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ABSTRACT
Attackers often take advantage of vulnerabilities in benign soft-
ware, and the authors of benign software must search their code
for bugs in hopes of finding vulnerabilities before they are ex-
ploited. But there has been little research on the converse question
of whether defenders can turn the tables by finding vulnerabilities
in malware. We provide a first affirmative answer to that question.
We introduce a new technique, stitched dynamic symbolic execu-
tion, that makes it possible to use exploration techniques based on
symbolic execution in the presence of functionalities that are com-
mon in malware and otherwise hard to analyze, such as decryp-
tion and checksums. The technique is based on decomposing the
constraints induced by a program, solving only a subset, and then
re-stitching the constraint solution into a complete input. We im-
plement the approach in a system for x86 binaries, and apply it to
4 prevalent families of bots and other malware. We find 6 bugs that
could be exploited by a network attacker to terminate or subvert the
malware. These bugs have persisted across malware revisions for
months, and even years. We discuss the possible applications and
ethical considerations of this new capability.
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1. INTRODUCTION
Vulnerability discovery in benign programs has long been an im-

portant task in software security: identifying software bugs that
may be remotely exploitable and creating program inputs to demon-
strate their existence. However, little research has addressed vul-
nerabilities in malware. Do malicious programs have vulnerabili-
ties? Do different binaries of the same malware family share vul-
nerabilities? How do we automatically discover vulnerabilities in
malware? What are the implications of vulnerability discovery
in malware to malware defense, law enforcement and cyberwar-
fare? In this paper we take the first step toward addressing these
questions. In particular, we propose new symbolic reasoning tech-
niques for automatic input generation in the presence of complex
functions such as decryption and decompression, and demonstrate
the effectiveness of our techniques by finding bugs in real-world
malware. Our study also shows that vulnerabilities can persist for
years across malware revisions. Vulnerabilities in botnet clients
are valuable in many applications: besides allowing a third party
to terminate or take control of a bot in the wild, they also reveal
genealogical relationships between malware samples. We hope our
work will spur discussions on the implications and applications of
malware vulnerability discovery.

Dynamic symbolic execution techniques [24] have recently been
used for a variety of input generation applications such as vulner-
ability discovery [7, 20, 21], automatic exploit generation [3, 23],
and finding deviations between implementations [2]. By comput-
ing symbolic constraints on the input to make the program execu-
tion follow a particular path, and then solving those constraints,
dynamic symbolic execution allows a system to automatically gen-
erate an input to execute a new path. Repeating this process gives
an automatic exploration of the program execution space for vul-
nerability discovery and other applications. However, traditional
dynamic symbolic execution is ineffective in the presence of cer-
tain common computation tasks, including the decryption and de-
compression of data, and the computation of checksums and hash
functions; we call these encoding functions. Encoding functions re-
sult in symbolic formulas that can be difficult to solve, which is not
surprising, given that cryptographic hash functions are designed to
be impractical to invert [32]. Encoding functions are used widely
in malware as well as benign applications. In our experiments, the
traditional dynamic symbolic execution approach fails to explore
the execution space of the malware samples effectively.



To address the challenges posed by the presence of encoding
functions, we propose a new approach, stitched dynamic symbolic
execution. This approach first automatically identifies potential en-
coding functions and their inverses (if applicable). Then, it de-
composes the symbolic constraints from the execution, separating
the constraints generated by each encoding function from the con-
straints in the rest of the execution. The solver does not attempt to
solve the (hard) constraints induced by the encoding functions. In-
stead it focuses on solving the (easier) constraints from the remain-
der of the execution. Finally, the approach re-stitches the solver’s
output using the encoding functions or their inverses, creating a
program input that can be fed back to the original program.

For instance, our approach can automatically identify that a par-
ticular function in an execution is performing a computation such
as decrypting the input. Rather than using symbolic execution in-
side the decryption function, it applies symbolic execution on the
outputs of the decryption function, producing constraints for the
execution after the decryption. Solving those constraints generates
an unencrypted message. Then, it executes the inverse (encryp-
tion) function on the unencrypted message, generating an encrypted
message that can be fed back as the input to the original program.

More generally, we identify two kinds of computation that make
such decomposition possible: computations that transform data into
a new form that replaces the old data (such as decompression and
decryption), and side computations that generate constraints that
can always be satisfied by choosing values for another part of the
input (such as checksums). For clarity, we explain our techniques in
the context of dynamic symbolic execution, but they are equally ap-
plicable to concrete fuzz (random) testing [14,30] and taint-directed
fuzzing [17].

