[P Covert Channel Detection

SERDAR CABUK
Hewlett-Packard Laboratories
CARLA E. BRODLEY

Tufts University

CLAY SHIELDS

Georgetown University

A covert channel can occur when an attacker finds and exploits a shared resource that is not
designed to be a communication mechanism. A network covert channel operates by altering
the timing of otherwise legitimate network traffic so that the arrival times of packets encode
confidential data that an attacker wants to exfiltrate from a secure area from which she has no
other means of communication. In this paper, we present the first public implementation of an IP
covert channel, discuss the subtle issues that arose in its design, and present a discussion on its
efficacy. We then show that an IP covert channel can be differentiated from legitimate channels
and present new detection measures that provide detection rates over 95%. We next take the
simple step an attacker would of adding noise to the channel to attempt to conceal the covert
communication. For these noisy IP covert timing channels, we show that our online detection
measures can fail to identify the covert channel for noise levels higher than 10%. We then provide
effective offline search mechanisms that identify the noisy channels.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks|: General—
Security and Protection (e.g., firewalls); H.1.1 [Models and Principles]: Systems and Informa-
tion Theory—Information Theory

General Terms: Security
Additional Key Words and Phrases: Network covert channels, information hiding, channel detec-
tion

1. INTRODUCTION

Consider a computer system in which an attacker, Eve, manages to insert malicious
code inside a secure area or network belonging to Alice. Eve would like to be able
to exfiltrate confidential information from the secure area to a lower-security area.
She faces potential challenges in meeting this goal. There might not be any means
of direct communication between the high and low security area. Furthermore,
she might be concerned that the confidentiality-violating information that she is
sending will be detected and her code located and neutralized. In these cases, she
might look for alternate means of communication that allow information to leak
from the trusted, higher-security area to the untrusted, lower-security area. One
alternative is to find and subvert some resource that is shared between the high
and low security areas but which is not usually used for communication.

A covert channel is a communication channel that violates a security policy by
using shared resources in ways for which they were not initially designed. In this
paper, we address network covert channels in which the timing of packet arrivals
encodes the message; an arrival within a certain interval indicates a high bit, and
the absence of an arrival a low bit. To utilize this channel, Eve must be able to

December 2008

2 . Serdar Cabuk et al.

modify the transmission times of packets departing from the high-security area
along a path that crosses a low security area that she can observe. For example, if
Alice communicated with Bob over a virtual private network (VPN) that crossed a
public network, Eve could alter the timing of packets as they were transmitted, then
monitor the timing of the packets as they crossed the public network. She would
then be able to receive data from the covert channel even if the packets and headers
were encrypted. Though we use the specific example of a VPN as a motivator in
the paper, there are a wide variety of situations where the leakage of confidential
information is a risk. These include not only systems or networks that implement
some security policy, but any networked system in which confidential information
is available at one point along the transmission path, but not at another, including
anonymity networks in which the first hop along an anonymized path might know
and leak the initiators identity.

In this paper, we present the first public implementation of a true high-bandwidth
IP covert channel. While such channels have been discussed in a theoretical manner
in the past, we show that there are several subtle issues in implementing such
a channel that are not present in single-system covert channels, particularly in
dealing with network packet delay and loss. Because there have been no prior
public implementations of such a channel, ours is also the first work to discuss
their detection based on real network traffic, and we introduce two regularity-based
measures that use time-series analysis techniques for online and offline detection.
We extend our initial covert channel to include noisy channels, in which an attacker
attempts to mask the regularity of the covert channel by introducing noise in the
form of added legitimate traffic. These would be the natural next steps an attacker
would take to defeat our initial approaches, and we present the first analysis and
detection of these types of channels. We evaluate the efficacy of our detection
schemes using standard machine learning experiments.

Overall, we show that against a defender using our scheme, an attacker must
significantly reduce the rate of transmission over the covert channel to avoid detec-
tion, either by making intervals long or by adding significant noise to the channel.
This paper represents a significant extension to our prior work [Cabuk et al. 2004].

The remainder of this paper is organized as follows: In Section 2, we provide back-
ground and related work on network covert channels and covert channel detection.
In Section 3, we present our design of an IP covert channel that we implement both
as a storage and a timing channel and discuss the factors that affect its efficacy. We
introduce our measures for channel detection in Section 4 and provide an empirical
evaluation for both noiseless and noisy IP covert channels. In Section 5, we focus
on noisy IP covert channels and present methods to locate covert channels hidden
inside noisy data sets locally. We discuss the limitations of our approach and areas
of future work in Section 6, then present our concluding remarks in Section 7.

2. BACKGROUND

Covert channels can be characterized in a variety of different ways: depending on
the type of the shared resource used (storage or timing), the noise level (noiseless or
noisy), and the type of the system in which they are used (single or network). Tra-
ditionally, a storage covert channel involves a storage location to which the covert

December 2008

IP Covert Channel Detection . 3

channel sender writes and from which the receiver reads, usually indirectly [Kem-
merer 1983; DoD 1985]. A timing covert channel is established when the sender
can modulate the receiver’s observed response time in a way that can provide in-
formation [Kemmerer 1983; DoD 1985]. It has been shown that these definitions
are ambiguous [Millen 1999; Wray 1991]. A non-ambiguous definition has been
devised that defines a storage covert channel as a communication channel “where
the output alphabet consists of different responses all taking the same time to be
transmitted,” and a timing covert channel as a channel “where the output alphabet
is made up of different time values corresponding to the same response” [Moskowitz
and Kang 1994]. Please note that in this paper we comply with this definition; thus,
we might label some channels as storage channels that the reader might expect to
be called timing channels.! Classic covert channels include:

(1) A storage file-lock covert channel exploits systems with shared file descriptors
by observing a read-only file’s locked /unlocked status in fixed timing intervals.

(2) A storage disk-arm covert channel [Schaefer et al. 1977; Karger and Wray 1991]
exploits KVM/370 systems with a security kernel and a shared read-only disk
drive by observing the position of the disk arm in fixed timing intervals.

(3) A timing bus-contention covert channel [Hu 1992] exploits multi-processor sys-
tems running on a single shared bus by observing the busy status of the bus in
multiple timing intervals.

A hybrid channel (also known as a mix channel) uses multiple time values with
multiple responses. A covert communication channel does not assume a direct chan-
nel between the sender and the receiver, which separates it from related constructs
such as the subliminal channel described in Simmons’ prisoner’s problem [Simmons
1984] and which is most commonly related to steganography. In these subliminal
channels, there is legitimate communication that conceals data within the message
itself.

If a shared resource is not solely used by the covert channel parties but also
by other legitimate users, the resulting channel is a noisy communication channel.
In particular, a noisy covert channel is a communication channel in which both
legitimate and covert events are observed [NCSC 1993]. Note that the channel
noise described here is not signal noise, but is contention noise caused by the
contention for the shared resources [Moskowitz 1991]. In contrast, in a noiseless
covert channel, the shared resource is used solely by the parties involved in the
covert communication. That is, the events observed by Eve on the receiving end
are the same as the events generated by Alice. In this paper, we investigate both
noiseless and noisy channels when we analyze the efficacy of our detection measures.

2.1 Network Covert Channels

A network covert channel is a covert channel in which the shared medium is the
network environment (i.e., transmission lines, firewalls, routers, etc.). Although
initial research in covert channels focused on single systems, our focus here is on

L Although in our earlier work [Cabuk et al. 2004] we defined our channel as a timing channel (in
order to differentiate it from covert shells that use packet headers), it really is a storage channel
according to Moskowitz’s definition.

December 2008

4 . Serdar Cabuk et al.

network covert channels which have become a threat to trusted distributed systems
by allowing undetected leaks of confidential data or information. Network covert
shells have been used by attackers to communicate with compromised hosts, par-
ticularly in distributed denial of service attacks [Henry 2000]. Many tools exist for
setting up these shells using a variety of protocols including TCP, IP, HT'TP, ICMP,
AODV, and MAC [Abad 2001; Ahsan 2000; Ahsan and Kundur 2002; Bauer 2003;
Castro 2003; Daemon9 1996; 1997; Giffin et al. 2002; Girling 1987; Handel and
Sandford 1996; Hauser 1999; Li and Ephremides 2004; Murdoch and Lewis 2005;
Rowland 1997; Rutkowska 2004; Smith 2000]. Common practice is to encapsulate
information in a legitimate protocol to bypass firewalls and content filters.

