A Recursive Session Token Protocol For Use In
Computer Forensics and TCP Traceback

Brian Carrier Clay Shields
Center for Education and Research in Department of Computer Science
Information Assurance and Security (CERIAS) Georgetown University
Purdue University Washington, D.C., 20007
West Lafayette, IN 47907 clay@cs.georgetown.edu

carrier@cerias.purdue.edu

} C, m C, | (e We present th&ession TOken Protoc¢8TOP) [5], which
0 L—1J 2 n-1 n

is based on th&ent protocol, and helps forensic investiga-
tion of stepping-stone chains while protecting the privacy of
Fig. 1. Connection chain example betwelip and Hr, users. STOP saves application-level data about the process and
user that opened the socket, and can also send requests to pre-
vious hosts to identify other hosts in the chain. At each stage,
Abstract— . S
We introduce a new protocol designed to assist in the forensic a hashed token '_S returned; at no point in the protocol does the
investigation of malicious network-based activity, specifically ad- requester ever directly learn user or process data. Instead, they
dressing the stepping-stone scenario in which an attacker uses amust redeem the token to the system administrator who can de-
chain of connections through many hosts to hide his or her iden- termine the merit of releasing user information. Random ses-
tity. Our protocol, the Session TOken ProtocdfSTOP), enhances gjon |Ds in the requests allow cycle detection. Additionally,

the Identification Protocol (ident) infrastructure by sending re- - . .
cursive requests to previous hosts on the connection chain. The© allow for centralized control of security, STOP gives border

protocol has been designed to protect user’s privacy by returning gateways and firewalls the ability to send requests for inbound
atoken that is a hash of connection information; a system adminis- or outbound connections.
trator can later decide whether to release the information relating In the following section we describe previous work in the
to the token depending on the circumstances of the request. area of attack traceback, and outline the operation gtfeet
protocol. Section Il describes the STOP protocol, and imple-
mentation results appear in Section IV. Finally, we present
I. INTRODUCTION comparative performance results in Section V, and follow with

. o our conclusions in Section VI.
To hide the network address of a host used for initiation of a

network attack, an attacker will often log into a series of com-

promised hosts before attacking his or her intended target. This Il. PREVIOUS WORK

technique is commonly called stone stepping [23], and is usedWhile there has been significant recent interest in determin-

to allow the attacker to avoid responsibility for his or her adng the source of network attacks, the bulk of this work has been

tions. As shown in Figure 1, Iéif;, 0 < i < n, be a set of net- targeted at a separate problem — that of locating the source of

work hosts, and let there be a connect@nbetween host#l; spoofed IP packets [16], [4], [15], [17], [14], [6], [7], [2], [19].

and H; if there exists an active TCP session between theM/hile providing a solution to this problem is crucial in provid-

A connection chain¢, between host#l, and H,, is the set of ing a response to distributed denial-of-service attacks [22], this

connectiong”;, where0 < i < n. work does not allow an attacker to be held accountable for their
The current method of determining the source of an attackdstions, as attackers rarely send spoofed packets directly from

to contact the previous host in the chain and to ask the admifeir host. Instead, they connect through a series of compro-

istrator to investigate his or her system. If a prior hop from thatised hosts, and launch their attack from the tail of that chain.

host is discovered, then the administrator of that system must

then be contacted, and so on. In practice this type of tracebagkconnection Chain Traceback

is often hindered by the fact that many administrators lack th.ePrevious work in determining the source of network traffic

resources, knowledge, trust, or system data to continue theé n be divided into two areas; network-based solutions, and
vestigation. Particularly, in some instances, there is inadequH St-based solutions ' '

![?(?ngmg on a system to determine the previous host of a CONNECYhe first work in connection chain traceback was a network-

based solution proposed by Staniford-Chen and Heberlein [18].