We implement our approach in BitFuzz, a tool for automated
symbolic execution of x86 binaries, implemented using our Bit-
Blaze infrastructure [1, 42]. Our stitched dynamic symbolic ex-
ecution approach applies to programs that use complex encoding
functions, regardless if benign or malicious. In this paper, we use it
to enable the first automated study of bugs in malware. The closest
previous work we know of has focused on finding bugs on the re-
mote administration tools that attackers use to control the malware,
as opposed to the malware programs themselves, running on the
compromised hosts [15, 40].

BitFuzz finds 6 new, remotely trigger-able bugs in 4 prevalent
malware families that include botnet clients (Cutwail, Gheg, and
MegaD) and trojans (Zbot). A remote network attacker can use
these bugs to terminate or subvert the malware. We demonstrate
that at least one of the bugs can be exploited, e.g., by an attacker
different than the botmaster, to take over the compromised host. To
confirm the value of our approach, we show that BitFuzz would be
unable to find most of the bugs we report without the new tech-
niques we introduce.

Malware vulnerabilities have a great potential for different appli-
cations such as malware removal or cyberwarfare. Some malware
programs such as botnet clients are deployed at a scale that rivals
popular benign applications. For instance, the recently-disabled
Mariposa botnet was sending messages from more than 12 million
unique IP addresses at the point it was taken down, and stole data
from more than 800,000 users [26]. Our goal in this research is
to demonstrate that finding vulnerabilities in widely-deployed mal-
ware such as botnet clients is technically feasible. However, the
implications of the usage of malware vulnerabilities require more
investigation. For example, some of the potential applications of
malware vulnerabilities raise ethical and legal concerns that need
to be addressed by the community. Thus, another goal of this re-
search is to raise awareness and spur discussion in the community

about the positives and negatives of the different uses of malware
vulnerabilities.

In summary, this paper makes the following contributions:

• We propose a general approach, stitched dynamic symbolic
execution, that incorporates techniques of identification, de-
composition and re-stitching, to enable input generation in
the presence of encoding functions.
• We implement our approach in BitFuzz, a tool for explo-

ration of x86 binaries.
• Applying BitFuzz, we perform the first automated study of

vulnerabilities in malware.
• We find several bugs in malware that could be triggered re-

motely, and verify that they persist across versions.

The remainder of this paper is organized as follows: Section 2
defines the problem we address, Section 3 describes our approach
in detail, Section 4 gives additional practical details of our imple-
mentation, Section 5 describes our case studies finding bugs in mal-
ware, Section 6 discusses the implications of our results, Section 7
surveys related work, and finally, Section 8 concludes.

2. PROBLEM DEFINITION & OVERVIEW
In this section, we describe the problem we address and give an

overview of our approach.

2.1 Problem Definition
Our problem is how to perform dynamic symbolic execution in

the presence of encoding functions.
Background: dynamic symbolic execution. Dynamic symbolic
execution [7, 20] is a technique to automatically generate inputs to
explore a program’s execution space. In particular, it marks the
input as symbolic and performs symbolic execution along a path.
The conjunction of the symbolic branch conditions forms the path
predicate. By solving a modified path predicate with a solver, it
automatically generates an input to make the program execution
follow a new path. By repeating this process, dynamic symbolic
execution can automatically find inputs to explore different execu-
tion paths of the program.
The challenge of dynamic symbolic execution with encoding
functions. Often there are parts of a program that are not amenable
to dynamic symbolic execution. A class of common culprits, which
we call encoding functions, includes many instances of decryption,
decompression, and checksums. For instance, consider the code
in Figure 1, which is an idealized example modeled after a bot-
net client. A C&C message for this botnet comprises 4 bytes with
the message length, followed by 20 bytes corresponding to a SHA-
1 hash, followed by an encrypted payload. The bot casts the re-
ceived message into a message structure, decrypts the payload us-
ing AES [10], verifies the integrity of the (decrypted) message body
using the SHA-1 hash [32], and then takes a malicious action such
as sending spam based on a command in the message body. Dy-
namic symbolic execution attempts to create a new valid input by
solving a formula corresponding to the path condition for an exe-
cution path. Suppose we run the program on a message that causes
the bot to participate in a DDOS attack: at a high level, the path
condition takes the form

m′ = Dec(m) ∧ h1 = SHA1(m′) ∧m′[0] = 101 (1)

where m and h1 represent two relevant parts of the program input
treated as symbolic: m is the message body m->message, and h1

is the message checksum m->hash. Dec represents the AES de-
cryption, while SHA1 is the SHA-1 hash function. To see whether



