
W1C1 8:30 Proceedings of the 2001 IEEE
 Workshop on Information Assurance and Security
 United States Military Academy, West Point, NY, 5-6 June, 2001

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 239

Tracing the Source of Network Attack: A Technical, Legal and Societal Problem

S. C. Lee* and C. Shields**

*The Johns Hopkins Applied Physics Laboratory,
Laurel, MD 20723, sue.lee@jhuapl.edu

**Purdue University/CERIAS, West Lafayette, IN 47907, clay@cerias.purdue.edu

ABSTRACT

In the field of network defense, very little research is
directed toward locating the source of network attacks. This
paper models the technical aspects of attack traceback. By
analyzing the model of attack traceback, two fundamental
technical problems can be identified: determining the
immediate source of packets (which may be disguised
through IP spoofing) and determining causality for packets
arriving at and issuing from a host. The past and on-going
research efforts that either directly address or are applicable
to attack traceback are tied to the traceback technical
model, to show the extent to which they address the
problem, and to highlight research gaps. The paper also
discusses some of the legal and societal roadblocks to a
technical solution

Keywords: Traceback, IP Spoofing, Network Forensics

INTRODUCTION

In the field of network defense, a large body of work
addresses myriad aspects of attack prevention, detection
and reaction. One preventive technique that is seldom
addressed is deterrence. Most attackers are risk adverse. A
high rate of discovery and punishment would discourage
many would-be attackers; unfortunately, today it is easy to
carry out attacks anonymously. Similar problems exist with
many types of computer fraud and, in an information
warfare scenario, locating the source of a network attack
provides information about attackers’ identity, physical
location, and capabilities.

To date, there has been very little work that is intended
to locate the source of network attacks. While there is some
past work that attempted to identify the source of
interactive streams [1], most recent work addresses the
problem of locating the source of packets used for a denial-
of-service attack [2, 3, 4] - not with the intention of holding
the attacker accountable, but instead with the intention of
halting the attack.

This paper explores the technical, social, and legal
problems faced by designers of traceback systems that
attempt to locate the particular host in the network that is
initiating network attacks, probes, or computer fraud. By
providing an overview of the problem, we hope to

encourage active research in the area. Ideally, a traceback
system would identify the human agent responsible for the
attack, however identification and authentication of a user
to a machine will not be addressed in this discussion of
traceback, since it is a generic problem pervading
information assurance. Traceback is therefore limited to
determining the host that is the source of an attack.
Sometimes, the identification of the attacker host will be
sufficient to strongly implicate a particular human agent. At
other times, the attacker host may be so publicly available
as to make identification of the actual human agent very
difficult. Traditional methods of crime investigation or
intelligence gathering can be applied to assign
responsibility to some individual.

PROBLEM SPACE

Attack Traceback Model

Every active, network-based attack begins with the
issuance of attack packets from an attacker host, used as the
entry point into the computer network across which the
attack occurs. In some cases, a human directly uses the
attacker host to launch an attack. In other cases, it will be
the point of entry into the computer network from some
other communications network, such as a host reached by
telephone dial-up. The attacker host generates a series of
packets that eventually cause the arrival of attack packets at
a victim host, the final point on the path through the
network that is affected by the attack. The term “host”
(generally, a human-useable system such as a PC or
workstation) will be used in this paper, although in some
cases the attacker or victim may be a network device that is
usually used to support packet forwarding. This causes no
real loss of generality.

The attack packets seen at the victim contain, in the
worst case, a single clue to the identity of the attacker: the
source IP address [5]. Most attackers take advantages of
one or more techniques to ensure that their identity cannot
be learned through the packet source address [2]. A network
traceback system aims to determine this address.

One technique for hiding the true source of packets is to
simply forge the source address in the transmitted packets.
Because IP routing depends on destination address alone,
the source IP address in a packet has no necessary

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 240

connection with the actual source of the packet. Forging an
address in a one-way communication is as simple as putting
any desired address in the source address field. Forging the
source of a two-way communication is more difficult
because the forger may not see the traffic passing from the
victim to the machine whose addressed is being forged. In
attacks that exploit trust relationships based on IP
addresses, for example, the attacker must guess the TCP
sequence numbers in the response packets. This attack is
possible, however, because many operating system
implementations use easily guessable sequence number
choices in network communication. For a simple,
predictable two-communication, the attacker can simply
carry out its part of the communication "in the blind". If the
attacker lies on the path between two communicating
parties, it is also possible to conduct a "session hijacking"
attack that takes over a connection established by a
legitimate user after authentication has occurred.