This work was conducted within and supported by the Center for Educatid{'€y Su_ggeSted saving content-baggdmbprints of 'actlve
and Research in Information Assurance and Security (CERIAS). connections at network gateways. When an attack is detected,

the thumbprints can be analyzed and pairs of connections stalis-The Identification Protocol
tically correlated. This analysis is based solely on packet con-The |dentification Protocolident) [10] is a simple proto-

tent and therefore does not work when encryption or compress that is designed to allow a server to identify the client-side

sion is used. Additionally, in the United States, it is often illegglser name. While the full grammar for the protocol is available
for ISPs or officers of the government to examine the conteRfSRFC 1413 [10], the protocol works as follows:

of packets [12]. 1 fA client and server establish a TCP connection between TCP

Recent work by Zhang and Paxson avoided the problems g 1t <CL_PORT>0n the client and TCP porSV PORT>on
using packet content by relying instead on timing analysis ﬁf N P -

user idle times in interactive connections [23]. Their designe Server.))

places a network analyzer the border of network domains t@a_tThe server establishes a connection to port 113/TCP on the
performs real-time analysis to determine if connections ent&fient and sends the following message:

ing and leaving the domain are part of the same stepping-stone) <CL_,PORT_>,<S'V,PORT> .
chain. The times when TCP connections go from an idle state}o! N€ client determines which, if any, process has a connection
anon-idle state between inbound and outbound connections 81 Port<CL PORT>to port<SV_PORT>using the source IP
correlated to identify inbound and outbound pairs. As this do@gdress of the request.

not rely on content, it is not affected by use of cryptography @ If the process and corresponding UID is found, a message
compression. This work was intended to perform an intrusiguch as is returned:

detection function, so that compromised hosts being used asCL_.PORT>,<SV.PORT>:USERID:UNIX:<USER_ID>
stepping stones could be easily identified, but the authors haven case of error:

suggested that this technique could be used for traceback if the <CL_.PORT>,<SV_.PORT>ERROR:<ERRORISG>

appropriate analysis were done at each domain on the connegsident returns user names, it can be invasive on user pri-
tion chain. vacy and can also be used for other purposes besides security.
Yoda and Etoh also avoided using content for analysis by Usoldsmith showed that thident RFC did not specify that the
ing TCP sequence numbers [21]. TCP sequence numbers f@la@mon need only return the identity of connections that orig-
given connection always increase at a rate proportional to tii@ted on that host [9]. Therefore, an attacker could establish
amount of data transmitted. Therefore, if two connections ageconnection with any service, sendidant request, and re-
in the same chain, then their sequence numbers should incregs@e a reply with the user name of the service running. This
at the same rate. Their work identifies connection chains B."OWS an attacker to determine which services are running as
graphing the sequence numbers versus time and calculating,thg:. Additionally, web servers can collect email addresses of
differences between the graphs. If two graphs have little difsers that visit their sites and add them to bulk email lists for
ference, then they are likely to be from the same chain. ThigaM.
design will not work if compression of the data stream occurs Several implementations take additional steps to protect user
differently on each part of the chain, as may be the case in sigdvacy. The OpenBSD daemon [1] returns a string of 80 ran-
protocols as SSH [20], because the sequence numbering Wi bits in hex instead of the user id. The random token can
be different, nor will it work if link encryption is used as TCPpe redeemed for the user name after proper identification and
headers will be encrypted. need have been presented to an administrator. Similarly, the
The sole prior host-based solution that has been proposgdentd daemon [8] can return the user name encrypted using
was the Caller Identification System (Caller ID) [11]. TheES, which can later be decrypted by an administrator. Other
Caller ID system is a set of protocols designed to authentica@asures include always returnit@ THER" as the operating

a user and the path of hosts he or she is logged into. Its pgjstem type and returningy NKNOWN-ERRORbr all errors.
mary purpose is for authentication, but the data it gathers can

also be used to trace an attacker. When a user logs into host
H,; from hostH,;_,, H; sends a request td;_; with the TCP] B))]
port pair. H;_, identifies the user that has the TCP connection STOP provides additional functionality to what is offered
and returns a cached list of previous host and user name pHp&n ident . It can be run on any host with no modification
to H;. H; verifies the list by sending a request to each host wiftf Protocols, network topology, or kernel. It can also be run in
the corresponding user name. The host retyess if it has a p_arallel with any of the network-based connection chain analy-
process running as that user and returasotherwise. If any SIS t00Is previously proposed.
host returnsio to H;, then the user is not authorized to log in.
Host H; saves the list in case it receives a request fidm; . A. Protocol Design Goals