The data section of packets is the easiest place to convey covert information,
due to its large size and because it is relatively unstructured compared to headers.
Modifying the packet payload is outside the scope of this paper as it falls in the
realm of steganography or watermarking, and as such is a subliminal rather than
covert channel. Unused header fields that are either designed for future protocol im-
provements or in general go unchecked by firewalls and network intrusion detection
devices may convey information in the form of a covert channel. Many covert shells
have been illustrated in TCP and IP protocols using packet header fields [Abad
2001; Ahsan 2000; Ahsan and Kundur 2002; Bauer 2003; Castro 2003; Daemon9
1996; 1997; Giffin et al. 2002; Hauser 1999; Rowland 1997; Rutkowska 2004; Smith
2000]. Rowland illustrates three examples of TCP /IP covert shells [Rowland 1997]:
the first encodes the messages into the identification field (ID) of an IP header, the
second embeds the messages into the initial sequence number (ISN) field of a TCP
header, and the third uses the TCP ACK sequence number field. An improved
version of Rowland’s TCP ISN covert shell, Nushu, is introduced in [Rutkowska
2004]. The main difference between Rowland’s TCP ISN shell and Nushu is that
the latter encrypts the TCP ISN field to make it look like a random number in
order to better obscure the channel. A smart attacker can even devise means to
use some of the header fields that do fall under scrutiny, such as the IP checksum
field. Abad illustrates that the sender can send any message using hash collision
in the checksum field [Abad 2001]. Sorting covert channels have also been devised
for the TCP/IP protocol, in which it is the ordering of the packets that trans-
mits the covert information to the receiver side [Ahsan 2000; Ahsan and Kundur
2002]. However, for this channel to work, the receiver needs to know the correct
ordering of the packets. Therefore, these channels require the use of the IPSEC
protocol, which provides the original order in which the packets were sent. The
authors in [Murdoch and Lewis 2005] argue that the previous efforts to hide covert
channels in packet header fields alter the behavior of these fields. They introduce
Lathra, which is a covert shell that uses the TCP ISN field while trying to mirror
the ISN generation process as closely as possible to avoid detection.

TCP and IP are not the only protocols used for covert shell exploitation. Re-
verse WWW Shell is a covert shell that uses the HTTP request parameters to leak
information [Hauser 1999]. In particular, the sender issues an HTTP get request
with the specified parameters, bypasses the HTTP-only firewall, and leaks the in-
formation to the receiver side. Another HTTP covert shell is illustrated for privacy
purposes [Bauer 2003]. In this channel, the sender wants to remain unlinkable,

December 2008

IP Covert Channel Detection . 5

hence she redirects the communication via an unwitting client’s browser. The au-
thor shows that this is possible using redirects, cookies, active content, etc. ICMP
packets have also been used to host covert shells. The Loki covert shell runs on
ICMP and uses the data portions of the icmp_echo packet to send a command to a
remote receiver [Daemon9 1996; 1997]. The receiver back-door then executes this
command on the victim computer, and returns the result embedded in the data
portion of the icmp_echoreply packet. A list of similar covert shells developed by
the black hat community can be found in [Smith 2000].

Other interesting examples of covert shells are illustrated in the OSI protocol
stack [Handel and Sandford 1996], in LAN networks [Girling 1987; Dogu and
Ephremides 2000], and in ad-hoc wireless networks [Li and Ephremides 2004]. In
LAN networks, the destination 1D, packet length, time between successive trans-
missions [Handel and Sandford 1996], and the number of collisions in a collusion
resolution period (in MAC protocol) [Dogu and Ephremides 2000] were used. In ad-
hoc networks, [Li and Ephremides 2004] identify four covert channels in the AODV
routing protocol. The authors consider the timing between the route requests, the
source sequence number, the lifetime field, and the destination ID.

2.2 Covert Channel Detection

Detection is a common practice in secure systems in order to monitor malicious ac-
tivity [Common Criteria 1998]. In the literature, covert channel detection is often
mixed with covert channel identification (as in [Bishop 2002; Helouet et al. 2003]).
The main difference between the two is that the latter tries to uncover a shared
resource that can potentially be used as a covert channel variable [Denning 1976;
Kemmerer 1983; Kemmerer and Porras 1991], while the former tries to detect an
actively running covert channel by examining its output event sequence (i.e., event
traffic). Detecting covert channels can be desirable for two reasons. First, detection
provides a mechanism to discourage the use of these channels [NCSC 1993]. Second,
covert channel elimination can be costly for high-assurance systems [Moskowitz and
Kang 1994], or may be completely overlooked. In either case, allowing these chan-
nels to exist but monitoring their activity is crucial. Alternatively, the detection
mechanisms can run at the front end of the elimination protocols such that the elim-
ination schemes are activated only if there is a suspicious activity in the network.
This architecture helps reduce the negative performance impact of the elimination
schemes and additional benefits are possible if the detection schemes can identify
the parties involved in covert communication channel and ideally discover the covert
message. This can provide a valuable tool to authorities by which they can identify
spies and classified information that has been exposed to insecure parties.
Previously, it has been shown that unusual traffic patterns may lead to discovery
of covert shells that employ packet headers. For example, multiple ping requests
within a small time interval may indicate the presence of an ICMP covert shell such
as Loki [Daemon9 1996]. In addition, covert shells can be detected by observing
an anomaly in unused packet header fields [Handley and Paxson 2001]. Others
illustrate an offline detection scheme that uses support vector machines (SVM) to
detect ICMP (payload) and TCP/IP header (IP ID and TCP ISN) channels [Sohn
et al. 2003; Sohn et al. 2003]. Still others argue that TCP and IP specifications
exhibit sufficient structure to define what is normal, and that learning methods such

December 2008

6 . Serdar Cabuk et al.

as SVM are overkill [Murdoch and Lewis 2005], and they present a suite of tests
to detect whether the IP ID and TCP ISN generating processes are in compliance
with the specifications.

These schemes have been fairly successful in detecting covert shells but none can
detect the type of covert channels that use packet timings in distributed systems.
This is because in such systems packet headers are already protected by policy
(i.e., Eve cannot access any information that is transmitted using Alice’s network
packet headers) and none of the above schemes address detecting anomalous traffic
patterns that can potentially be created by a covert channel.

2.3 Attacker Model

Our research specifically focuses on network covert channels that arise in distributed
TCP/IP systems even when the transmission lines between network nodes are con-
trolled. In our example, Alice and Bob share the same security class and use a
shared communication channel to transmit sensitive data. The particular threat
we consider here, without loss of generality, is malicious software that can be planted
on Alice’s host to steal data on Eve’s behalf, which is then sent via a covert chan-
nel on the shared channel.? This clearly results in a policy violation if Eve is an
eavesdropper that is capable of monitoring the shared line and is not authorized
access to the leaked information. We assume that Eve can detect the presence of
the packets traveling over the shared network from Alice to Bob, although direct
access to the packets (including packet headers) is prevented by encryption. This
can happen if Alice is sending data to Bob, but it can also happen if Bob is sending
data to Alice. In this situation, the malware can modify the timing of the TCP /IP
acknowledgment packets sent by Alice to notify the successful receipt of a packet
sent by Bob. If Eve is additionally capable of isolating the network packets origi-
nated from Alice and destined to Bob, the resulting channel is a noiseless IP covert
channel. Otherwise, the channel is noisy as it contains additional legitimate traffic.

Because direct access to the packets is not permitted, the only information shared
between the malicious software on Alice’s system and Eve is the timing of the
packets traveling from Alice to Bob. We assume use of the standard IP four-tuple
of source and destination address and source and destination port to differentiate
between data streams but do not use them to identify covert traffic. Note that this
rules out the possibility of transmitting covert information using the packet headers
because this is disallowed by the mechanisms that control access; in practice, the
re-writing of the headers by the VPN. Hence, the aforementioned covert shells do
not apply to our scenario.

3. IP SIMPLE COVERT CHANNELS

Within a distributed system that properly follows an access control policy, an un-
trusted observer may still be able to observe the presence of network traffic without
having access to the encrypted contents. Assuming that: Alice is a trusted sender
whose system is compromised by Eve’s malware; Bob is a trusted receiver commu-

2 Additional threats could include Alice herself being an insider attacker who is trying to leak
information; a compromised router or gateway that can alter the timing of its packet forwarding;
or in a more extreme case, malicious hardware in the network interface.

December 2008

IP Covert Channel Detection . 7

nicating with Alice over an encrypted link; and Eve is an untrusted observer; then
the only information shared between the malware on Alice’s system and Eve is the
timing of the packets traveling from Alice to Bob. The IP simple covert channels
(SCC) we present in this section use this timing information to covertly transmit a
secret message to Eve by adjusting the transmission intervals of the network packets
Alice sends to Bob.

In this section, we detail the covert channel operation and implementation for
both storage and timing IP SCCs and provide a discussion on channel efficacy.