The second technique for hiding the source host is by
"laundering" the attacker's packets through some
intermediate host [6]. This technique involves some
application-level mechanism to transform the type or timing
of information that leaves the laundering host.
Schematically, laundering can be depicted as:

p1(src: attacker, dest: launderer, contents, t) �
p2(src:launderer, dest: victim, T(contents), t+δt)

A packet (p1) is issued at time t from the attacker host.
It has the source address of the attacker host, destination
address of the laundering host, and some contents.
Reception of p1 causes the laundering host to issue its own
packet (p2). P2 contain the source address of the laundering
host. This change alone disguises the attacker host's
identity. In addition, the contents of the attacker host's
packet may undergo some transformation T. Finally,
issuance of the laundering host's packet may follow
reception of the attacker host's packets by some time δt.
The magnitude of the transformation T and the timing delay
δt may be trivial or profound. In fact, the only connecting
link between p1 and p2 may be one of causality. That is, the
arrival of the attacker host's packets in some way causes the
laundering host to send its packets. While communications
between the attacker, laundering and victim hosts may be
two-way, the return communications are not disguised.

To illustrate the transformation of contents, suppose that
the attacker host telnets to a laundering host, and then opens
a secure shell for communication to the victim host. While

the attacker is opening the shell, his commands to the
laundering host are executed on that host. These commands
cause the laundering host to initiate a connection to the
victim. During this stage of the attack, the laundering host
transforms the attack packet contents from Unix commands
(arriving at the launderer) to TCP connection establishment
(leaving the launderer). Once the connection is established,
however, the attacker's packets contain commands intended
for the victim host. The laundering host no longer executes
(transforms) them; it simply repackages them and passes
them on.

A timing delay may be created innocently through
system processing delays, or be deliberately introduced by
the attacker to disguise his role in the attack. This could be
done either to put time between his interaction with the
laundering host and the laundering host's interaction with
the victim, or to disguise the timing signature of his real
time communications with the victim through the
laundering host. For example, an attacker may introduce a
script on a laundering host, set to run at a future date.
Alternately, he could install a program on the laundering
host to introduce delays in the passage of his attack packets.

Figure 1 depicts a simple model of an attack that
incorporates all the elements an attacker might use to hide
his identity, although not in every possible combination.
Each box on this diagram represents one (or more) hosts on
the attack path. These hosts represent the typical ways that
attackers use laundering hosts to disguise their identity. A
single attack may not incorporate all different types of hosts
and obscuration techniques.

The attacker host may initiate communications with a
stepping stone host - a compromised host that acts as a
conduit for the attacker host's communications. By
definition, the attacker's communications are not
fundamentally transformed or delayed by a Stepping Stone
host. Although the communications flowing through the
stepping stone are unchanged in essence, they may be
changed in superficial but confounding ways. For example,
content may appear to change because of encryption.
Random timing changes may occur as the communications
pass in and out. An attack may pass through more than one
stepping stone host before reaching the victim. The classic
penetration attack is usually conducted through multiple
stepping stone hosts to prevent identification of the
attacker.

Malicious Host Compromised Host Uncompromised Host

STEPPING
STONE REFLECTOR VICTIMZOMBIEATTACKER

Figure 1 – Attack Traceback Model

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 241

The attacker host may initiate communications with a
zombie host, either directly or through one or more
stepping stone hosts. By definition, a zombie is a
laundering host that fundamentally transforms and/or
delays the attacker’s communications before they continue
down the attack path. For example, the attacker host may
install a Trojan on the zombie host timed to execute
minutes, days or even weeks after the attacker's contact.
Thus the attacker host's communications may not be
contiguous in time with the downstream attack
communications. The content of the communications may
be transformed as well. For example, a single command
input from the attacker host may trigger execution of a
planted script that issues a series of entirely different
commands down the attack path. The distributed denial-of-
service attack uses zombie hosts in this way [7].

The next host in the traceback model depicted in Figure
1 is a reflector host. Unlike the stepping stone or zombie,
the reflector is an uncompromised host that cooperates with
the attack in an innocent manner consistent with its normal
function. For example, the attacker host (either directly or
via stepping stones and/or zombies) may send a packet
designed to elicit a response from the reflector. If the
victim's source IP is spoofed as the packet source, then the
reflector will innocently direct its response toward the
victim. The response packet (or packets) constitutes the
attack. Because the reflector host does not need to be
compromised to participate in the attack, the attacker may
never have communicated with the reflector prior to the
attack. No trace of the attacker may be present in old log
files, as will be the case with any compromised laundering
host.