This work does not address the problem of mapping an out-The design of STOP followed a number of design goals, enu-
going TCP connection with the previous incoming connectiong,erated here:
Instead, it simply verifies that a process with the appropriatel) Must be backward compatible with the Identification

user name is running on the system. Additionally, as the host * p qtocol as specified in RFC1413 [10] because of its
saves the list of previous hosts for a user, it will not know which widespread usage and implementation.

host list to return when the user has several active login ses—2 Must not rel tem dat il
sions [3]. This protocol may also add considerable delay while) d ust_ rI'O hre eabse any US%I’ %r system data until proper cre-
the list of previous hosts is verified. entials have been provided.

IIl. A RECURSIVESESSIONTOKEN PROTOCOL

3) Must provide a mechanism for a server to request thdtJLL, CR, and LF. As the protocol is returning random to-
the client save additional data, in addition to just the uskens that will be later redeemed for actual data, it will be easier

name. if tokens are generated using only printable ASCII. The full
4) Must provide a mechanism for a server to request that tgemmar is shown in Figure 2. .

a random token. In some implementations, the user may opt-in
fo having his or her user name sent to satisfy the requirements
by some Internet Relay Chat (IRC) networks.

6) Should be efficient and not add considerable load to thea gaemon that implements this protocol must have the fol-

5) Must be configurable such that it can comply with th
system security and privacy polices.

daemon host or delay to the requester. lowing properties:
7) Should allow a host that is not on the connection chain to. Return a random token for all established connections
make requests. « Random tokens need not be cryptographically secure, but

The standardident protocol satisfies goals 1 and 6. Some must not contain any values related to the request, such
implementations satisfy goals 2 and 5 by returning random to- as UID, time, or IP address. The tokens must also be the

kens instead of user names and returnid@HER" instead of same length for all request types and responses.
the actual operating system. Titkent protocol offers noth- « Return an error for requests of TCP sessions that were not
ing similar to goals 3, 4, or 7. initiated by the local host.

« Return a random token to all requests that specify the re-
mote IP address of the connection; this includes replacing
error messages.

The new protocol builds upon thident protocol by mod- , process requests in the original RFC 1413 formalDas
ifying the request message to provide more options and the re- e requests.

sponse message to protect privacy. The request message NoW saye additional process data wigvior SV.RECrequests
contains a request type, which can be one of the following: are received (see Section I1I-C).

« ID: The daemon saves the user name in its log file and, Send requests with the same type and session identifier
returns a random token. This is the same behavior as the to the hosts that a user logged in from wHEn.RECor

B. Protocol Design

originalident protocol. SV_RECrequests are received (see Section 1I-D).
« ID_REC: The daemon saves the user name and return & Save tokens from recursive requests with the original reply
random token. The daemon then sendtCarRECrequest token. The recursive tokens must not be sent to the original

to the host that the user logged in from. This option also requester.

requires a random session identifier to identify cycles in « Do not process more than one request of tfipeRECor

the recursion. SV_RECfrom the same host with the same session identi-
fier for at least 120 seconds. If a second request is received
within 120 seconds of the first, return a random token and
log the loop detection.

A daemon that implements this protocol should have the fol-

lowing properties:

_ _ . « Provide an option to return |user-reply> message
The request may optionally contain an IP address in dotted \yjth a random token instead of error messages.

decimal format that when given is used as the remote addresg provide an user-based option to return the actual user name

of the TCP connection. This is intended for use by network jnstead of a random token for #B type request. All other

gateways and Intrusion Detection Systems (IDS). When the IP request types must return a random token.

address is specified, no error messages or user names must peprovide options for what process and system data to save

returned, only normal responses with a random token. This pre- on pehalf 0fSV andSV_RECrequests to satisfy policies or
vents information gathering by attackers posing as legitimate resources such as disk space.

requesters.