3.1 Covert Channel Operation

IP SCCs transmit a covert message to Eve bit-by-bit; hence the covert chan-
nel symbol set is composed of zeros and ones. The lone event in the system is
packet_arrival, which is controlled by Eve’s malware on Alice’s system and ob-
served by Eve. To send consecutive bits to Eve, the malware generates a sequence
of packets each separated by a timing interval, thus affecting the inter-arrival time.
Depending on how this timing interval is chosen, a storage or a timing channel
can be devised. In particular, if Eve’s malware uses a single timing interval 7 to
denote the inter-arrival times between the packets throughout the covert commu-
nication, then the resulting channel is a storage IP SCC using Moskowitz’s defini-
tion [Moskowitz and Kang 1994]. Alternatively, if it uses a set of timing intervals
Ty, Ta, ..., Tn, for the same purpose, the resulting channel is a timing IP SCC, again
using Moskowitz’s definition. While the underlying operation is similar, we show
that the latter channel protocol is easier to implement and is more robust in the
presence of timing (i.e., synchronization) errors. We describe the operation of each
type of channel below.

The storage IP SCC operates as follows: Eve’s malware and Eve agree in advance
on a constant timing interval (7) and the starting protocol (either a particular time
or in response to a network event, such as the first packet sent). To send a zero,
the malware maintains silence throughout the interval 7 and does not send any
packets to Bob, perhaps by delaying transmission of a legitimate packet. To send
a one, the malware transmits a single packet to Bob in the middle of 7. Eve
monitors the transmission line between Alice and Bob. She records a zero if no
packets are observed throughout the interval 7, a one otherwise. By observing each
T consecutively, Eve records the entire binary string transmitted over the covert
channel.

The timing IP SCC operates as follows: Eve’s malware and Eve agree on a set
of timing intervals 71,72, ..., Tn, a set of associations for each timing interval ((7y,
zero), (T2, one), etc.), and the starting protocol. For simplicity, we assume that
they agree on two timing intervals 71 and 7o with associations (71, zero) and (72,
one). To send a zero, the malware sleeps for 71 units of time and sends a packet at
the end of this interval. To send a one, it sends a packet after sleeping for 75 units of
time. On the receiving end (of the covert channel), Eve monitors the transmission
line between Alice and Bob. Upon the observance of a network packet, Eve 1)
records the inter-arrival time 7, 2) compares 7 to both 71 and 72, and 3) records a
zero or one depending on the previous comparison. Again by observing consecutive
inter-arrival times, Eve records the entire binary string transmitted over the covert
channel.

December 2008

8 . Serdar Cabuk et al.

We list our observations and assumptions in designing both types of IP SCCs as
follows:

(1) The original payloads of the network packets transmitted over the direct chan-
nel between Alice and Bob are legitimate and allowed. Indeed, the covert
message sent over the indirect channel is independent of the original packet
payloads.

(2) The raw data that flows across the covert channel is binary but the actual
interpretation of the binary string is up to Eve.

(3) Additional bits may also be included in the transmission for three reasons:
additional parity bits may be appended to the data to add redundancy for
error correction due to transmission errors such as when a packet is lost or
delayed; additional bits may be added for purposes of maintaining synchro-
nization between the malware and Eve’s event clocks; and the covert data may
be encrypted in order to add a further layer of privacy and obfuscation. In this
paper, we employ error-correcting codes and leave the self-synchronizing codes
and encryption for future work.

(4) The covert message for transmission is subdivided into smaller blocks of binary
data, which we refer to as frames. A frame consists of data bits, synchronization
bits, and error-correcting bits. All the frames are of equal length. The actual
length, as well as the interval between frames, is influenced by parameters
of the encoding scheme and the network. Our frames are composed of the
eight-bit ASCII encodings of each character, a start of frame (SOF) bit (used
only in storage IP SCCs), and optional six bits for error correction using (7-
4)-Hamming codes. We explain the use of the SOF bit in Section 3.2 and
detail the use of Hamming codes in Section 3.3. We note that many different
error correction codes may be used; we selected the Hamming code for ease of
implementation.

(5) We assume a unidirectional communication model for the covert channel. Note
that only the indirect covert channel is assumed to be unidirectional; the di-
rect channel itself is still bidirectional and the TCP/IP packets are ACKed.
Assuming a unidirectional channel means that Eve cannot communicate with
the malware using the covert channel itself. Restricting the channel to be uni-
directional increases the difficulty in implementing an error-free channel. In
particular, Eve cannot: acknowledge the correct receipt of covert packets; rate
limit the malware; or indicate when to resynchronize.

3.2 Covert Channel Implementation

We implemented our covert channels using the C Berkeley socket library for our
communication protocol, and Python version 2.3 to encode/decode the data trans-
mitted over the channel and as a wrapper that called the C library functions. The
software was developed for and ran under Red Hat Linux 9.0 kernel version 2.4.22.

The channel implementation differs slightly for the storage and timing IP SCCs.
The storage IP SCC software uses both blocking and non-blocking Berkeley sockets
and alternates between them to transmit a covert message to Eve. In particular,
Eve uses a blocking socket to wait for the SOF packet to arrive at the beginning of
each frame. Once this packet is observed, she switches to a non-blocking socket to

December 2008

IP Covert Channel Detection . 9

record the remaining bits of the frame and reverts back to the blocking socket to
wait for the SOF packet of the next frame. In contrast, the timing IP SCC software
uses a single blocking socket to record the packet arrival times and does not employ
an SOF bit. Note that the implementation of the latter is more straightforward
and is less prone to timing (i.e., synchronization) errors.

Lastly, both IP SCCs can be configured to run on any application port. Be-
cause the traffic pattern is expected to vary based on the application, choice of the
protocol in which to hide the channels can affect detection ability.

3.3 A Discussion on Channel Efficacy

Two factors affect covert channel efficacy. The first factor is contention noise,
which denotes the amount of legitimate traffic observed in the covert channel by
Eve [Moskowitz 1991]. The second factor is jitter, which may result in loss of
synchronization between the malware’s and Eve’s packet clocks.

In our study, we investigated both noiseless and noisy IP SCCs. In the former
case, the covert channel between Eve and her malware is free of contention noise. In
other words, Eve is capable of isolating the packets generated by Alice and destined
to Bob from the ones generated by or destined to other users in the system (i.e.,
legitimate channels). In the latter, we investigate the cases where other legitimate
users can utilize the transmission line between Alice and Bob, and Eve cannot tell
which TP packets belong to the covert channel.

Recall that IP SCCs leak information using the timings of packets generated
by Alice’s compromised system and observed by Eve. In distributed systems, there
may be a delay between the first time a packet is transmitted and when it is received.
If the delay is constant, Eve can simply adjust her packet clock to compensate for
this delay. However if the delay is varying, that is the time it takes for a packet to
travel from Alice’s system to Eve changes, then the inter-arrival times observed by
Eve are no longer exactly the same as the ones generated by Alice’s system. This
effect is called jitter, and in a network is mostly due to varying network conditions
that result in slight increase or decreases in the latency between Alice and Eve.
This can potentially affect the timing of network packets traveling from Alice to
Bob which are observed by Eve, thus reduce channel efficacy.

One important problem for IP SCCs related to jitter is the synchronization of
the malware’s and Eve’s packet clocks. For example, jitter can cause Eve to record
packets as arriving in a time interval before or after the intended one. For a storage
IP SCC, this skew can result in an individual bit flip, a zero-insertion, or a zero-
deletion as we illustrate in Figure 1. Individual bit-flips can be corrected using
error-correcting codes; however, insertion and deletion errors can potentially cause
an entire series of transmission to be shifted. Note that one-insertions are only
possible when a packet is fragmented or duplicated in the network. One-deletions
can occur if two packets overlap and arrive in the same time interval. Further,
insertion and deletion errors only apply to storage IP SCCs. This is because in
timing IP SCCs, each network packet has a one-to-one correspondence with a single
bit of information (except in cases fragmentation and duplication occurs), whereas
in a storage IP SCC a packet delay can cause additional zeros to be inserted.
Therefore, in timing IP SCCs bit errors are independent from each other and are
not carried to the next bit as in the storage case, where one insertion can potentially

December 2008

10 . Serdar Cabuk et al.

[Foeclerorreroroar]orar]

Y T O T T R
[Feooerorreroresrorad]

“Teredesrarrororasrran

Fig. 1. A zero-insertion and a zero-deletion example for the storage IP SCC.

shift the entire bit-string. This advantage over the storage IP channels makes the
timing channel more suitable for one-bit error-correction which we discuss next.

One way to remedy jitter-related errors is to use error-correcting codes (ECC) to
correct the individual bit errors. Error-correcting codes add additional bits to the
message that can be used to detect and correct some errors in transmission [Berrou
et al. 1993; Moon 2005]. The code rate of an ECC is defined as the ratio between
the length of an original message word and the length of its codeword. A drawback
of ECCs is that they increase the amount of information to be sent. In our study,
we employed Hamming ECCs, which are computationally simple to encode and
decode and are capable of correcting one error per codeword [Moon 2005]. Our
choice of Hamming codes is motivated solely by implementation simplicity and
more sophisticated ECCs can be employed for increased accuracy. The choice of
which ECC does not affect our detection ability as we do detection based on packet
timings (see Section 4).

