CPs before reaching the
actual CP; each responds as if it were the actual and then joins the group
internally as well. No border router joins the internal multicast group unless
it is necessary.

3.4 Border Routers for Multiple Domains

All of our explanation and examples of HIP have assumed that each domain
has a single border router that operates for that domain only; that is, no single
border router serves multiple domains on either side. In practice this need not
be true. While HIP does require that a lower-level domain be enclosed by
the higher-level domain, should a higher-level and some lower-level domains
share a border router, a few special steps need to be taken to ensure that

A ’ Router

, Border £ ... Domain
A i} Boundary
. ; i ; . -~ Border
p : 7~ Domain '._." Router
e ‘-~ Boundary Instance of
' HIP

(a) Physical Configuration (b) Software Configuration

Fig. 6. Multiple domains sharing a common border router.

o @ = Oraw

ST O @y @R
‘ Q N @ R Border

: L O Oy Router

® o | O ORY

Off-Tree

Lo /L @07 R

Link

/»~"777"™, Domain and Virtua
.___. Router Border

Fig. 7. Example Topography

the protocol operates properly. Figure 5(a) shows a single border router that
serves three separate domains, A, B and C.

The border router runs multiple instances of the virtual router protocol, one
for each domain for which it is a border. This is shown in Figure 5(b), in
which each instance of the protocol serves one domain and all instances are
organized into a stack, with the instance serving the lowest level domain on
the bottom and each successive instance serving the next higher domain. This
simulates each domain having its own border router that is connected directly
and only to the next higher domain’s border router. When traffic arrives at
the bottom-most instance of the protocol that would normally be forwarded
along to the next higher domain’s border router it is instead simply passed
up the protocol stack as appropriate. This allows as many domain boundaries
to sit together as necessary. This method does require that messages from
border routers be marked with which domain the border router is in, so when
it arrives at another border router serving multiple domains, the message can
be sent to the appropriate instance of the protocol.

ABR multicast

o . AR
) ° O Unicast
! “ !\ acrossavirtual router
N e O

- F —— OnTreeLink
. —+ Join Message
. \‘T;\ - - = Acknowledgement
S L D “\\
I . '\\‘ \\\\
e 0 O

Fig. 9. The DVMRP Domain Joins

4 An Example of HIP in Operation

While the actual ideas behind HIP are fairly simple, its recursive organization
can make it difficult to envision it in action. This section presents an example
showing, through a series of figures, how the protocol distributes CP infor-
mation and constructs a shared tree. Figure 7 shows the example topography
used throughout the example, and is followed by Figure 8, which shows how
the center point location is disseminated throughout the network. Once the
center-point is known, individual domains are able to join the multicast tree.
A sender-initiated domain’s joining process is presented in Figure 9 and a
receiver-initiated domains process of locating the center point and joining the
description in Figure 10 and Figure 11.

Figure 7 shows the simple topography used. Virtual router A is an OCBT
domain that does not subscribe to the all-virtual-routers address to receive
CP information, while C' contains a DVMRP domain that must be notified
when a multicast group becomes available and therefore does subscribe to the
AVR address. Virtual router B contains the physical CP for the group, making
both E and F' virtual center points for their levels. The exit routers are not
aligned in any particular configuration initially; once they receive appropriate
CP information they will switch to lie on the shortest path. In practice they
need not even be identified until needed, however for illustration purposes they
are selected and made visible.

CP Information
Request
__. CPLocation
Response
. New Exit
Router

Fig. 10. Receiver Initiated CP Information Request

The setup of the multicast group begins with the distribution of center point
information. The new CP announces its availability on both the all-border-
router and all-virtual-router addresses. The all-virtual-router announcement
travels only within domain F to C' as there are no subscribers to the AVR
address in the higher-level domain F'. The advertisement on ABR travels out
of domain F to domain D, where it is unicast across the domain and forwards
it to the exit router for the overall domain labeled F' so that it can be for-
warded towards the highest level its scoping permits. The route that the CP
information follows is shown in Figure 8. Notice that domains A and D only
forward and do not cache the CP information as they are not ABR receivers,
but only hops on the shared tree at that level.