The protocol uses the same response messagesidsithe .
protocol, with three exceptionSOTHER" is always returned C. Saving Process State
as the operating system type to satisfy design goal 2 and beBY sending &V or SV.RECrequest to the client, the server
cause the operating system value is not required to identifican later gather additional user- and application-level data on
session. The second exception is thafDDEN-USER" is no the process that made the connection. Upon receiving this re-
longer required as an error message. The original intent of thigest, the daemon will save the additional data to a file in a
message was to allow a user to specify that his or her user nagitéctory, such agvar /tokens. Process data that we believe is
not be sent to other systems. Our protocol will only return rafmportant to save include:
dom tokens and therefore does not need this error type, as the Process name and identifier (PID)
user’s privacy is still preserved. The last change is that onlye Parent PID
printable ASCII is allowed in the random token. The original « Real user id and effective user id
protocol allowed the return token to be any octet value excepts Process start time and priority

« SV: The daemon saves the user name and other data asso-
ciated with the process that opened the port.

« SV_REC: The daemon saves the same data as 8ithnd
also has the recursive property as described IltHREC
This type also requires a session identifier.

<request> := <port-pair> ™" <request-type> ["" <ip>]<EOL>

<port-pair> ::= <integer> ",

<request-type> ::= "ID" | "ID
"SV_REC" "" <sid>

<ip> = <byte>"."<byte>"."<byte>"."<byte>

<sid> = <int>

<EOL> := CR LF

<reply> := <port-pair> """ <reply-text> <EOL>

<reply-text> ::= <ident-reply> | <error-reply>

<integer>

_REC" ™" <sid> | "SV" |

<ident-reply> = "USERID" "" "OTHER" ['" <charset>]

"" <user-token>
<error-reply> ::= "ERROR" ":" <error-type>

<error-type> ::= "INVALID-PORT" | "UNKNOWN-ERROR" |

"NO-USER" | <error-token>

<charset> ::= "US-ASCII" | as defined in RFC 1340

<user-token> ::= 1*512<token-characters>
<error-token> ::= "X"1*63<token-characters>
<byte> ::= integer values 0 to
<int> ::= integer values 0 to
<token-characters>

Fig. 2. STOP Protocol Grammar

« Terminal device
« List of open sockets, files, and pipes

28 in ASCII
232 in ASCII
= All printable ASCII except ™"

not prevent one from a flood of requests using different session
identifiers. To prevent this situation, the number of requests that

In addition, the following data should also be saved to help @te processed at a time must be limited by the daemon.

investigation should one occur.
« Host name
« Boottime
« Operating System, version, kernel date and build
« Address of machine that sent request
« Address and port of remote end of socket
« Address and port of local end of socket
« Type (i.e. SVREC) and time of request
o Entries fromutmyp for all users mentioned in report

D. Recursion

E. Security Analysis

STOP does not solve all tracing connection chain tracing
problems, as the daemon can be killed on any system which
the attacker has gainedot privileges. This section will ana-
lyze the effectiveness of the protocol when the daemon of host
H; has been killed or replaced. Itis important to remember that
the logs of any system that has hagbt access compromised
are never fully trusted.

If the attacker kills the daemon, then this is the same situation
as though the host was never running it. Thereféfg,; will

The ID _RECand SV_.RECrequest types allow tokens to behave a log message indicating ttt has rejected the network
generated along an entire path of hosts. The original respofg8nection and the attacker’s path can be traced back to only

token should be sent back to the requester before the recurdile

requests are sent. This is so the requester does not have to wdftthe attacker replaces the daemon with a rogue version, sev-
for all responses to be received. When the responses from @@l situations can occur:
previous host are received, they should be saved with the rane The daemon does not save any data. This is the same as if

dom token. If any of the responses are sent to the the requester,
then the daemon would be violating design goal 2 because the
requester would learn that the previous host is not the end of the

chain.