An additional scheme we employed to prevent synchronization errors for storage
IP SCCs is to use an SOF bit at the beginning of each frame and to switch to a
blocking socket every time a frame is completely transmitted. This scheme aims
at isolating transmission errors within individual frames and stopping the propa-
gation of errors to the following frames by aligning the malware’s and Eve’s timing
windows every time an SOF bit is transmitted. More advanced solutions for com-
bating synchronization errors caused by clock skew are self-synchronizing codes and
phase-locked loops (PLL). The former method employs encoding schemes that are
specifically designed to detect the loss of synchronization and to recover from this
state (i.e., resynchronization). The latter method is a closed-loop feedback circuit
that is designed to track or synchronize an output signal with an input signal in
frequency and phase [Best 2003]. Both methods were proved to be effective in
communications and we will employ them in future work.

December 2008

IP Covert Channel Detection . 11

3.4 Storage or Timing?

We investigated storage and timing IP SCCs separately and noted subtle differences
between them. Some of these differences are not universal but are due to our design
and implementation decisions (e.g., the usage of the SOF bit for synchronization
purposes). Other differences can be generalized to all storage and timing channels.
For example in capacity analysis, similar to the one in [Moskowitz and Kang 1994],
one needs to use a constant timing value 7 for the storage channel and the expected
value E(7) for the timing channel.

Despite these differences, storage and timing IP SCCs are related constructs.
For example, given a storage channel, one can provide a reduction to show that
a timing channel equivalent can be constructed and vice versa. To see this, con-
sider a timing IP SCC with a single state (response) packet_observed and timing
intervals 7y and 72. Using this channel, we can construct a storage IP SCC with
states packet_present and packet_absent (both derived from the single state
packet_observed), and 7 = 71 + 7». Similarly, given a storage IP SCC with timing
interval 7, we can construct a timing IP SCC with 7 = 7 and 79 = 27.

Additionally, both IP SCC types are equivalent in terms of the detection methods
we introduce in this paper, which use packet inter-arrival times to build measures
that detect regularity. Consider a storage IP SCC with timing interval 7 that
generates k different inter-arrival time values.®> In terms of inter-arrival times,
this storage channel is the equivalent of a timing IP SCC with k& different timing
intervals.

In conclusion our detection schemes equally apply to storage and timing IP SCCs
because of the above equivalence. In the following sections in which we discuss
channel detection, we focus only on the storage IP SCC with a fixed timing interval
as it yields higher number of inter-arrival times, say k different time values. Our
results will then equally apply to all timing IP SCCs that use k or less timing
intervals. That is, we can detect a storage IP SCC that yields k inter-arrival times
if and only if we can detect a timing IP SCC that employs k or less timing intervals.

4. NOISELESS IP SCC DETECTION

For a storage IP SCC, there must be a pre-specified timing interval between con-
secutive network packets sent by Alice and observed by Eve. Similarly, a timing
IP SCC requires pre-specified timing intervals. This behavior implies regularity
in terms of packet inter-arrival times in comparison to packet inter-arrival times
generated by a legitimate process. We argue that the packet traffic generated by
IP SCCs is more regular than the traffic generated by legitimate processes, such as
WWW traffic, and is therefore anomalous and detectable. To show an example,
we plot the inter-arrival times from simulated timing and storage channels while
transmitting a sample bit-string from Alice to Bob (Eve) in Figure 2. For the stor-
age IP SCC, we observe that the packet inter-arrival times can be grouped into six
clusters. Similarly, the inter-arrival times for the timing IP SCC can be grouped
into two clusters. Figure 2(c) shows that no such clustering is obvious for a sample

3Note that k is equal to the number of different number of zeros we can have between two ones
in a codeword (e.g., for the set {11, 101}, k = 2).

December 2008

12 . Serdar Cabuk et al.

Inter-arrival time (sec)
Inter-arrival time (sec)

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Packet number Packet number

Inter-arrival time (sec)

0.1
| ‘

0 100 200 300 400 500 600
Packet number

Fig. 2. Inter-arrival times for different traffic types. (a) A simulated IP storage SCC with 7 = 0.2
secs (no clock skew). (b) A simulated IP timing SCC with 71 = 0.1 secs and 72 = 0.2 sec (no
clock skew). (c) An example WWW traffic.

WWW traffic.

Identifying this type of a covert channel requires being able to capture such
regularity and distinguishing it from legitimate traffic. In this section, we introduce
two such measures and empirically evaluate the efficacy of both in terms of false
positive (FP) and false negative (FN) rates. In Section 5, we repeat the same study
for noisy IP SCCs and evaluate the efficacy of both measures in the presence of
contention noise.

4.1 Measures for Detection

4.1.1 e-Similarity. In our original work, we developed a measure called e-similarity
for detecting IP simple covert channels [Cabuk et al. 2004]. While we refer readers
to that paper for details and performance results, we briefly note how e-similarity is
computed. First, we sort the inter-arrival times we collected using IP SCCs. From
this sorted list we compute the relative difference between each pair of consecutive
points. For example, the relative difference between P; and P;;1 is computed as
#. We illustrate this process in Figure 3 for a compilation of inter-arrival
times we collected using our implementation of a storage IP SCC we ran between
Purdue and Georgetown universities. Note that due to network jitter that creates
clock skew, the inter-arrival times no longer create perfect clusters as in Figure 2.

December 2008

IP Covert Channel Detection . 13

o
i
&

0.15

o
o

Inter-arrival time (sec)
Inter-arrival time (sec)

0.05

0 100 200 300 400 500 600 0 100 200 300 500 600

Packet number Packet number

400

0.25

Relative difference
o
2
&

o

Y

0 100 200 300 400 500 600
Packet number

Fig. 3. Inter-arrival times from an actual run of a storage IP SCC with 7 = 0.04 secs. (a) Actual
values. (b) Sorted values. (c) Relative differences.

From the sorted inter-arrival times we compute a measure of similarity, which we
call e-similarity, by computing the percentage of relative differences that are less
than a constant number e. We have shown [Cabuk et al. 2004] that for noiseless IP
SCCs the majority of the pairwise differences in the sorted inter-arrival time list
will be small, as it is large only for jumps in the step function. Thus, the similarity
scores for [P SCCs will be high. We have also shown that the IP SCC e-similarity
scores will be comparably higher than the legitimate channel scores.

4.1.2 Compressibility. As we will show, while e-similarity works well for noise-
less channels, it is less accurate on noisy channels. This led us to develop alternative
detection mechanisms.

The Kolmogorov complexity of a string S is defined as the shortest universal
computer program that produces this string (see [Li and Lampson 1997]). Denoted
as K (S), this notion provides a lower bound on the representation of the string. In
other words, K(S) = C provides the maximum available compression on S, hence
producing the shortest possible compressed string C'. Kolmogorov complexity is not
computable [Li and Lampson 1997]; however, off-the-shelf compression algorithms
can be used as an approximation [Li et al. 2003].

To derive our second similarity measure, let S € X% be a string we want to
compress with any off-the-shelf compressor, where . is the alphabet of symbols from

December 2008

14 . Serdar Cabuk et al.

which the string is drawn, and s is the length of S. Let the resulting compressed
string be C' € 3¢. We define the compressibility of S as the compression rate we
obtain by dividing the length of S by the length of C. Formally,

VS € ¥%,3C € %€ such that

C =S(8), and £(S) = &

where & is the compressor (e.g., gzip), k(S5) is the compressibility of S, and [.| is
the length operator. The compressibility of the inter-arrival packet times generated
by a noiseless IP SCC will be higher than the ones generated by legitimate channels.
Note that inter-arrival times are numerical values whereas compression works on
strings. In Section 4.2, we detail how we convert these numbers to strings as a
pre-processing step to compression.

4.1.3 A Discussion of Other Approaches. We additionally investigated several
approaches that were not fruitful, but were more obvious from a statistical point
of view.

Indicies of dispersion of a point process have been used as a tool in network
characterization [Gusella 1991; Rosenberg et al. 1995]. In particular, an indezx of
dispersion for intervals (IDI) can be used to qualitatively compare the inter-arrival
times of a point process with the Poisson process serving as the basis (for which
the IDI is unity) [Cox and Lewis 1966]. IDI provides a finer measure for defining
the variability of the process than does a second order moment analysis. Gusella
defines the variability, or the burstiness, of the network traffic as “the changes in
the variance of the sum of consecutive inter-arrivals” [Gusella 1991]. Although
this measure appears promising, it requires a number of assumptions including
stationarity, which need to be made for the correct interpretation of the results.
In this study, we do not impose such assumptions on the distributions of covert or
legitimate traffic.

Another avenue we examined was statistical non-parametric tests similar to those
used in network traffic analysis [Paxson and Floyd 1995; Balakrishnan et al. 1997;
Claffy et al. 1993]. Applications of these tests have mainly concentrated on net-
work traffic characterization and modeling. The goal is often to determine whether
two streams come from the same empirical distribution, for example, using a non-
parametric goodness-of-fit test such as the Kolmogorov-Smirnov test. In our re-
search, we are not seeking to model either the legitimate or the covert network
traffic. Our goal is to define measures that differentiate covert from legitimate
traffic, therefore, these methods are not directly applicable to the detection of IP
SCCs.