Fundamental Traceback Problems

Analysis of the traceback model shows that there are
two distinct sub-problems that are fundamental to the
general problem of tracing an attack back to the attacker
host. The first is identifying the source of packets. Because
of the possibility of IP source address forging, the apparent
source of the packets arriving at any downstream host in the
traceback model may be incorrect. The first problem in
traceback, then, is to learn the true identity of the upstream
host in all the host-to-host communication paths.

Once the source of a packet stream is identified as a
laundering host, the second problem arises. That problem is
one of discovering causality in communications into and
out of the same host. The stepping stone host represents a
special case of determining causality. Since the stepping
stone acts as a mere conduit for the attack, the packets it
sends have been sent to it from some host further upstream
on the attack path. Potentially, the upstream host can be
identified by matching the two communication streams -
into and out of the stepping stone. This matching may be
complicated by apparent changes in content, for example
through encryption, or timing variations caused by natural
system delays. To further complicate the problem, the

stream matching may not take place on either side of a
single host. If the attack path passes through hosts outside
the area that can be observed by the traceback, then the
stream matching may have to be done between streams into
and out of two hosts separated by an unknown number of
intermediate stepping stones. In this latter case, not only do
the streams need to be matched, but also in the general case,
the matching stream may need to found. In general then,
traceback through stepping stone hosts requires determining
if two communications streams, viewed at different points
in the network, have the same origin and are essentially the
same stream.

The zombie host represents the far more general
causality problem. Here, the upstream communication that
resulted in the attack is not similar in content and/or
connected in time to the communications downstream from
the zombie. All that is known is that, at some point in time,
a communication into the zombie caused the observed out-
going packet stream. Some intermediate transforming event
(e.g., expiration of a timer, execution of a Trojan program)
occurs between the in-bound and out-bound portions of the
attack.

Traceback Characterization

The result of an attack traceback can be characterized
by three parameters: precision, accuracy, and timeliness.
Alternative solutions to the attack traceback problem may
yield results that differ in these characteristics.

Precision is a measure of the exclusivity of the
traceback result. The attacker host might be identified as
one of a group of hosts. For example, a traceback might be
able to identify the source of an attack to within a particular
LAN, to a host connected via one particular ISP, or even as
a host in some particular country. Some methods of
traceback might even yield a group of hosts that have no
particular common tie except that they are all consistent
with the clues followed by the traceback. Some methods
may yield results of varying precision, depending on the
traceback environment encountered during each particular
attempt.

Accuracy is a measure of correctness of a traceback;
that is, given that a traceback results in identification, how
likely is that identification to be correct? Some traceback
methods may identify a host as consistent with a particular
attack, but not necessarily the only possible attacking host.
If a traceback solution can result in a false identification,
then ideally the solution will also quantify the probability
that the result is correct.

Precision and accuracy may also be a function of how
far back on the attack path the traceback goes. For example,
some solutions may be able to identify the first in a series of
stepping stone hosts with 100% accuracy and precision.
Beyond that point, precision, accuracy or both may
degrade.

Timeliness is a measure of when a traceback result can
be obtained. Some solutions may only give a result while an

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 242

attack is in progress. Other solutions may require access to
data that can only be acquired post-attack. Some solutions
may depend on the existence of data that has a limited
lifetime. Versatile traceback solutions, usable during,
immediately following, or long after an attack, are probably
less tractable than solutions that operate in a specific
timeframe.

Environmental Factors

A number of factors can either simplify or complicate
the execution of an attack traceback. One of these is the
network environment. The network environment for
traceback ranges from completely controlled to totally
uncontrolled. The controlled environment is a network
under a single administration that dictates the network and
desktop configurations. Tools for traceback (e.g., altered
routers, specific host or network monitoring) can be
mandated, and the potential sources and types of network
communications are constrained. An example of traceback
in a totally controlled environment might be finding the
source of an insider attack within a highly secure network.
In this environment, the traceback problems are more
tractable. Typically, the network environment will be less
controlled. For example, the typical intranet where the
administrators control the network but not the desktop
configurations is a partially controlled environment. The
Internet today typifies an entirely uncontrolled
environment. It is possible that the general traceback
problem cannot be solved in the totally uncontrolled
environment. This possibility leads to a host of research
questions regarding the degree of control over the
environment that is necessary for traceback to succeed, at
least some substantial portion of the time.