1 struct msg {
2 long msg_len;
3 unsigned char hash[20];
4 unsigned char message[];
5 };
6 void process(unsigned char* network_data) {
7 int *p;
8 struct msg *m = (struct msg *) network_data;
9 aes_cbc_decrypt(m->message, m->msg_len, key);

10 p = compute_sha1(m->message, m->msg_len);
11 if (memcmp(p, m->hash, 20))
12 exit(1);
13 else {
14 int cmd = m->message[0];
15 if (cmd == 101)
16 ddos_attack(m);
17 else if (cmd == 142)
18 send_spam(m);
19 /* ... */
20 }
21 }

Figure 1: A simplified example of a program that uses lay-
ered input processing, including decryption (line 9) and a se-
cure hash function for integrity verification (lines 10-12).

it can create a message to cause a different action, dynamic sym-
bolic execution will attempt to solve the modified path condition

m′ = Dec(m) ∧ h1 = SHA1(m′) ∧m′[0] 6= 101 (2)

which differs from the original in inverting the last condition.
However, solvers tend to have a very hard time with conditions

such as this one. As seen by the solver, the Dec and SHA1 func-
tions are expanded into a complex combination of constraints that
mix together the influence of many input values and are hard to
reason about [12]. The solver cannot easily recognize the high-
level structure of the computation, such as that the internals of the
Dec and SHA1 functions are independent of the parsing condition
m′[0] 6= 101. Such encoding functions are also just as serious
an obstacle for related techniques like concrete and taint-directed
fuzzing. Thus, the problem we address is how to perform input
generation (such as via dynamic symbolic execution) for programs
that use encoding functions.

2.2 Approach Overview
We propose an approach of stitched dynamic symbolic execution

to perform input generation in the presence of encoding functions.
We first discuss the intuition behind it, outline the steps involved,
and then explain how it applies to malware vulnerability finding.
Intuition. The insight behind our approach is that it is possible to
avoid the problems caused by encoding functions, by identifying
and bypassing them to concentrate on the rest of the program, and
re-stitching inputs using concrete execution. For instance in the
path condition of formula 2, the first and second constraints come
from encoding functions. Our approach can verify that they are
independent from each other and the message parser (exemplified
by the constraint m′[0] 6= 101) within the high-level structure of
input processing and checking. Thus these constraints can be de-
composed, and the solver can concentrate on the remainder. Solv-
ing the remaining constraints gives a partial input in the form of a
value for m′, and our system can then re-stitch this into a complete
program input by concretely executing the encoding functions or
their inverses, specifically h1 as SHA1(m′) and m as Dec−1(m′).

Stitched dynamic symbolic execution. In outline, our approach
proceeds as follows. As a first phase, our approach identifies en-
coding functions (such as decryption and checksums) based on a
program execution. Then in the second phase, our approach aug-
ments exploration based on dynamic symbolic execution by adding
decomposition and re-stitching. On each iteration of exploration,
we decompose the generated constraints to separate those related
to encoding functions, and pass the constraints unrelated to encod-
ing functions to a solver. The constraint solution represents a partial
input; the approach then re-stitches it, with concrete execution of
encoding functions and their inverses, into a complete input used
for a future iteration of exploration. If as in Figure 1 there are mul-
tiple layers of encoding functions, the approach decomposes each
layer in turn, and then reverses the layers in re-stitching. We detail
our decomposition and re-stitching approach in Section 3.1.
Identifying encoding functions and their inverses. For identify-
ing encoding functions, we perform a trace-based dependency anal-
ysis that is a general kind of dynamic tainting. This analysis detects
functions that highly mix their input, i.e., an output byte depends on
many input bytes. The intuition is that high mixing is what makes
constraints difficult to solve. For example, a block cipher in CBC
mode highly mixes its input and the constraints it introduces dur-
ing decryption are hard to solve, but a stream cipher does not mix
its input and thus the constraints it introduces can be easily solved.
Thus, our identification technique targets encoding functions that
highly mix their inputs. In addition to the encoding functions, our
approach may also require their inverses (e.g., for decryption and
decompression functions). The intuition behind finding inverses is
that encoding functions and their inverses are often used in concert,
so their implementations can often be found in the same binaries or
in widely-available libraries (e.g., OpenSSL [33] or zlib [46]). In
this paper, we propose a technique that given a function, identifies
whether its inverse is present in a set of other functions. We detail
the identification of encoding functions and their inverses in Sec-
tion 3.2. We further discuss the availability of inverse functions in
Section 6.2.