The recursive requests must contain a random session iden-
tifier to prevent cycles and a denial of service situation. Thee

daemon must keep track of thie _RECand SV_RECrequests

that it has seen within the past 120 seconds. If it receives a du-
plicate request for a port pair with the same random identifier
and from the same host within 120 seconds, it must not process

the request and return<aiser-reply> type message to stop

it were not running and the path will be known .

The daemon does not send recursive requests, which will
cause the path to also endH if it is not saving the pre-
vious host data or alf;_; if it is saving the previous host
data.

The daemon saves false user and recursive data. For ex-
ample, the daemon picks another login session at random,
and claims that it is the attacker’s session. This scenario
can lead an investigator far from the true path, but the com-
promised host would be looked at by following the path of
tokens and investigated for malicious activity.

the cycle. This method will prevent a denial of service situation Each of the above conditions would be identified during a
caused by processing the same request in a cycle, but it whilbrough forensic analysis of the system. These scenarios show

that this protocol is not a quick fix to the stepping stone scenatlb-C are saved. If the tokens are saved to a small disk, an at-
and must be used only as a tool whose data must be verifiedtacker could cause the drive to fill with token files to prevent

the system from saving tokens involved with an attack. The
data files can also be compressed to roughly 700 bytes.

If a request has typ®® RECor SV_REQC then the saved pro-

A prototype of theSTOPprotocol was implemented by mod-cess data is analyzed for open Internet domain stream sock-
ifying an open sourcédent daemon,oidentd [13]. The ets. We tried to limit requests for inbound sockets only, but
STOPdaemon allowed several run-time options including: this was unsuccessful because only OpenBSD socket structures

« Always return random tokens instead of errors. save data about direction. When the direction is unknown, re-

« Always return'UNKNOWN-ERRORbr all error types. quests are sent to all sockets.

« Select what state data to save 8fandSV_RECrequests. Cycles are detected by keeping a hash tablidoRECand

IV. IMPLEMENTATION

« Allow users to opt-in to releasing their user name. SV_RECrequests. The hash function uses bits from the random
« Restrict the number of active lookups to limit the amourgession id, remote address, remote port, and local port.
of processing the daemon does. Experiments were performed to verify that the protocol

When users are allowed to opt-in to their user name being mgeuld trace a connection chain, save appropriate data, and de-

leased, they can create a file naniédient ~ which contains tect cycles. The implementations passed all experiments by

a list of hosts that their user name should be sent to. All othidentifying all hosts in a connection chain of four hosts, sav-

hosts are sent a random token. ing the correct process and IPC data, and not sending requests

The prototype was built on Solaris 2.7, OpenBSD 2.8 arvdhen a cycle was identified.

Debian Linux 2.2. The process state data was determined in

OpenBSD and Solaris using the Kernel VM library functions V. PERFORMANCE

and in _L|nux gsed therocfs pseudo-file sys_te_m. As wil b_e The Linux and OpenBSD systems that were used to imple-

shown in Section V, the OpenBSD and Solaris implementations . : ;

. meint this program have identical hardware and were tested for

have better performance because they read directly from kerne ‘ I h h | .

memory. performance results. The systems had a 600 MHz Intel Pentium
’ Il processor and 128MB of RAM. The results of two perfor-

When aniD type request is received, the daemon acts Iikeance tests are given here, request processing times and system
a basicident daemon and determines the UID from kerner?1 9 - feq P 9 y