4.2 Empirical Evaluation

In this section, we empirically show that compressibility measures were successful
in detecting IP SCCs. Comparison with our earlier work shows that compressibility
performed better than e-similarity. In our experiments, we applied these measures
on both legitimate channels and TP SCCs. Our legitimate traces were extracted
from the second version of NZIX data sets (NZIX-II) which is a collection of TCP
(WWW, FTP-Data, and SSH) and UDP traces collected by the WAND research
group [WAND Research Group 2001]. We used twenty different traces for each

December 2008

IP Covert Channel Detection . 15

legitimate traffic type. To collect the inter-arrival times for the covert channel, we
ran three storage IP SCCs (with 7 set to 0.04, 0.06, and 0.08 secs) that transmitted
a sample text between Purdue and Georgetown universities. The bit string was the
ASCII representation of “All human beings are born free and equal in dignity and
rights. They are endowed with reason and conscience and should act towards one
another in a spirit of brotherhood.[EOL]” [United Nations 1948].

For each trace, we first eliminated values larger than one second in order to
eliminate large inter-arrival time values from the data that occur when there is no
packet transfer. This allows us to deal only with short values, therefore concentrate
on the network effects on the inter-arrival times rather than the user effects (e.g.,
time gaps between HTTP requests). Our goal is not to model or identify a traffic
distribution, but to determine whether we can accurately detect a covert channel in
a short window (e.g., for online detection). Therefore, in our experiments we report
the results for windows of size 2000. Note that although we ran the IP SCC on a
real network between Purdue and Georgetown, for the legitimate traffic we used the
recorded inter-arrival times in the data sets. A drawback is that we cannot have the
same network conditions (e.g., number of hops, same jitter), but excluding the case
of jitter this does not impact our results. This is because none of our measures look
at absolute inter-arrival time values, but rather compute measures of regularity in
terms of the relative differences between these values.

4.2.1 Compressibility Results. Before applying the compressibility measure, we
needed to convert our numerical data set into a set of strings because compression
works on strings. To this end, we first smoothed each data set by taking two sig-
nificant digits (and rounding the third digit), and added a letter at the beginning
depending on the number of zeros after the decimal point. For example, we trans-
formed 0.00247 to B25, and 0.0247 to A25, etc. This way, we could still identify
the same values without using repeating zeros, which would create an advantage in
compressibility.*

After this added pre-processing phase, we performed our experiments using gzip
as the compressor [GNU 2003]. We report the mean compressibility score for each
traffic type in Figure 4 averaged over twenty traces for the legitimate channels.
Recall that the more regular the data set, the higher the compressibility. Our
results show that the compressibility scores for the SSH, WWW, and FTP-Data
data sets are much less than TP SCC compressibility scores. For example, the
compressibility score for the storage IP SCC with 7 = 0.06 is 6.76, whereas it is
3.27 for WWW on average. In addition, we observe that as we increase the timing
interval for IP SCC, compressibility increases. For example, the compressibility
score for a 0.04 IP SCC is 5.76, whereas it is 7.01 for a 0.08 IP SCC. Recall from
Section 3 that IP SCC becomes less prone to error and more accurate as we use
larger timing intervals.

4.2.2 Automatic Detection. We evaluated the efficacy of both measures in terms
of FN and FP rates. Our procedure works as follows: for each legitimate traffic

4Even though B25 and A25 compress better than B25 and B31, this effect is evenly distributed
among all data sets, whereas repeating zeros favor data sets with small data points.

December 2008

16 . Serdar Cabuk et al.

Compressibility (NZIX-Il)

Compressibility score

scc (0.08) scc (0.06) scc (0.04) udp ftp-data www ssh
Fig. 4. Compressibility scores for various types of covert and legitimate channels.

type (WWW, FTP-Data, and UDP?), we randomly choose ten traces out of twenty
for training. We reserve the remaining ten independent traces for testing. In the
training phase, we calculate the e-similarity or compressibility scores for each train-
ing trace and compute the mean p and the standard deviation o to determine our
thresholds p+ 1.50 and p + 20. The difference between e-similarity and compress-
ibility is that in the former we calculate seven different learned thresholds for each
of seven ¢ values (0.005, 0.008, 0.01, 0.02, 0.03, 0.1, and < 0.1) that are chosen
arbitrarily. For compressibility we calculate only one threshold.

To classify a testing trace as legitimate or covert, we calculate its e-similarity (for
each e value) or compressibility score that we compare to the learned threshold. A
data set is classified as covert if its combined score is above the learned threshold
and legitimate otherwise. For e-similarity, the combined score is determined by
taking a majority vote over seven different ¢ values. For example, we classify the
trace as covert if the scores for four out of seven e values are over the threshold.
For compressibility, the combined score is simply the compressibility score.

In our results, we report the averages of 100 runs of the above procedure. Each
run uses a different partition of the twenty legitimate traces into training and test-
ing. We report the average FP and FN rates for the e-similarity and compressibility
measures in Table I. We list our observations and conclusions as follows:

(1) The results suggest that we can distinguish IP SCC traces from WWW and
FTP-Data traces (i.e., FN = 0%) with low false alarm rates using both e-
similarity and compressibility measures with thresholds p + 1.50 and p + 20
respectively.

(2) UDP results with high FN rates suggest that we cannot distinguish IP SCC

5We omit the SSH results because NZIX-II did not contain enough number of SSH traces for
training and testing.

December 2008

IP Covert Channel Detection . 17

| THRESHOLD | APPLICATION [[FP | FN(tau=0.04) | FN(tau=0.06) | FN(tau=0.08) |
€-SIMILARITY
u+ 1.50 WWW 0.06 0.00 0.00 0.00
FTP-DATA 0.04 0.00 0.00 0.00
UDP 0.14 0.65 0.19 0.00
uw—+ 20 WWW 0.04 0.08 0.00 0.00
FTP-DATA 0.00 0.28 0.00 0.00
UDP 0.08 0.90 0.66 0.38
COMPRESSIBILITY
n—+ 1.50 WWW 0.14 0.00 0.00 0.00
FTP-DATA 0.09 0.00 0.00 0.00
UDP 0.12 0.19 0.00 0.00
w20 WWW 0.07 0.00 0.00 0.00
FTP-DATA 0.03 0.00 0.00 0.00
UDP 0.09 0.63 0.02 0.00

Table I. Detection efficacy for both measures with thresholds p + 1.50 and p + 20.

traces from UDP traces. UDP is a best-effort protocol which transmits packets
as soon as they are ready and there is no flow control. Therefore, UDP inter-
arrival times can be regular under stable network conditions, thus generate
higher e-similarity and compressibility scores as compared to TCP inter-arrival
times.

(3) The compressibility measure fares better than the e-similarity measure in terms

of the FN rates with comparable FP rates. Combining this with the fact that
compressibility uses only one measurement whereas e-similarity requires a ma-
jority vote over seven measurements, we conclude that compressibility is a
superior measure.

(4) As shown before, IP SCCs with higher 7 values are easier to detect. This

is because using higher timing intervals provides more accurate channels that
generate more regular inter-arrival times.

(5) The FP rates for both measures can be lowered by increasing the number of

5.

data sets we use in the training phase. Using only ten data sets for training
was an experimental shortcoming as we were limited by the available legitimate
data. In a real detection environment, hundreds of such traces can be used to
train the classifier, potentially reducing FP rates further.

NOISY IP SCC DETECTION

A noisy IP SCC is a network covert channel in which we observe both legitimate
and covert traffic. This channel may arise in cases where Eve cannot isolate the
network packets originating from Alice due to the shared use of the transmission
line that is being tapped. In addition, introducing noise into the channel artificially
has been shown to be effective in terms of jamming the covert channel and limiting
its bandwidth [Giles and Hajek 2003]. In our study, we assume that the malware
on Alice’s system injects noise into the transmission line intentionally to increase
the irregularity of the packet inter-arrival times and thwart the regularity-based
detection schemes.

In this section we first empirically show that if channel noise reaches a certain

December 2008

18 . Serdar Cabuk et al.

Similarity (MIX)

Similarity score (x100)

e o -
S 8 § ¢ < 0.02
e 32 3§ 3 &8 § ¢ <
g = 2 4 6 3 2 g = 0.005
1z} s = R N I P Be o
s s = 2 3 Q = =3
< E}] o o B 5 S
& o] k=] < S
o =] - o =%
= o < =] &
= b S
s
=

Fig. 5. e-similarity scores for the noisy IP SCC with different traffic types and noise levels set at
10%, 25%, and 50%.

level, the regularity-based detection measures fail to identify the covert channel. As
a result Alice can potentially hide the covert channel by mixing it with legitimate
traffic. To detect such hidden IP SCCs we require more localized measures to focus
on the suspicious segments of the data set. To do so, we employ compression-based
similarity measures we use with a sliding window algorithm to search for covert
channels in mix data sets.