Another factor that affects traceback is the nature of the
attack itself. The salient attack features are the amount of
traffic and time extent of the attack. At one extreme, an
attack might consist of a single packet originating at the
attacker host. The general traceback problem might not
solvable for this case; on the other hand, this extreme may
not be representative of any real attacks. In general, an
attack generates a certain amount of traffic along the attack
path, and is on-going for some time extent. The more
information that is transferred and the longer that the attack
is in progress, the more tractable the traceback problem
becomes. If the usual preparatory period is included in the
definition of the "attack", then the typical attack may
involve a substantial amount of traffic and time extent. On
the other hand, the preparatory period may pass unnoticed
until the actual attack occurs. If so, not all traceback
solutions can take advantage of it.

Traceback Applications

There are a number of applications for traceback. Each
of these has unique requirements in terms of traceback
accuracy, precision, and timeliness. Some of the possible

applications for traceback are attack reaction (that is,
stopping an on-going attack), future attack prevention,
establishment of liability, and prosecution of the attacker.

For attack reaction, a traceback solution must operate in
real time, and have good accuracy. The accuracy of the
identification will, of course, determine how effective the
reaction is; if the source of the attack is inaccurately
identified, no action taken against that source can stop the
attack. High precision may not be required. For example, if
an on-going attack can be traced back to some particular
input port on a router, a certain LAN, or even a domain,
filtering may be used to end the attack. Of course, the
precision of the traceback and the subsequent filtering
determines how much impact the attack reaction has on
nominal traffic.

For future attack prevention, the traceback does not
have to operate in real time as long as it can be completed
in time to take preventive measures before the next attack.
In general, the precision must be much higher than for
attack reaction. For example, while it might be acceptable
to filter traffic from a fairly large segment of the Internet
for a short time to restore partial operation during an attack,
such an approach is unacceptable in the long term. If the
attack can be identified as coming from some relatively
bounded portion of the network, however, more
preventative options are available. If a very precise
identification can be made, selective filtering and possibly
even arrest and prosecution are viable prevention measures.
If the attack can be identified as originating from some
network under a single administration, the evidence could
persuade the administrators to institute stricter security
measures. An attack identified as originating from a
particular country could elicit diplomatic or military
actions. As with attack reaction, the ultimate effectiveness
of attack prevention will depend on the accuracy of the
identification. The penalty for an inaccurate identification
can be more serious than merely remaining open to further
attack; for example, a military action against the wrong
country would have very far-reaching and unfortunate side
effects.

For the purpose of establishing liability, the traceback
must occur in a timeframe consistent with the existence of
ephemeral data and the statue of limitations that applies to
each particular case. High precision may not be required; in
fact, it can be argued that traceback to the first entity with
"deep pockets" - such as a large corporation intranet or a
large ISP - is best for in this case. Criminal prosecution
differs from liability in that high precision is required. In
general, obtaining a criminal conviction will require
identification of one or more individual attackers. A high
probability of accuracy may be enough to obtain a
favorable verdict in either case.

Consideration of the various applications for traceback
leads to several general observations. First, the applications
for traceback overlap in some areas. For example, criminal
prosecution is one way to prevent a future attack (at least,
by that individual). When they do overlap, then the most

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 243

stringent set of requirements for the traceback apply.
Second, good to high accuracy is required in every case.
Thus, accuracy considerations should drive the search for a
traceback solution. Finally, it should be noted that the
application requirements for traceback do not need to be
met completely by any automated or computer-aided
technical solution. For example, if an automated traceback
can identify several candidate sources for an attack, then
the candidates may be winnowed down using "outside"
information, such as work records, interviews, telephone
records, etc.

SOLUTIONS SPACE

Each of the fundamental traceback problems identified
above requires a unique solution. Some approaches for each
are described below. Integration of the individual problem
solutions into an infrastructure will be needed to perform a
complete traceback. Pure technical solutions for traceback
may be possible; however, the technical solutions cannot be
implemented unless they conform to certain legal and
societal constraints. Each of these topics is addressed
briefly below.