memory, or from theéproc/net/tcp file in Linux. When performance.
anlD _REC SVor SV_.RECtype request is received, the daemon _
identifies the process that has the socket and saves state fatRequest Processing Time
about it. It then saves the same data about the parent procesghe first test program simulated a daemon that would imple-
and 'walks’ up the process tree by repeating this procedure umtient theSTOPprotocol. It forked a new child process, waited
the process with PID 0 is reached. Recursive request mess&gest to finish, and repeated for a specified number of times.
are sent to the remote end of each incoming socket identifi€de child process parsed a request string and processed it. The
during the 'walk’. total time was divided by the number of lookups to calculate
Performing a simple 'walk’ up the process tree may not ke average processing time.
adequate when tracing malicious users. For example, let arThe program was first run on a simple process tree, shown
attacker run the following command to 'pass through’ hdst in Figure 3, that contained 6 unique processes and contained
nc -l -p 8888 | nc <H ,,;> 8889 no forms of IPC. Table | shows the average number of seconds
This command usesetcat to listen on port 8888 of hod{; and per request from our tests. The first data column shows the
pipes data received on that port to anothetcat process that processing time for alD type request. As described in Section
sends the data to port 8889 on hést, ;. When the process thatlll-B, an ID type request is equivalent to the traditioident
connects td4,; 4 is analyzed no other sockets are encounterggtotocol request. This was run to compare how much longer
Therefore, ifH, 1, sent a request of tyf®V_RECthen no recur- a newSV type request takes over the origindént request.
sive requests will be sent. By resolving the pipe and identifyirithis shows that Linux is the most efficient at determining the
the process was at the other efif], ; can be determined. UID of a socket. This operation was performed in Linux by
In our implementation, all pipes, local domain sockets (algmarsing theproc/net/tcp file and in OpenBSD by using
called UNIX domain sockets), and Internet domain sockesssysctl() system call.
connected to the local host are resolved. This is done by searchfhe second data column contains the times for performing
ing the file descriptors of all processes. The identified processeSV type request and not saving the process data to a file
are then 'walked’ up and their sockets and pipes are resolvedhile the third column contains the times foS& type request
This continues until all sockets and pipes are resolved. and saving the data to a file. As described in Section 1lI-B, a
If the request type iSV or SV_.REC then the state data isSV type request saves state data for the process tree that has
stored in a file and the SHA-1 hash of the data is computed athe requested socket open. From the second data column, it
sent to the requester as the random token. The SHA-1 haslsislear that it is much faster to directly access kernel mem-
sent to detect any tampering the attacker may do to the datg in OpenBSD than by searching and parsimgpc/ files.
file. For a typical process tree with 6 processes, the output filpenBSD has a 201% increase in lookup time between a tradi-
is roughly 1600 bytes when all variables mentioned in Sectidional ID request and the neBVrequest and Linux has nearly a

H

T T T T T
L OpenBSD —— |
100 Linux ------

SCHED

INIT a0 |

SSHD

60 -
—* SSHD

Overhead (%)

CSH 20 |

i+1

TELNET ———

20 |

Fig. 3. Process tree with 6 unique processes

0 — L L L L L
TABLE | 0 1000 2000 3000 4000 5000 6000
Requests per minute

AVERAGE LOOKUP TIME FOR6 UNIQUE PROCESSES

Platform ID SV SVwith file

Linux 0.533mS| 5.718 mS| 8.243 mS P, on a system with no other users and the results can be found
OpenBSD| 0.803 mS| 2.421 mS| 7.871 mS in data column one of Table Il. These results show that the
OpenBSD lookup time for the 14-processes structure is 324%
M, longer than for the 6-process structure. Linux had a 1008%
increase over the 6-process structure and was 518% longer than
OpenBSD. The tests were repeated with the addition of 100
processes that had the three standard file descriptors, two open
pipe descriptors and one open file descriptor. As the daemon
has to search through all file descriptors to resolve pipes, each
lookup has to examine 600 additional file descriptors for each
of the 6 resolutions. The testing program was run again and
the results can be found in the second data column. This shows
that the average OpenBSD lookup had a 213% increase with
the 100 additional processes, Linux had a 254% increase, and
Linux took 600% longer than OpenBSD.

Clearly, resolving processes is an expensive operation, but
the complex structure as shown is not typical. As will be shown
in the next section, even the complex structure does not greatly
TABLE Il impact the system.