5.1 Empirical Evaluation

We first show that regularity-based measures fail to detect noisy IP SCCs for noise
levels higher than 10%. We apply the e-similarity and compressibility measures
to mix data sets that we formed by randomly mixing packet inter-arrival times
extracted from WWW, FTP-Data, and UDP data sets with the ones generated
by IP SCCs. As an example, to create a 10% FTP-Data mix data set with 2000
data points, we pick 200 consecutive data points from a FTP-Data data set and
randomly mix it with 1800 data points we select from the IP SCC data set. Note
that how we mix these data points does not matter for our detection measures
because neither measure pays attention to the relative ordering of the individual
data points; both measures rearrange the data points as a pre-processing step (e.g.,
the e-similarity measure sorts the data points).

In our experiments we used the same setup and data sets as in Section 4. We
illustrate the average scores for the e-similarity measure for each mix data set with
noise levels at 10%, 25%, and 50% in Figure 5. The e-similarity scores for the
mix data sets are comparably lower than the ones we calculated in Section 4. For
example, the mean 0.005-similarity score for the pure IP SCC (7 = 0.06) is 52 while

December 2008

IP Covert Channel Detection . 19

Compressibility (MIX)

Compressibility score

scc www ftp-data udp www ftp-data udp www ftp-data udp www ftp-data udp
(0.06) (10%) (10%) (10%) (25%) (25%) (25%) (50%) (50%) (50%)

Fig. 6. Compressibility scores for the noisy IP SCC with different traffic types and noise levels set
at 10%, 25%, and 50%.

a 25% FTP-Data mix data set generates a score of 34.

The average scores for the compressibility measure yield a similar trend which
we illustrate in Figure 6. The compressibility scores for the mix data sets are
substantially lower than the ones we calculated for pure covert channels in Section 4.
As an example, the mean compressibility score for the pure IP SCC (7 = 0.06 secs)
is 6.76 while a 25% FTP-Data mix data set generates a score of 4.98.

To determine how automatic detection with both measures would fare in the
presence of noise, we repeated the automatic detection study we presented in Sec-
tion 4 to compute the FN and FP rates. In particular, we chose ten training traces
out of twenty legitimate data sets to compute the mean p and the standard de-
viation o to determine our thresholds u + 1.50 (for e-similarity) and p + 20 (for
compressibility). We reserved the remaining ten independent traces for testing. We
averaged the results over 100 runs each time using a different partition of the twenty
legitimate traces into training and testing. We report the results in Table II and
list our observations and conclusions as follows:

(1) The results suggest that both measures can detect WWW and FTP-Data mix
data sets up to 10% noise level. We conclude that our measures work for low
noise levels.

(2) Compressibility further detects WWW and FTP-Data mix data sets up to 25%
noise level for which the e-similarity measure completely fails. We conclude
that compressibility is a more robust measure when detecting noisy IP SCCs.

(3) Neither measure can detect 50% mix data sets regardless of the mix type and
UDP mix data sets regardless of the noise level.

(4) Lastly, as mentioned in Section 4 the FP rates for both measures can be lowered

December 2008

20 . Serdar Cabuk et al.

[AppLicatioN | Noise | rp [#N(0.04) | FN(0.06) | FN(0.08) |
€-SIMILARITY
WWW 10% 0.06 0.00 0.00 0.00
25% 0.76 0.23 0.00
50% 1.00 0.98 0.80
FTP-DATA 10% 0.04 0.04 0.00 0.00
25% 0.99 0.64 0.00
50% 1.00 1.00 1.00
UDP 10% 0.15 0.81 0.45 0.08
25% 0.99 0.95 0.80
50% 1.00 1.00 0.99
COMPRESSIBILITY
WWW 10% 0.07 0.00 0.00 0.00
25% 0.00 0.00 0.00
50% 0.95 0.92 0.74
FTP-DATA 10% 0.04 0.00 0.00 0.00
25% 0.52 0.00 0.00
50% 1.00 0.96 0.95
UDP 10% 0.09 0.71 0.48 0.22
25% 0.94 0.90 0.84
50% 0.99 0.99 0.99

Table II. Detection efficacy for both measures when detecting noisy IP SCCs with thresholds
1+ 1.50 (for e-similarity) and p + 20 (for compressibility).

by increasing the number of data sets we use in the training phase.

5.2 Measures for Detection

The previous section suggests that our regularity-based detection measures alone
fail to detect the presence of IP SCCs given a mix data set. To detect noisy IP
SCCs, we take the approach of identifying and eliminating the noise from the mix
data set instead of trying to find a measure that is robust in the presence of noise.
This requires a more localized methodology that focuses on the suspicious segments
of the data set individually and also in relation to each other. To do so, we employ
a sliding window methodology that walks over the mix data set using windows of
size w and strides of size s. The idea is to collect local information about each
window individually, and also in relation to each other. To collect individual and
relative information about each window, we introduce the compressibility-walk and
CosR-walk methods, respectively.

Once we identify the windows that are potentially generated by a covert channel,
we eliminate the remaining and apply our measures only to these ones. Because our
regularity-based measures work effectively for low noise levels, this local approach
can potentially generate better detection rates as compared to the cases for which
we apply the measures globally.

5.2.1 Compressibility- Walk. Compressibility-walk walks over the mixed data set
in jumps of size s and computes the compressibility score for each window of size
w. The windows are allowed to overlap in cases where s < w. The compressibility
scores of the data sets generated by IP SCCs are higher than the ones generated by
legitimate channels, therefore the windows that contain covert channels will reveal

December 2008

IP Covert Channel Detection . 21

themselves as peaks when plotted on a graph. Note that we could also devise an
e-similarity-walk approach, but compressibility is a superior measure to e-similarity,
especially in the presence of noise, as we showed in Section 4.

5.2.2 CosR-Walk. In the following section we show that examining individual
windows alone is not sufficient for covert channel identification. Therefore we need
to investigate the relation between two consecutive windows, which requires a metric
that measures the similarity between the two.

Compression can be used as a similarity metric, which gives an approximation
of the conditional Kolmogorov complexity [Sculley and Brodley 2006]. Given two
strings S and 7', the conditional Kolmogorov complexity K (S|T') is defined as the
shortest representation of S given 7. Intuitively the more information S and T
share, the shorter the representation of .S given T'.

Compression-based similarity metrics have been used in various research areas [Li
et al. 2003; Keogh et al. 2004; Cilibrasi et al. 2004; Cilibrasi and Vitanyi 2005;
Wehner 2004; Loewenstem et al. 1995]. Let & be a compressor that approximates
Kolmogorov complexity. In [Keogh et al. 2004], the conditional compression of
S given T is approximated by the compression-based distance measure (CDM),
defined as:

S(S|T
CDM(S,T) = 5555807
where | is the concatenation operator. Note that CDM is a dissimilarity measure.
In [Sculley and Brodley 2006], the authors show that the CosR metric performs
better than C'DM , which is defined as:

_ 1 _ S(+S(T)-S(SIT)
CosR(S,T) =1 V3(5)S(T)

Combining this metric with our sliding window approach, CosR-walk walks over
the mixed data set in a similar fashion to compressibility-walk, only this time
computing the CosR scores for consecutive windows. Again, we allow the windows
to overlap. CosR is a similarity measure; the score when one window contain data
points generated by a legitimate channel and the other generated by a covert channel
will be lower than the score when both windows contain data points generated by
a legitimate channel.

5.3 Empirical Evaluation

In this section we empirically show that both compressibility-walk and CosR-walk
have successfully identified hidden covert channels in mix data sets, with CosR-walk
being superior (i.e., was able to identity the covert channel in more cases). In our
experiments we used the same setup and data sets as in Section 5.1. To demonstrate
the sliding window approach, we ran compressibility-walk on a WWW data set with
2000 data points with w and s set to 500 and 20. The dashed lines in top two graphs
in Figure 7 illustrate the cases where the data set was purely generated by a WWW
channel. The solid line on the same graph illustrates the results when we ran the
same walk on a 50% WWW mix data set. The peaks in each of the upper two
graphs show the location of each hidden covert channel. We conclude that IP SCCs
will reveal themselves as peaks as long as the compressibility of the legitimate and

December 2008

22 . Serdar Cabuk et al.

Compressibility-Walk (Type | (0.06) in WWW)

Compressibility-Walk (Type | (0.08) in WWW)

Compressibility
s~ & & & o
2 KN R 5 » e R
Compressibility
~
s &

w
@

38

w
>

36 /N
= AP

w
kS

34f v+ N

. 32
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Number of windows Number of windows

CosR-Walk (Type | (0.06) in WWW) CosR-Walk (Type | (0.08) in WWW)
T T T T T T

09

CosR
CosR

. . . . I 0.65 I
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of windows Number of windows

Fig. 7. (Top row) Compressibility-walk results for (dashed) a pure WWW channel, (solid) a 50%
WWW mix channel. (Bottom row) CosR-walk results for (dashed) a pure WWW channel, (solid)
a 50% WWW mix channel.

covert channels are distinguishable. The resulting plots for FTP-Data are similar
and we omit them.