Packet Source Identification

The problem of identifying the source of any given
packet arriving at a host is tantamount to tracing the
passage of the packet backwards through the switching
fabric of the network. Thus the candidate solutions for this
fundamental part of a complete traceback rely on detecting
which routing devices handled the packet. Given enough
resources, this is the one fundamental traceback problem
that can be said to have a guaranteed technical solution.
Suppose for example, that every routing device in use today
could be instantly replaced with one that implements the
following process: When receiving a packet from a
directly-connected host, the router clears out a "route trace
table" (sized to accommodate the maximum number of
hops), and places in it the physical address of the directly-
connected host and its own unique router ID. A router that
receives a packet from another router places its ID into the
next available slot in the table. At the destination host, the
entire route is contained within each packet. If implemented
in the routing device hardware, where it could not be
subverted by any network-based attack, then at least the
source router for all packets could be uniquely and securely
identified. The source host could not be spoofed either,
without spoofing the physical address of the host, more
difficult than spoofing the source IP in the packet header.

The practical drawbacks to this scheme are immediately
obvious: implementation adds to the routing overhead and
requires changes to all routing device hardware, the
network protocol and the minimum size of a packet. The
current research initiatives in route traceback focus on
addressing these practical difficulties. Three distinct
approaches have been developed: 1) identifying the route
within the packet without increasing the packet size, 2)

identifying the route using extra packets generated by the
routing devices, and 3) actively querying routing devices
about traffic they have handled.

The first approach requires overload of some field
already present in the IP packet header with route
identification material [2]. The essence of this approach is
to encode a unique route through a potentially large number
of devices within a strictly limited number of bits, and
furthermore, to do it in a secure (unspoofable) way.
Although there is an obvious limit to the amount of
information that can be contained within a limited field, the
fact that each router is only connected to a few other routers
makes the problem potentially solvable. Even if an
absolutely unique route cannot be specified, the number of
possible routes may be pruned considerably. One scheme,
proposed by Dawn Song and Adrian Perrig of the
University of California at Berkeley [3], uses a variation on
the Time-Efficient Stream Loss-tolerant Authentication
(TESLA) protocol to place a code based on the IP addresses
of the routing devices that sequentially handle a packet into
the IP identification field. Using a map of the IP addresses
of all upstream routers, a destination host can reconstruct
the route of a packet through up to 32 devices with
reasonable computational efficiency and precision [4].

The second approach requires routing devices to emit a
secondary "trace" packet for each packet they handle that is
to be traced [8]. At the destination host, both the original
packet and all the associated "trace" packets are collected,
and a route for the original packet can be reconstructed. The
advantage to this scheme is that the trace packet can contain
unambiguous, authenticated identification of the originating
router. The clear disadvantage is that, if every packet must
be traced, an enormous increase in network traffic will
ensue. In a scheme of this type proposed by Steve Bellovin,
the routing devices emit a trace packet on a probabilistic
basis (about 1 in 20,000 for Bellovin's scheme) so that the
increase in traffic is minimized, and it is not possible to
guess when a trace packet will be issued. It is unlikely that
any single packet will trigger enough trace packets to
reconstruct a route, however, a large stream of packets
continuing for a considerable time (for example, a SYN
flood DOS attack stream) can almost certainly be traced
this way.

The last approach requires a destination host that desires
to find the true source of a packet to send a query to its
routing device. This routing device can pass the query
upstream to any routing devices to which it is connected.
Routing devices responding positively also repeat the query
to any upstream routers to which they are connected.
Examination of the positive and negative responses yields
the packet route. This scheme also generates additional
network traffic, however since only suspicious packets are
traced, the overhead may not be large. It also requires
routing devices to store information on all packets they
handle for some period of time. Due to processing and
memory limitations, this time period is likely to be quite
short, limiting this approach to a near-real time traceback.

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 244

Finally, this approach requires a query and response
protocol that is understood by all the different types of
routing devices participating in the traceback. One
implementation of a scheme that uses this approach is the
Intrusion Detection and Isolation Protocol (IDIP) developed
by a Network Associates/Boeing/University of California at
Davis/Silicon Defense collaboration sponsored by DARPA
[9].

Although any route-tracing scheme benefits by the
participation of all routing devices, non-participation by
some does not necessarily preclude a successful traceback.
The level of participation required for a successful
traceback, how the accuracy and precision vary with
participation level, and how the traceback approach and/or
algorithm affects the required level of participation are all
interesting research questions for the traceback community.