Fig. 5. STOP Overhead

4
SCHED

3
INIT

e Inheritance
-~ Uni-directional Pipe

- Internet Socket

Fig. 4. Process tree with 14 unigue processes

AVERAGE LOOKUP TIME FOR14 UNIQUE PROCESSES

Platform | SV SVwith 100 procs
Linux 63.354 mS| 224.589 mS
OpenBSD| 10.256 mS| 32.059 mS

B. System Performance

A memory-intensive benchmark program was used to deter-
mine the impact that this daemon had on a system. The bench-
mark program was executed and timed without the daemon run-
ning to determine the base time. The benchmark program was
then executed and timed again, but with the daemon processing
973% increase in lookup time. On average, Linux spends 13@&pecified number of requests per minute. The difference from
more time performing aBV lookup than OpenBSD does. Thisthe base time was calculated as a percentage and can be found
is because OpenBSD can do more in kernel space and LingxTable 11l for seven different request rates. Each lookup was
must do file 10 and usecanf() to determine process dataa SV type request on a 6-process basic process tree with the
When both platforms write the process data to file, Linux takegitput printed to a file. Figure 5 shows a graph of these values.
only slightly longer, as the write output is the slowest operation. This data shows that the daemon does not pose a significant

To show that the daemon can handle non-simple procelgeat to system performance under typical operation. For a
structures, a more complex test environment was used. Ttaference value, the average number of logins per minute was
structure can be found in Figure 4 and resolves to 14 uniqoalculated from the main student computer at Purdue Univer-
processes, 3 process groups, and contains 6 instances of IP§it§0 The computergxpert.cc.purdue.edu , is run by
resolve using pipes and Internet domain sockets. The structtive Purdue University Computing Center and all graduate and
contains a one-way communication path frétnto P;. Itwas undergraduate students are given accounts on it. Over a seven
resolved starting with the outbound socket on prodgssAn hour period, there were 2499 logins, or almost six per minute. If
example resolution ordering is shown in the upper right of eadiis value is used as an upper bound for the number of requests
process box. a host may receive a minute, the daemon impact is negligible.

The testing program performed lookups on the socket froihis upper bound is the extreme case that every user logs into

TABLE Il
SYSTEM PERFORMANCE DATA

requests per minute

Platform 6 20 60 120 600 3000 6000
Linux 0.12% | 0.26% | 0.79% | 1.55% | 7.01% | 24.15% | 35.92%
OpenBSD| 0.01% | 0.10% | 0.39% | 0.83% | 3.89% | 13.04% | 19.20%

another system after logging inexpert . Few users do this [9] D. Goldsmith. ident-scan. Email post to bugtrag mailing list. Available
i at: http://lists.insecure.org/bugtraq/1996/Feb/0024.html, Feb 13 1996.
on aregular basis. [10] M. St. Johns. Identification protocol. RFC 1413, US Department of De-
fense, Feb 1993.
[11] H. T. Jung, H. L. Kim, Y. M. Seo, G. Choe, S. L. Min, C. S. Kim, and
V1. CONCLUSION K. Koh. Caller Identification System in the Internet Environment. In
. . . . UNIX Security Symposium IV Proceedingages 69-78, 1993.
This protocol provides data that is commonly missing dufrs; s. c. Lee and C. Shields. Tracing the Source of Network Attack: A

ing forensic investigations. It provides a record of socket ac- Technical, Legal, and Societal Problem Aroceedings of the 2001 IEEE

tivity and allows an attacker who is using a series of hosts to \2"606'1‘3'1” on Information Assurance and Secufiest Point, NY, June

be traced. By returning only random tokens, a user’s privag] r. McCabe. oidentd ident daemon v1.7.1. available at:
is protected and other systems cannot rely on it as a method of http:/ojnk.sourceforge.net/, Oct, 22 2000.
authentication [14] K. Park and H. Lee. On the effectiveness of probabilistic packet marking

- . . . for IP traceback under denial of service attack. Pioceedings IEEE
This protocol is most effective when many hosts are running INFOCOM 2001 pages 338-347, April 2001.

it. Because of that, though this protocol could be used for trdé5] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical Network