3. STITCHED DYNAMIC SYMBOLIC
EXECUTION

In this section we describe key aspects of our approach: the con-
ditions under which a program’s constraints can be decomposed
and re-stitched (Section 3.1), techniques for choosing what com-
ponents’ constraints to decompose (Section 3.2), and how to repeat
the process when there are multiple encoding layers. (Section 3.3).
An overview of the system architecture is shown in Figure 3.

3.1 Decomposition and Re-Stitching
In this section we describe the principles of our decomposition

and re-stitching approach at two levels: first at the level of con-
straints between program values, and then more abstractly by con-
sidering a program as a collection of functional elements.

3.1.1 Decomposing Constraints
One perspective on decomposition is to consider a program’s ex-

ecution as inducing constraints among program values. These are
the same constraints that are represented by formulas in symbolic
execution: for instance, that one value is equal to the sum of two
other values. The constraints that arise from a single program exe-
cution have the structure of a directed acyclic graph whose sources
represent inputs and whose sinks represent outputs; we call this the
constraint graph. The feasible input-output pairs for a given exe-
cution path correspond to the values that satisfy such a constraint



Figure 3: Architectural overview showing the parts of our decomposition-based input generation system. The steps labeled decom-
position and re-stitching are discussed in Section 3.1, while identification is discussed in Section 3.2. The parts of the system shown
with a gray background are the same as would be used in a non-stitching dynamic symbolic execution system. The steps above the
dotted line are performed once as a setup phase, while the rest of the process is repeated for each iteration of exploration.

Figure 2: A graphical representation of the two styles of decom-
position used in our approach. Ovals and diamonds represent
computations, and edges represent the dependencies (data-flow
constraints) between them. On the left is serial layering, while
on the right is side-condition layering.

system, so input generation can be viewed as a kind of constraint
satisfaction problem.

In this constraint-satisfaction perspective, analyzing part of a
program separately corresponds to cutting the constraints that link
its inputs to the rest of the execution. For a formula generated by
symbolic execution, we can make part of a formula independent by
renaming the variables it refers to. Following this approach, it is not
necessary to extract a component as if it were a separate program.
Our tool can simply perform dynamic symbolic execution on the
entire program, and achieve a separation between components by
using different variable names in some of the extracted constraints.

We propose two generic forms of decomposition, which are il-
lustrated graphically in Figure 2. For each form of decomposition,
we explain which parts of the program are identified for decompo-
sition, and describe what local and global dependency conditions
are necessary for the decomposition to be correct.

One set of global dependency conditions are inherent in the graph
structure shown in Figure 2. If each node represents the constraints
generated from one component, then for the decomposition to be
correct, there must not be any constraints between values that do
not correspond to edges in Figure 2. For instance the component
f2 in serial decomposition must not access the input directly.
Serial decomposition. The first style of decomposition our ap-
proach performs is between successive operations on the same in-
formation, in which the first layer is a transformation producing
input to the second layer. More precisely, it involves what we call
a surjective transformation. There are two conditions that define a
surjective transformation. First, once a value has been transformed,
the pre-transformed form of the input is never used again. Sec-
ond, the transformation must be an onto function: every element
in its codomain can be produced with some input. For example,

if a function y = x2 returns a signed 32-bit integer, the codomain
contains 232 elements. In that case, the image is a subset of the
codomain that does not include for example the value -1, as it is not
a possible output of the function. In Figure 2, f1 is the component
that must implement a surjective transformation. Some examples
of surjective transformations include decompression and decryp-
tion. The key insight of the decomposition is that we can analyze
the part of the program downstream from the transformation in-
dependently, and then simply invert the transformation to re-stitch
inputs. For instance, in the example of Figure 1, the decryption
operation is a surjective transformation that induces the constraint
m′ = Dec(m). To analyze the rest of the program without this en-
coding function, we can just rename the other uses of m′ to a new
variable (say m′′) that is otherwise unconstrained, and analyze the
program as if m′′ were the input. Bypassing the decryption in this
way gives