Similarly we ran our conditional compressibility method CosR-Walk on the same
data sets with w and s set to 500 and 20. The dashed lines in bottom two graphs
in Figure 7 show the results when the procedure was run on pure WWW data
sets. The solid line on the same graph again illustrates the same walk on a 50%
WWW mix data set. This time a V-shaped curve in each bottom graph suggests
the existence of a covert channel. As expected, the locations of these channels are
consistent with the compressibility graphs. Again the graphs for FTP-Data data
sets show a similar trend and we omit them.

To show that CosR-walk is superior to compressibility-walk, we ran both walks
on a 50% UDP mix data set. In Figure 8 on the left, we illustrate one unsuccessful
attempt by compressibility-walk to locate the covert channel. The curve on this
graph appears to be flat suggesting that no covert channel exists, even though
there is one hidden in the middle section. This phenomenon occurs because the
compressibility scores for the UDP data sets are as high as IP SCC scores, which
causes compressibility-walk to fail. (Recall that compressibility-walk works only
when the compressibility score of the covert channel is significantly higher than

December 2008

IP Covert Channel Detection . 23

Compressibility-Walk (Type | (0.04) in UDP) CosR-Walk (Type | (0.04) in UDP)

0.9

0.86

0.84

0.82

0.8

Compressibility
~
S
CosR

IS

0.78

w
@

26 0.76

34 0.74

32

. 072
0 5 10 15 20 25 30 35 0 10 20 30 40 50 60
Number of windows Number of windows

Fig. 8. (Left) Compressibility-walk fails to detect the hidden channel in a 50% UDP mix data set.
(Right) CosR-walk detects the hidden channel.

the legitimate channels’ scores.) In contrast CosR-walk is a relative measure for
which the individual compression scores do not matter. Indeed, as illustrated in
the right-hand graph that CosR-walk identifies the covert channel is shown by the
signature V-shape.

The time complexity of both methods is a function of data points n, window
size w, slide size s, and the running time of the compression algorithm C(.).
Compressibility-walk performs one compression per window and CosR-walk per-
forms three. Hence the running time for both algorithms is O((n/s)C(w)). Practi-
cally compression is an expensive operation and our implementation of the search
algorithms compress each window independently. However, the performance can
be improved if some compression information is carried over to the current window
from the previous window when windows are overlapping.

6. LIMITATIONS

We conclude with a discussion on the limitations of our search measures in detecting
noisy IP SCC, particularly in the face of attacker countermeasures.

6.1 Parameter Choice and Complexity

In our experiments we used window and slide sizes that gave us the optimal results.
However, in reality both search methods are sensitive to the choice of parameters w
and s. In particular, choosing a window size larger than the covert channel size may
not reveal the channel at all. We illustrate one such example for compressibility-
walk in Figure 9. On the left graph, both covert channels are identified by setting
w = 500, whereas on the right only one covert channel is visible by setting w = 1000.
Because the size of the covert channel is not known at the time of detection, the
methods need to be run with different sets of parameters to identify the hidden
covert channels. This would require additional hardware or processing time, and is
best done in an offline manner.

December 2008

24 . Serdar Cabuk et al.

Compressibility-Walk (w=500, s=20) Compressibility-Walk (w=1000, s=20)

Compressibility
© w PR
& o s N &
Compressibility

~

kS

w
kS

w
0
w
o

50 100 150 "o 20 40 60 80 100 120 140
Number of windows Number of windows

o

Fig. 9. (Left) Compressibility-walk detects both channels when w = 500. (Right) Compressibility-
walk detects only one channel when w = 1000.

6.2 Attacker Countermeasures

An attacker that suspects our methods are being used to identify network covert
channels could try and take action to hide the channel. There are at least three
ways that this could be done.

The most direct method would be to alter the covert channel such that it appears
similar to regular traffic with respect to our measures. This presents some signifi-
cant challenges for the attacker. In deployment the detection mechanism would be
trained with network traffic specific to the domain, and the detection parameters
set based on that traffic. The attacker would either have to have access to the
training set to determine the correct parameters to use for the camouflaged traffic,
or know that training is occurring and be able to influence the training set as to
negatively affect the parameters. These capacities far exceed our attacker model.
Without knowing what the detection parameters are, the attacker would have a dif-
ficult time of producing timings that match legitimate traffic, particularly because
the covert channel is one way, and timings must be agreed on in advance.

Another method of thwarting detection would be to hide short bursts of covert
channel communication within legitimate traffic to create balanced windows in
terms of compression scores and similarity. A challenge is that the attacker must
know the window size used and make balanced bursts within the window, which
requires notifying the receiver in advance as to what the correct pattern would be.
Even if this were possible and did occur, the rate at which the data was sent would
be significantly downgraded, as transmission would no longer be continuous. There
is also the possibility of detecting the differences in traffic, which we can examine
in future work.

A third method would be to add significant noise to the channel. Although this
type of a noisy IP SCC would be hard to detect, note that by forcing the covert
channel parties to introduce noise into the channel we rate-limit the covert channel.
For example if Alice uses a 50% mix data set to avoid detection, in reality this means
that the covert channel bandwidth is halved.

December 2008

IP Covert Channel Detection . 25

7. CONCLUSIONS AND FUTURE WORK

Detection is a common practice in secure systems in order to monitor malicious
activity [Common Criteria 1998]. In this paper, we investigated the detection of
a class of network covert channels that use the timing of IP packets to transmit
a secret message over the network. We argued that such channels can potentially
arise in distributed systems given the possibility that a malicious user can monitor
the presence of packets traveling between two legitimate users even though direct
access to the packets is limited.

We performed an empirical study to justify the hypothesis that the traffic gen-
erated by this class of covert channels will be more regular in terms of inter-arrival
times as compared to the traffic generated by legitimate channels because of the
way the former generate network packets. To show this, we introduced a new mea-
sure for detection called compressibility and showed that it performed better than
the e-similarity measurement we had introduced previously. Our experiments il-
lustrated that we were able to distinguish the covert channel traffic from WWW,
FTP-Data, and SSH traffic with over 95% detection rates; although, UDP results
were not that promising due to the fact that UDP regularity was similar to that of
the covert channel.

We additionally investigated the cases in which a malicious user might try to hide
the covert activity by injecting noise into the channel to increase the irregularity of
its inter-arrival times. Under this scenario, our detection measures failed to locate
the covert channel hidden inside the mix traffic with noise rates higher than 25%.
To counter this deficiency, we investigated two methods named compressibility-walk
and CosR-walk to search for hidden covert channels locally in mix data sets. These
search techniques effectively revealed the presence of covert channels in mix data
sets at the expense of increased algorithmic complexity. We conclude that these
search methods are more suitable for offline detection in which one can run these
algorithms on large collections of inter-arrival time log files to search for potential
covert activity whenever there is a suspicion.

In future work, we will repeat our empirical study on various network collections
that were recorded under different traffic conditions to determine how our mea-
sures would fare under these conditions. Additionally, we will extend our work on
noisy IP SCCs and investigate ways to make the search algorithm more efficient.
One possible avenue for improvement is to retain compression information when
compressing overlapping windows instead of compressing each separately. Lastly,
we will further investigate the dependency of each search method on parameter
selection.

REFERENCES

ABAD, C. 2001. IP checksum covert channels and selected hash collision. Tech. rep., University
of California.

Amnsan, K. 2000. Covert channel analysis and data hiding in TCP/IP. M.S. thesis, University of
Toronto.

Ansan, K. AND KUNDUR, D. 2002. Practical data hiding in TCP/IP. In Proceedings of the
Workshop on Multimedia Security at ACM Multimedia.

BALAKRISHNAN, H., STEMM, M., SESHAN, S., AND KATZ, R. H. 1997. Analyzing stability in wide-
area network performance. In Proceedings of the ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems. ACM Press, New York, NY, USA, 2-12.

December 2008

26 . Serdar Cabuk et al.

BAUER, M. 2003. New covert channels in HTTP: Adding unwitting web browsers to anonymity
sets. In Proceedings of the ACM Workshop on Privacy in the Electronic Society. ACM Press,
Washington, DC, USA, 72-78.

BERROU, C., GLAVIEUX, A., AND P.THITIMAJSHIMA. 1993. Near Shannon limit error-correcting
coding and decoding: Turbo codes. In Proceedings of the IEEE International Conference on
Communications. Vol. 2. Geneva, Switzerland, 1064-1070.

BEST, R. E. 2003. Phase-locked Loops: Design, Simulation and Applications, 5th ed. McGraw-Hill
Professional.

Bisnopr, M. 2002. Computer Security: Art and Science. Addison Wesley Professional.