Once the CP advertisement reaches the DVMRP domain, the exit router of
that domain (not illustrated) floods the advertisement through the domain.
When the tree is not pruned back, the controller has the exit router send a
join message towards the primary CP address received in the CP advertise-
ment. This request travels first to the exit router of domain C, where it is
acknowledged and forces the issuance of a join request for the domain. This
higher-level request goes directly to the exit router for domain B. It does not
need to be acknowledged by the border routers of domain E, as B is the vir-
tual CP within £ and E sees the request pass by on an internal interface. The
join message is acknowledged back to C, and the exit router for B then joins
the internal physical CP. This process is illustrated in Figure 9.

When the single router in the A domain receives an IGMP message from
an attached subnet that desires the multicast, it selects a border router and
joins to it for that multicast group. The controller for A must then locate the
correct CP for the group as even though it traversed the domain earlier, it
did so as an encapsulated control packet and was not read or cached in A.
Figure 10, shows how A sends a CP information request to the ABR group
of its domain, D, which gets received at that domain’s exit router. Because
the original core advertisement passed through the D domain without getting
read or cached, the controller for D must also forward the request to a higher
level. The information is found when the request arrives at the I’ controller
and is sent back down to D. There the controller consults the border routers

TF — OnTreeLink
= — Join Message
- -+ Acknowledgement

Fig. 11. Receiver Initiated Join Process

confer and realize that the exit router must be switched to provide a shortest
path to the indicated CP. The CP location is forwarded to A and the exit
router for that group is switched.

At A, again, the controller realizes that the other border router must be the
exit to provide the best exit point for the domain, and the role is transferred.
The former exit router then redirects the initial join from the internal router
by sending a level-2 request to the new exit router. This triggers the controller
to have the new exit router to send a join request for domain A as shown in
Figure 11. As in the join from the DVMRP domain, it gets acknowledged at
the border router on the way out of domain D, then travels to domain E,
where it encounters a border router that is already part of the tree that sends
the final acknowledgment back to the D master router, completing the branch.

5 Correctness of HIP

Proving that HIP is correct requires us to show two things; first, that OCBT
always builds a multicast tree in bounded time without loops; and second,
that the virtual router protocol correctly emulates the function of a single
OCBT router. Recursive application of these proofs will then show HIP to
be correct at all levels. First, OCBT has been previously proven to operate
correctly; it always produces a multicast tree in finite time even under unstable
unicast routing and link and router failure [11]. The proof relies on the fact
that timers are used to generate retransmissions, so OCBT is always live, and
that the use of logical-level labels guarantees that branches will form while
preventing loops in the construction of the tree. It therefore remains to show
that the virtual router protocol is never deadlocks and that it always correctly
emulates the function of an OCBT router, even under internal link or router
failure.

Theorem 1: Given a connected network, the virtual router protocol remains
safe and live and always correctly simulates an OCBT router.

Proof: Tt is easy to show that the virtual router protocol does not reach dead-
lock as each message that requires a response has associated with it a timer.
If the timer expires without a reply being received, the message is either
resent or, after several failures, it is assumed that the intended recipient is
unreachable and appropriate action taken. In either case, deadlock is avoided.
To prove that a virtual router has the same functionality as a OCBT router
only is slightly more complicated and requires that the responses, in terms
of changes of internal state and transmission of control or data messages, be
identical for both a virtual router and an OCBT router. This is also very
simple, as the virtual router runs the same protocol and keeps the almost the
same state as an actual router. Instead of tracking children by interface, the
virtual router tracks them by border router and interface, and the subordi-
nate routers keep state about data forwarding as directed by the controller.
In addition, the routing table lookup of a router is replaced by the distributed
lookup of the virtual router; since these transmissions and their replies go
over reliable unicast or multicast channels the reply is assured as long as the
routers are up. Therefore, this lookup will succeed and the virtual router can
forward messages based on the distributed routing tables. When the pseudo
code for OCBT and an OCBT virtual router is compared and state transition
diagrams are prepared, they are identical. A virtual router therefore behaves
the same as an actual router would in its place. O

Given that a virtual router behaves the same as an OCBT router under normal
conditions, we now need to examine its performance under failure. There are
three ways a link or router can fail in a domain. The failure can occur such that
either the ABR multicast tree or the data multicast tree is disconnected but
paths exist between all border routers; a border router can fail; or a partition
can separate the border routers into separate connected components. The
following three lemmas show that HIP functions correctly in each of the three
cases.