Stream Matching

The second fundamental traceback problem is to trace
an attack packet stream through some number of stepping
stone hosts. Two characteristics have been proposed to
match attack streams on either side of laundering hosts: the
packet contents and the inter-packet timing. In addition,
there are two possible locations for sensing stream
characteristics: internal to each host (that is, each host
matches streams entering and leaving itself) and external to
all hosts (that is, by sniffing network traffic).

In the mid-1990's, Stuart Staniford-Chen developed a
content-matching scheme while at the University of
California at Davis. Called "Thumbprinting" [2], this
scheme divides the stream into discrete time intervals and
creates digests of packets within each interval. Two streams
are compared by computing the similarity of the stream
digests. The probability that the computed similarity could
result from two random streams is used to determine a
match. Staniford-Chen showed that similar thumbprints are
far more probable to represent the same stream than two
random streams. Although the scheme works quite well for
unencrypted streams, encryption makes stream matching by
this method impossible.

In on-going research at Purdue, the second approach to
stream matching has shown some early success. Despite
random network delays, the characteristic give-and-take of
network connection protocols and human-computer
interactions generate a "timing thumbprint". The timing
thumbprints of a single stream viewed at two points in the
network are more similar than the timing thumbprints of
unrelated streams. Of course, timing is not affected by
encryption, so this method may be more robust than the
content-based approach. A second method of stream
matching by inter-packet timing has also been suggested. In
this approach, the timing of a stream is actively perturbed at
some location in the network, and streams at other points in
the network are searched for matching perturbations. There
may be legal implications to taking this active approach,
especially if the stream originates outside of the

administrative domain where the active perturbation is
applied.

A system that matches streams into and out of a single
host has a number of advantages. The host's network stack
already sorts packets into coherent streams (connections) so
no extra work is required to perform this association.
Further, the amount of traffic into and out of a single host is
restricted, so that the host can probably perform the needed
computations for matching without undue strain. On the
other hand, a robust traceback system using host-based
matching would require control over all hosts in the attack
path. In general, this is unlikely to be the case. A network-
based stream-sniffing-and-matching system does not
require control over all of the hosts in the attack path, or
even a change in the network software on any of them. Any
time a matching stream is sniffed at two places in the
network, that part of the attack path is known. On the other
hand, a network-based system will see a much higher rate
of traffic than will any single host. It must sort the traffic
into streams, compute the thumbprint on each, and then
compute how well each pair of streams sensed at different
locations match. It may be quite difficult to keep up with
traffic in a network-based scheme. As with route tracing,
research into how the number of stream-matching hosts or
the number of sniffing points in the network affects the
success, accuracy and precision of the traceback is needed.

Additional considerations exist if stream matching is not
part of a real time traceback. If an attack traceback is
initiated after the attack completes (a common occurrence
when the attack is subtle and remains undetected until after
the fact), then the stream matching systems must have
stored either the thumbprints, or the identifications of
matching streams. Due to storage limitations, the timeliness
of any traceback requiring stream matching will be
affected.

Causality

The final fundamental traceback problem is far and
away the most difficult. With neither markings, contents or
timing to connect streams into and out of a zombie host,
automatically determining that one stream is related to the
other seems difficult if not impossible. If any current
research addresses this problem, it is not well known in the
community.

The bare outlines of a possible solution can be
discerned. Determining causality will certainly require
access to and examination of the zombie host. The
immediate cause of the output stream (e.g., Trojan or script)
can be determined. Logs may reveal the trigger (e.g., a
remote command or chron job) for the immediate cause.
Information about the immediate cause or its trigger can be
used to set a window in time to look for the source of the
true causal event. This source must be one of the remote
connections established within the time window. Clearly,
the larger the time window, the more difficult the problem
is. Not only will the set of possible sources be larger, but

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 245

also the retention of logs may limit the ability to create the
set. The set of possible sources may be pruned by certain
means. For example, a clearly suspicious connection (e.g.,
from a source unknown to the host users) would merit close
attention. Otherwise, each connection must be tracked to its
source, and eliminated as suspect or traced further back
along the (potential) attack path. Obviously, fundamental
thinking is required before any fruitful research can be
carried out on this part of the traceback problem.

Traceback Infrastructure

Because the traceback problem has several independent
parts, a total solution will require integration of independent
solutions into an infrastructure that can invoke the
appropriate tools as needed. In addition to integrating tools
that address each of the different fundamental aspects of
traceback, there will need to be tool variants that work in
different timeframes (e.g., during or after an attack). For the
foreseeable future, traceback tools will be incomplete; that
is, they will require supplemental, non-automated
intervention by human agents, particularly to open
administrative barriers to traceback, and also to supply
supplemental information unavailable to automated
processes.