. . ; forIP T k. | i f the 2000 ACM SI MM
ing TCP chains across the Internet, we do not expect it to be ig‘;?ggng’;mgng 2833_ Rroceedings of the 2000 ACM SIGCO

used there. Instead, it is more useful in a more tightly cofi6] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,
strained environment in which there are enforceable policies 2andW.T. Strayer S. T. Kent. Hash-Based IP Tracebaclerdceedings

. . . of the 2001 ACM SIGCOMMsan Diego, CA, August 2001. To Appear.
that require the STOP daemon to be run. This could be a singl) p. x. songand A. Perrig. Advanced and Authenticated Marking Schemes

network or an intranet, as the ability to make requests on be- for IP Traceback. IProceedings of the IEEE Infocomm 20@ril 2001.

; ; ; 18] S. Staniford-Chen and L.T. Heberlein. Holding Intruders Accountable on
half of other machines provides border gateways and mtrusﬂﬁ the Internet. InProceedings of the 1995 IEEE Symposium on Security

detection systems with a method to request data on Suspicious and Privacy pages 39-49, Oakland, CA, May 1995.

inbound and outbound traffic. [19] S. F. Wu, L. Zhang, D. Massey, and A. Mankin. Intention-Driven
We have shown that this protocol can be implemented and :ﬁgﬂnﬁigfggﬁﬁd" IETF Internet draft, February 2001. draft-wu-itrace-

is effective in saving data about a network session and trams] T. Ylonen. SSH — Secure Login Connections Over the Internesttin

ing connection chains. It can be used in parallel with other USENIX Security Symposiumpages 37-42, San Jose, CA, USA, July

. . . . 1996.
traceback techmques such as network traffic anaIyS|s to prOV[QE K. Yoda and H. Etoh. Finding a Connection Chain for Tracing Intruders.

application-level data to investigators. In Proceedings of the 6th European Symposium on Research in Computer

ila it i i ; Security (ESORICS 200@)pctober 2000.
While it is clear that this protocol will not solve the proble 22] ZDNet. Special Report. Its War! Web Under Atack.

of TCP connection-chain traceback in all situations, this proto- " p:/aww.zdnet.com/zdnn/special/doswebattack.html, February 2000.
col is a further step towards a solution. STOP is the first protf#3] Y. Zhang and V. Paxson. Detecting Stepping StonesPrateedings of
col that addresses the problem of correlating incoming network ¢ 9th USENIX Security Symposienver, CO, August 2000.
connections with outgoing ones in existing operating systems,

and allows it to be saved in a privacy-preserving manner.

REFERENCES

[1] OpenBSD operating system v2.8. available at: www.openbsd.org.

[2] S.Bellovin. ICMP Traceback Messages. Technical Report draft-bellovin-
itrace-00.txt, IETF Internet draft, March 2000.

[3] F. Buchholz, T. Daniels, B. Kuperman, and C. Shields. Packet Tracker
Final Report. Technical Report 2000-23, CERIAS, Purdue University,
2000.

[4] H. Burch and B. Cheswick. Tracing Anonymous Packets to their Ap-
proximate Source. IfProceedings of the 14th Conference on Systems
Administration (LISA-2000New Orleans, LA, December 2000.

[5] B. Carrier. A Recursive Session Token Protocol For Use in Forensics and
TCP Traceback. Master’s thesis, CERIAS, Purdue University, 2001.

[6] D. Dean, M. Franklin, and A. Stubblefield. An Algebraic Approach to IP
traceback. IrProceedings of the 2001 Network and Distributed System
Security Symposiunsan Diego, CA, February 2001.

[7] T.W. Doeppner, P. N. Klein, and A. Koyfman. Using Router Stamping to
Identify the Source of IP Packets. Tith ACM Conference on Computer
and Communications Securjtyages 184-189, Athens, Greece, Novem-
ber 2000.

[8] P. Eriksson. pidentd ident daemon v3.0.12. available at:
http://iwww2.lysator.liu.sg¥en/pidentd/, Dec, 3 2000.