h1 = SHA1(m′′) ∧m′′[0] = 101 (3)

as the remaining path condition.
Side-condition decomposition. The second style of decomposi-
tion our approach performs separates two components that operate
on the same data, but can still be considered mostly independent.
Intuitively, a free side-condition is a constraint on part of a pro-
gram’s input that can effectively be ignored during analysis of the
rest of a program, because it can always be satisfied by choosing
values for another part of the input. We can be free to change this
other part of the input if it does not participate in any constraints
other than those from the side-condition. More precisely, a pro-
gram exhibiting a free side-condition takes the form shown in the
right-hand side of Figure 2. The side-condition is the constraint that
the predicate p must hold between the outputs of f1 and f2. The
side-condition is free because whatever value the first half of the
input takes, p can be satisfied by making an appropriate choice for
the second half of the input. An example of a free side-condition
is that the checksum computed over a program’s input (f1) must
equal (p) the checksum parsed from a message header (f2).

To perform decomposition given a free side-condition, we sim-
ply replace the side-condition with a value that is always true. For
instance the SHA-1 hash of Figure 1 participates in a free side-
condition h1 = SHA1(m′′) (assuming we have already removed
the decryption function as mentioned above). But h1 does not ap-
pear anywhere else among the constraints, so we can analyze the
rest of the program as if this condition were just the literal true.
This gives the path condition:

true ∧m′′[0] = 101 (4)

3.1.2 Re-Stitching
After decomposing the constraints, our system solves the con-

straints corresponding to the remainder of the program (excluding



the encoding function(s)), as in non-stitched symbolic execution,
to give a partial input. The re-stitching step builds a complete pro-
gram input from this partial input by concretely execution encoding
functions and their inverses. If the decomposition is correct, such a
complete input is guaranteed to exist, but we construct it explicitly
so that the exploration process can re-execute the program from the
beginning. Once we have found a bug, a complete input confirms
(independent of any assumptions about the analysis technique) that
the bug is real, allows easy testing on other related samples, and is
the first step in creating a working exploit.

For serial decomposition, we are given an input to f2, and the
goal is to find a corresponding input to f1 that produces that value.
This requires access to an inverse function for f1; we discuss find-
ing one in Section 3.2.2. (If f1 is many-to-one, any inverse will
suffice.) For instance, in the example of Figure 1, the partial in-
put is a decrypted message, and the full input is the corresponding
AES-encrypted message.

For side-condition decomposition, we are given a value for the
first part of the input that is processed by f1. The goal is to find a
matching value for the rest of the input that is processed by f2, such
that the predicate p holds. For instance, in Figure 1, f1 corresponds
to the function compute_sha1, f2 is the identity function copy-
ing the value m->hash, and p is the equality predicate. We find
such a value by executing f1 forwards, finding a value related to
that value by p, and applying the inverse of f2. A common special
case is that f2 is the identity function and the predicate p is just
equality, in which case we only have to re-run f1. For Figure 1, our
tool must simply re-apply compute_sha1 to each new message.

3.1.3 The Functional Perspective
A more abstract perspective on the decomposition our technique

performs is to consider the components of the program as if they
were pure functions. Of course the real programs we analyze have
side-effects: a key aspect of our implementation is to automatically
analyze the dependencies between operations to understand which
instructions produce values that are read by other instructions. We
summarize this structure to understand which operations are inde-
pendent from others. In this section, we show this independence
by modeling a computation as a function that takes as inputs only
those values the computation depends on, and whose outputs en-
compass all of its side effects. This representation is convenient for
formally describing the conditions that enable decomposition and
re-stitching.

Serial decomposition applies when a program has the functional
form f2(f1(i)) for input i, and the function f1 (the surjective trans-
formation) is onto: all values that might be used as inputs to f2

could be produced as outputs of f1 for some input. Observe that
the fact that i does not appear directly as an argument to f2 implies
that f2 has no direct dependency on the pre-transformed input. For
re-stitching, we are given a partial input x2 in f(x2), and our tool
computes the corresponding full input as x1 = f−1

1 (x2).
For side-condition decomposition, we say that a predicate p is

a free side-condition in a program that has the functional form
f4(f3(i1), p(f1(i1), f2(i2))), where the input is in disjoint parts i1
and i2. Here f2 is a surjective transformation and p is a surjective
or right-total relation: for all y there exists an x such that p(x, y) is
true. When p is a free side-condition, the effect of decomposition
is to ignore f1, f2, and p, and analyze inputs i1 as if the program
were f4(f3(i1), true). This gives a partial input x1 for the compu-
tation f4(f3(x1), true). To create a full input, we must also find
an additional input x2 such that p(f1(x1), f2(x2)) holds. Our tool
computes this using the formula x2 = f−1

2 (p−1(f1(x1))).