First we make some simple assumptions about the nature of the internal multi-
cast routing protocol. First, we assume that if there exists some route between
all border routers, the internal multicast routing protocol will rebuild the mul-
ticast tree in some finite time following a link or router failure. Second, if the
domain is partitioned and there is no possible route between all border routers,
we assume that the internal multicast protocol will build an ABR and data
multicast tree within each partition, so that any border routers within the
partition will be able to communicate, and that the tree will be rebuilt when
the partitions merge. These are correct assumptions for all OCBT domains,
as OCBT correctly builds a tree in finite time in any connected component
following a failure or partition [11]. If, in fact, the internal multicast cannot
support this, the virtual router protocol encapsulating that domain will need
additional functionality to fulfill those requirements.

Lemma 1: In the event of an internal link or router failure such that all border
routers have paths to each other, the virtual router protocol will continue to
operate correctly.

Proof: In fact, in this case HIP needs to do nothing. The internal multicast
protocol is able to reconstruct either or both the ABR and data tree as a path
exists between all border routers, and the controller will be able to communi-
cate and share data and control messages with all border routers. There may
be internal routers that are not able to receive or send on those addresses, but
that does not effect the function of the virtual router as a whole; it is still able
to make appropriate state changes and to carry data across the virtual router
for transmission on the higher-level tree. O

Lemma 2: In the event of a border router failure, the virtual router protocol
will continue to operate correctly.

Proof: In this case, a single border router of a virtual router fails. This failure
will be detected by the other border routers. If the controller is the router that
failed, this will be detected when the subordinates cease receiving keep-alive
messages; if it is a subordinate router that fails, then the controller will detect
the failure when the keep-alive messages go unanswered. If it is a subordinate
router that goes down, the master router simply removes state about any
children of the virtual router that were being served by the failed router, as if
the external link of an OCBT router had failed. This is safe as the outgoing
links are unreachable through the failed router and it is as if the domain
simply has a different topology. If the controller is the router that has failed,
it as if the domain has been partitioned in such a way that the controller
is unreachable and the subordinate routers follow the same procedure as a
network partition and the case is covered by Lemma 3. O

Lemma 3: In the event of a network partition, each partition will form its
own virtual router, resulting in correct performance but a topology change.

Proof: In this final case, the virtual router is partitioned in such a way that
some border routers are separated from each other, with one or more border
routers part of each partition. Because the internal multicast protocol rebuilds
the ABR tree within each partition and because the only exits out of the
partition are through the border routers, each separate partition meets the
criteria of and acts as its own virtual router. Therefore, each partition can
appear as an OCBT router on the higher-level tree. The partition that does
contain the controller simply removes state about the border routers it cannot
reach and continues as in the case above. The partitions that do not contain
the controller must elect a controller for that partition once the ABR multicast
tree is constructed within the partition. This mechanism is very simple: each
border router within the partitions sends keep-alive messages to the ABR

address; as all BRs within a partition listen to this address, after several keep-
alives have been sent each border router will have the addresses of all other BRs
within the partition. One particular BR (the one with the lowest or highest
IP address) will then take over as the controller and send an announcement of
its status to the others within the partition; this announcement causes them
to immediately drop all state about children that they have, after which they
modify their state as directed by the controller. To the network outside the VR,
it will appear as if the VR has restarted, and new connections will be formed
to the VR. When the partitions merge again, the ABR multicast tree between
the two partitions reforms and each former partition receives the keep-alive
messages of the other; at this point an election is held again for controller, with
one particular router selected again by IP number or by pre-configuration if the
set controller is within the partition. The losing controller sends no message
but drops all routing state; the elected controller again announces its status
to all other border routers. In this case, only the former subordinates of the
losing controller need clear VR state and start anew. The these cases the
topography of the higher-level tree is different now, with several disconnected
virtual routers where there used to be a single one, but each virtual router
will still function correctly. Because OCBT functions correctly regardless of
the topography, HIP will still operate properly.

If a virtual center point is partitioned, it forms a new group of virtual routers
as described above, but with one difference; only the partition containing the
actual center point can respond to build the higher-level tree. Each part of the
partition must therefore check via its unicast routing tables that the physical
center point is reachable before accepting connections for it on the higher-level
tree. The reason for this is clear — if there were several virtual center points
accepting connections, a single tree would not be built at the higher level;
instead, a forest of disconnected trees would be built. This may mean some
partitions will be rejecting connection requests until the unicast routing has
updated routes to the physical center point, but in time (if the partition lasts
long enough) the join requests will start going to the correct partition. O

Theorem 2: Given failures inside a domain, the virtual router protocol will
still simulate one (or more) OCBT routers.