CABUK, S., BRODLEY, C. E.; AND SHIELDS, C. 2004. IP covert timing channels: Design and
detection. In Proceedings of the 11th ACM Conference on Computer and Communications
Security. ACM Press, Washington, DC, 178-187.

CASTRO, S. 2003. CCTT: Covert channel tunneling tool. Tech. rep., The Gray-World Team.

CILIBRASI, R. AND VIiTANYI, P. M. B. 2005. Clustering by compression. IEEE Transactions on
Information Theory 51, 4, 1523—-1545.

CILIBRASI, R., VITANYI, P. M. B., AND WOLF, R. D. 2004. Algorithmic clustering of music based
on string compression. Computer Music Journal 28, 4, 49-67.

CrLArFrY, K. C., PoLyzos, G. C., AND BRAUN, H.-W. 1993. Application of sampling methodologies
to network traffic characterization. In Proceedings on Communications Architectures, Protocols
and Applications. ACM Press, New York, NY, USA, 194-203.

CoMMON CRITERIA. 1998. Common Criteria for Information Technology Security Evaluation,
version 2.0 ed. ISO/IEC Standard 15408.

Cox, D. R. AND LEwis, P. A. W. 1966. The Statistical Analysis of Series of Events. Chapman
and Hall.

DAEMON9. 1996. Project Loki. Phrack 49, 6 (August).

DAEMON9. 1997. Loki2 (the implementation). Phrack 51, 6 (September).

DENNING, D. E. 1976. A lattice model of secure information flow. Communications of the
ACM 19, 5, 236-243.

DoD. 1985. Trusted Computer System Evaluation Criteria (TCSEC), 5200.28-STD Washington:
GPO:1985 ed. Department of Defence.

Docu, T. M. AND EPHREMIDES, A. 2000. Covert information transmission through the use of
standard collision resolution algorithms. In Proceedings of the Third International Workshop
on Information Hiding. Springer-Verlag, London, UK, 419-433.

GIFFIN, J., GREENSTADT, R., LiTwWACK, P., AND TIBBETTS, R. 2002. Covert messaging through
TCP timestamps. In Proceedings of the Workshop on Privacy Enhancing Technologies. Vol.
2482. 194-208.

GILES, J. AND HAJEK, B. 2003. An information-theoretic and game-theoretic study of timing
channels. IEEE Transaction on Information Theory 48, 9 (September), 2455-2477.

GIRLING, C. G. 1987. Covert channels in LANs. IEEFE Transactions on Software Engineering SE-
13, 2 (February), 89-101.

GNU. 2003. GNU zip utility. Available online at http://www.gzip.org.

GUSELLA, R. 1991. Characterizing the variability of arrival processes with indexes of dispersion.
IEEE Journal on Selected Areas in Communications 9, 2 (February), 203-211.

HANDEL, T. AND SANDFORD, M. 1996. Hiding data in the OSI network model. In Proceedings of
the First International Workshop on Information Hiding. Springer-Verlag, London, UK, 23-38.

HANDLEY, M. AND PAXSON, V. 2001. Network intrusion detection: Evasion, traffic normalization,
and end-to-end protocol semantics. In Proceedings of the 10th USENIX Security Symposium.
9.

HAUSER, V. 1999. Placing backdoors through firewalls. Tech. rep., The Hacker’s Choice. May.

HEeLOUET, L., JARD, C., AND ZEITOUN, M. 2003. Covert channels detection in protocols using
scenarios. In Proceedings of Workshop on Security Protocols Verification. 21-25.

HENRY, P. A. 2000. Covert channels provided hackers the opportunity and the means for the
current distributed denial of service attacks. Tech. rep., CyberGuard Corporation.

December 2008

IP Covert Channel Detection . 27

Hu, W. M. 1992. Reducing timing channels with fuzzy time. Journal of Computer Security 1, 3—4,
233-254.

KARGER, P. A. AND WRAY, J. C. 1991. Storage channels in disk arm optimization. In Proceedings
of the IEEE Computer Society Symposium of Research in Security and Privacy. Oakland, CA,
52-61.

KEMMERER, R. A. 1983. Shared resource matrix methodology: An approach to identifying storage
and timing channels. ACM Transactions on Computer Systems 1, 2 (August), 256-277.

KEMMERER, R. A. AND POrRRAS, P. A. 1991. Covert flow trees: A visual approach to analyzing
covert storage channels. IEEE Transactions in Software Engineering 17, 11, 1166-1185.

KeoGH, E., LONARDI, S., AND RATANAMAHATANA, C. A. 2004. Towards parameter-free data
mining. In Proceedings of the ACM International Conference on Knowledge Discovery and
Data Mining. Seattle, WA, 206-215.

L1, M., CHEN, X., L1, X., MA, B., AND VITANYI, P. 2003. The similarity metric. In Proceedings
of the 14th ACM-SIAM Symposium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 863-872.

L1, M. AND LaMPSON, W. 1997. An Introduction to Kolmogorov Complexity and Its Application,
2nd ed. Springer.

L1, S. AND EPHREMIDES, A. 2004. A network layer covert channel in ad-hoc wireless networks.
In Proceedings of the First IEEE Communications Society Conference on Sensor and Ad Hoc
Communications and Networks. 88-96.

LOEWENSTEM, D., HIrRSH, H., YIANILOS, P., AND NOORDEWIER., M. 1995. DNA sequence classi-
fication using compression-based induction. Tech. rep., DIMACS. April.

MILLEN, J. 1999. 20 years of covert channel modeling and analysis. In Proceedings of the IEEE
Symposium on Security and Privacy. 113-114.

Moon, T. K. 2005. Error Correction Coding: Mathematical Methods and Algorithms. Wiley-
Interscience.

MoskowiTz, I. S. 1991. Variable noise effects upon a simple timing channel. In Proceedings of
the IEEE Symposium on Security and Privacy. 362-372.

MoskowiTz, I. S. AND KANG, M. H. 1994. Covert channels - Here to stay? In Proceedings of
the Ninth Annual Conference on Computer Assurance. National Institute of Standards and
Technology, Gaithersburg, MD, 235-244.

MURDOCH, S. J. AND LEwIs, S. 2005. Embedding covert channels into TCP/IP. In Proceedings
of the Information Hiding Workshop. Vol. 3727. 247-261.

NCSC. 1993. A guide to understanding covert channel analysis of trusted systems. Tech. Rep.
Library No. S-240,572, National Computer Security Centre (NCSC).

PAXSON, V. AND FLOYD, S. 1995. Wide area traffic: The failure of Poisson modeling. IEEE/ACM
Transactions on Networking 3, 3, 226—244.

ROSENBERG, C., GUILLEMIN, F., AND MAZUMDAR, R. 1995. New approach for traffic characteri-
sation in ATM networks. In IEE Proceedings - Communications. Vol. 142. 87-90.

RowLAND, C. 1997. Covert channels in the TCP/IP protocol suite. Tech. rep., First Monday:
Peer-reviewed Journal on the Internet.

RUTKOWSKA, J. 2004. The implementation of passive covert channels in the linux kernel. Tech.
rep., Chaos Communication Congress. December.

SCHAEFER, M., GoLD, B. B., LINDE, R., AND SCHEID, J. 1977. Program confinement in KVM/370.
In Proceedings of the ACM Annual Conference. Seattle, WA, 404-410.

SCULLEY, D. AND BRODLEY, C. E. 2006. Compression and machine learning: A new perspective
on feature space vectors. In Proceedings of the Data Compression Conference. IEEE Computer
Society, Washington, DC, USA, 332-332.

SIMMONS, G. J. 1984. The prisoner’s problem and the subliminal channel. Advances in Cryptog-
raphy, 51-67.

SmiTH, J. C. 2000. Covert shells. Tech. rep., SANS Institute Information Security Reading Room.
November.

December 2008

28 . Serdar Cabuk et al.

SonN, T., MooN, J., LEg, S., LEE, D. H., AND LiMm, J. 2003. Covert channel detection in the
ICMP payload using support vector machine. In Proceedings of the International Conference
on Information and Communications Security. 828-835.

Soun, T., SE0, J.-T., AND MoOON, J. 2003. A study on the covert channel detection of TCP/IP
header using support vector machine. In Proceedings of the International Conference on In-
formation and Communications Security. 313-324.

UNITED NATIONS. 1948. Universal declaration of human rights. 2174, 3.

WAND RESEARCH GROUP. 2001. NZIX-II trace archive. University of Waikato Computer Science
Department. Data available at http://pma.nlanr.net/Traces/long/nzix2.html.

WEHNER, S. 2004. Analyzing network traffic and worms using compression. Tech. rep., Centrum
Wiskunde and Informatica.

WRAY, J. C. 1991. An analysis of covert timing channels. In Proceedings of the IEEE Computer
Society Symposium on Research in Security and Privacy. 2—7.

Received March 2006; revised July 2008; accepted November 2008

December 2008