One possible approach to this integration is illustrated
by IDIP, mentioned above in the section on packet source
identification. The IDIP architecture uses IDIP-enabled
devices throughout the network - intrusion detection
systems, firewalls, etc. - to implement its query/response
protocol for tracing suspect traffic. It uses DARPA's
Common Intrusion Detection Framework (CDIF) language
to allow these disparate devices to communicate. Although
the path of the query itself is controlled by the responses
(positive responses cause the query to be forwarded;
negative response do not), all reports are received by a
central Detection Coordinator. This device correlates the
information to synthesize a wider view that may already
allow attack traceback through multiple administrative
domains, if not from host to host. New traceback tools
could be incorporated into such an architecture to allow for
more robust traceback and finer resolution.

Stuart Staniford-Chen proposes a second possible
architecture. In this architecture, all requests for traceback
go to a central coordinator. The central coordinator queries
the next possible link in the attack chain, processes the
response, and issues new queries as needed. The central
coordinator role is established within law enforcement
agencies, and may comprise multiple levels of authority, for
example, local, state, and federal. The queries are passed up
and down the law enforcement hierarchy as the jurisdiction
of the traceback developments. This is envisioned as a
semi-automated interaction, with perhaps automated
incident reports triggering the initial query and some
responses generated automatically from system logs, etc.
This semi-automated approach allows for an initial low

level of automated capability growing into a more and more
automated system as tools evolve.

Solution Constraints

Unlike passive defense or detection, attack traceback
enters a realm where legal considerations must be taken
into account. Even when liability or prosecution are not
traceback goals, laws to protect privacy may limit the
technical solutions. The three federal laws that dictate the
legal considerations for traceback are the Electronic
Communications Privacy Act (ECPA (18USC2701)), the
Wiretap Act (18USC2511), and the Trap and Trace Act
(18USC3121). Unfortunately, none of these statutes were
written specifically with computer networks in mind, and
the meaning of their provisions in this venue must be
interpreted and tested in court. To date, insufficient case
law exists to provide firm guidance.

The type of data used in traceback and the means used
to collect it all have legal implications. For example,
information gleaned from packet headers alone is fair game
for traceback; legally, there is no expectation of privacy for
packet headers. In contrast, packet contents are legally
protected, and a traceback solution that uses packet contents
may require lengthy and difficult legal procedures to obtain
permission each time it is used. Gray areas exist for which
the statutes themselves provide no guidance. For example,
the content thumbprinting technique described in the
section on Stream Matching uses digests of contents.
Technically, the privacy of the original packet contents is
protected, however, the legal status of this technique is
currently undecided. In between packet header and contents
in legal status is subscriber information (e.g., the name and
address of an ISP subscriber). This type of information is
legally protected, but can be obtained by a more simple
procedure than content information.

Other legal distinctions are made among data that are
merely collected versus data that are disclosed to others,
disclosure of data voluntarily versus data whose disclosure
is compelled by law, and access to stored data versus
collection of data in real time. The meaning and impact of
these distinctions will vary depending on whether the data
are used in a civil action or a criminal prosecution. It is well
beyond the scope of a technical paper to explore these
ramifications thoroughly, however, two examples will serve
to illustrate the complexity and ambiguity of the legal
situation. In a state of affairs worthy of Catch-22, evidence
gathered in anticipation of litigation may not be admissible
as evidence. Data collected "in the normal course of
business" is admissible. The exact boundaries of "normal
course of business" are a gray area currently under-explored
in case law. For example, is traceback information
admissible if its routine collection is mandated by policy?
What if the policy is driven by anticipation of litigating
cases of intrusion? What if the data collection is not
continuous, but automatically triggered by intrusive events?
What if the trigger is not automatic, but via administrator

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 246

intervention? These and other related questions are
currently open to interpretation.