Proof: Since the virtual router protocol functions correctly in each of the three
possible failure conditions, HIP always correctly simulates an OCBT router,
and since OCBT is correct, HIP will always be correct. O

6 Conclusions

We have described a new protocol for hierarchical multicast routing called
HIP that joins heterogeneous routing domains using the Ordered Core Based
Tree protocol. The method makes domains appear as a single virtual router
on a higher-level shared tree using a simple protocol that organizes the border
routers of the domain to simulate a single OCBT router. Any routing domain
can be made a virtual router; all that is required is the ability to send mul-
ticast packets internally. Recursive creation of virtual routers yields a flexible
hierarchy that is robust; has no strict ordering of levels; aligns easily with
existing unicast domain boundaries; and always attempts to make the path to
the center point of the tree as short as possible. The mechanisms for center-
point location distribution are simple and effective in minimizing the amount
of control traffic needed.

While maintaining the same functionality of other hierarchical multicast schemes,
HIP approaches the problem in a very different manner. Routing between the
domains is based solely on the unicast routing tables; the lower-level domains
do not need to be explicitly named and no separate routing needs to occur
to build paths to domains. This allows great flexibility in the addition or
modification of domains in the region. Data traffic lows over a single tree,
and while higher-level control messages may be encapsulated for transmission
across a region, data packets are never encapsulated or duplicated. The tree
itself is always built with an attempt at forming the average shortest path to
the center point for the group. The ordering of the hierarchy is also extremely
general; except for the highest level domain, no domain needs to know what
its place is in the hierarchy. While the bulk of the control traffic in HIP is
for the distribution of proper core and best-path information, the amount of
traffic is minimized as much as possible by only sending the information where
it is requested or where it needs to be delivered for the proper operation of
encapsulated protocols. The HIP protocol takes best advantage of the conver-
gence of the unicast and multicast topographies and the development of high
performance shared-tree protocols, while retaining the ability to inter-operate
with existing domains and protocols.

References

[1] A.J. Ballardie. Core Based Trees (CBT version 2) Multicast Routing Protocol
Specification. Internet draft, July 1997. Work in progress.

[2] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, A. Helmy, and L. Wei. Protocol
Independent Multicast Version 2, Dense Mode Specification. Internet draft, May
1997. Work in progess.

[3]

[4]

[9]

D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley,
V. Jacobson, C. Liu, P. Sharma, and L. Wei. Protocol Independent Multicast-
Sparse Mode (PIM-SM):Protocol Specification. Internet draft, September 1997.
Work in progress.

D. Estrin, M. Handley, A. Helmy, P. Huang, and D. Thaler. A Dynamic
Bootstrap Mechanism for Rendezvous-based Multicast Routing. Technical
report, University of Southern California, 1997. http://netweb.usc.edu/pim/.

D. Estrin, M. Handley, S. Kumar, and D. Thaler. The Multicast Address Set
Claim (MASC) Protocol. Internet-draft, Novermber 1997. Work in Progress.

W. Fenner. Internet Group Management Protocol, Version 2. RFC 2236,
November 1997.

M. Handley, J. Crowcroft, and I. Wakeman. Hierarchical Protocol Indepenent
Multicast (HPIM). University College London, November 1995.

S. Kumar, P. Radoslavov, D. Thaler, C. Alaettinoglu, D. Estrin, and
M. Handley. The MASC/BGMP Architecture for Inter-domain Multicast
Routing. In Proceedings of ACM SIGCOMMY8, pages 93-104, Vancouver,
Canada, August 1998.

T. Pusateri. Distance Vector Multicast Routing Protocol. Internet-Draft, March
1998. Work in Progress.

[10] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). Technical report,

RFC 1771, March 1995.

[11] C. Shields and J.J. Garcia-Luna-Aceves. The Ordered Core Based Tree

Protocol. In Proceedings of the IEEE INFOCOM97, Kobe, Japan, April 1997.
IEEE.

[12] A. S. Thyagarajan and S. E. Deering. Hierarchical distance-vector multicast

routing for the MBone. In Proceedings of the ACM SIGCOMM95, Cambridge,
Massachusetts, September 1995.