Another legal gray area is encountered by querying
traceback solutions. The ECPA makes it illegal for any
government agency (not just those involved in law
enforcement) to obtain electronic information from non-
government entities without legal process (warrants, etc.).
Suppose an IDIP query was initiated or passed along by a
computer system serving a government agency? It is
possible to interpret the law as forbidding this altogether.
Another interpretation is that the query must identify its
source as government/non-government, so that receiving
devices can decide whether or not to respond. Still another
interpretation is that as long as the query is confined to
"have you seen this traffic", it is legal, but if it asks, "where
does this traffic come from", it is not. The loosest (and most
sensible) interpretation is that as long as the query arises
from the system administration (automated or human) in
the normal course of administering the government
network, the ECPA does not apply. Eventually case law
will sort out these options and establish some ground rules,
but at this time the solution is not known. Another legal
difficulty with querying systems is that eventually, in court,
some human must testify as to the continuity of the query
for each administrative domain it passes through. This
requirement alone makes prosecuting cases based on a
query-type traceback extremely expensive and difficult.

Some aspects of the technical solutions also have
implications for the legal uses of traceback. Traceback
solutions must incorporate features that allow time
synchronization of events recorded at distant locations.
Secure logging is necessary to protect evidence from attack
in court. A legal case could be more easily built if all
pertinent traceback information is captured in a single
place, rather than having to be assembled from multiple
logs and data files. Finally, since legal machinery moves
slowly, the retention time of records is extremely important.

Perhaps even more daunting than the legal implications
are the societal barriers to traceback. There is a surprising
amount of suspicion that drives interactions between
government and commercial entities, and between
commercial enterprises. This lack of trust makes privacy of
information a higher priority than attack traceback for many
enterprises. As described in the Problem Space section,
traceback will require additional infrastructure and
cooperation among entities sharing the network. An
important question for traceback is what business models
are likely to cause the compliance needed to perform
traceback.

There are two potential drivers towards increasing
cooperation for traceback. The first is increasing
government regulation that may force cooperation to some
extent. The second is the increasing cost of attacks that may
provide an economic motive for increased cooperation. Part
of the cost of attack will be liability for the results of
attacks. Companies may be sued for loss of privacy if
private customer information is lost due to penetration. E-

businesses may sue ISP's to recover the cost of lost business
during denial of service attacks. Legally, businesses may
escape responsibility for harm resulting from occurrences
that could not be anticipated. Normally, criminal acts fall in
this "unanticipatable" category, however there have already
been legal rulings that network attacks are so common that
they should be anticipated.

Eventually, the direct cost of attacks and the threat of
liability for attacks may create demand for an "attack
insurance" industry. Once insurance companies get
involved, they will have a cross-enterprise incentive for
attack traceback to allow for cost recovery. Premium
incentives and conditions of insurance may be used to
dictate adoption of standard attack traceback tools and
techniques. To provide insurance against attack profitably,
however, the insurance companies must have actuarial data.
Thus, like so many other information assurance problems,
the ultimate solution to attack traceback may rest on the
definition of appropriate metrics and collection of data over
a broad cross section of society.

REFERENCES

[1] S. Staniford-Chen and L.T. Heberlein, “Holding
Intruders Accountable on the Internet”, Proc. of the 1995
IEEE Symposium on Security and Privacy, May 1995,
Oakland, CA, pp. 39-49
[2] Stefan Savage and David Wetherall and Anna R. Karlin
and Tom Anderson, “Practical network support for {IP}
traceback”, SIGCOMM, 2000, pp. 295-306
[3] D. Song and A. Perrig, “Advanced and Authenticated
Marking Schemes for IP Traceback”, Proceedings of the
IEEE INFOCOM01, April 2001, Anchorage, Alaska
[4] W. Lee and K. Park, “On the Effectiveness of
Probabilistic Packet Marking for IP Traceback under Denial
of Service Attack”, Proceedings of the IEEE INFOCOM01,
April 2001, Anchorage, Alaska
[5] W. R. Stevens, TCP/IP Illustrated Volume 1, Addison-
Wesley Publishing Company, 1994
[6] Y. Zhang, and V. Paxson, “Detecting Stepping Stones”,
Proc. 9th USENIX Security Symposium, August 2000,
Denver, CO
[7] S. Dietrich, N. Long, and D. Dittrich, “Analyzing
Ditributed Denial of Service Attack Tools: The Shaft
Case”, Proceedings of the LISA 2000 System
Administration Conference, December 2000, New Orleans,
LA
[8] S. Bellovin, “ICMP Traceback Messages”, IETF
Internet draft, March 2000

[9] Jeff Rowe, “Intrusion Detection and Isolation
Protocol: Automated Response to Attacks”, Presentation at
RAID'99, September 1999