3.2 Identification
The previous section described the conditions under which de-

composition is possible; we next turn to the question of how to
automatically identify candidate decomposition sites. Specifically,
we first discuss finding encoding functions 3.2.1, and then how to
find inverses of those functions when needed 3.2.2.

3.2.1 Identifying Encoding Functions
There are two properties of an encoding function that make it

profitable to use for decomposition in our approach. First, the en-
coding function should be difficult to reason about symbolically.
Second, the way the function is used should match one of the de-
composition patterns described in Section 3.1. Our identification
approach is structured to check these two kinds of properties, using
a common mechanism of dynamic dependency analysis.
Dynamic dependency analysis. For identifying encoding func-
tions, we perform a trace-based dependency analysis that is a gen-
eral kind of dynamic tainting. The analysis associates informa-
tion with each value during execution, propagates that information
when values are copied, and updates that information when values
are used in an operation to give a new value. Equivalently, this
can be viewed as propagating information along edges in the con-
straint graph (taking advantage of the fact that the execution is a
topological-order traversal of that graph). Given the selection of
any subset of the program state as a taint source, the analysis com-
putes which other parts of the program state have a data dependency
on that source.
Identifying high taint degree. An intuition that partially explains
why many encoding functions are hard to reason about is that they
mix together constraints related to many parts of the program in-
put, which makes constraint solving difficult. For instance, this is
illustrated by a contrast between an encryption function that uses
a block cipher in CBC mode, and one that uses a stream cipher.
Though the functions perform superficially similar tasks, the block
cipher encryption is a barrier to dynamic symbolic execution be-
cause of its high mixing, while a stream cipher is not. Because of
the lack of mixing, a constraint solver can efficiently determine that
a single plaintext byte can be modified by making a change to the
corresponding ciphertext byte. We use this intuition for detecting
encoding functions for decomposition: the encoding functions we
are interested in tend to mix their inputs. But we exclude simple
stream ciphers from the class of encoding functions we consider,
since it is easy enough to solve them directly.

We can potentially use dynamic dependency analysis to track
the dependencies of values on any earlier part of the program state;
for instance we have experimented with treating every input to a
function as a dependency (taint) source. But for the present paper
we confine ourselves to using the inputs to the entire program (i.e.,
from system calls) as dependency sources. To be precise our analy-
sis assigns an identifier to each input byte, and determines, for each
value in an execution, which subset of the input bytes it depends
on. We call the number of such input bytes the value’s taint degree.
If the taint degree of a byte is larger than a configurable threshold,
we refer to it as high-taint-degree. We group together a series of
high-taint-degree values in adjacent memory locations as a single
buffer; our decomposition applies to a single such buffer.

This basic technique could apply to buffers anywhere in an exe-
cution, but we further enhance it to identify functions that produce
high-taint-degree buffers as output. This has several benefits: it re-
duces the number of candidate buffers that need to be checked in
later stages, and in cases where the tool needs to later find an in-
verse of a computation (Section 3.2.2), it is convenient to search us-



ing a complete function. Our tool considers a buffer to be an output
of a function if it is live at the point in time that a return instruction
is executed. Also, to ensure we identify a function that includes
the complete encoding functionality, our tool uses the dependency
analysis to find the first high-taint-degree computation that the out-
put buffer depends on, and chooses the function that encloses both
this first computation and the output buffer.

In the example of Figure 1, the buffers containing the outputs of
aes_cbc_decrypt and compute_sha1 would both be found
as candidates by this technique, since they both would contain bytes
that depend on all of the input bytes (the final decrypted byte, and
all of the hash value bytes).
Checking dependence conditions. Values with a high taint degree
as identified above are candidates for decomposition because they
are potentially problematic for symbolic reasoning. But to apply
our technique to them, they must also appear in a proper context in
the program to apply our decomposition. Intuitively the structure
of the program must be like those in Figure 2. To be more precise,
we describe (in-)dependence conditions that limit what parts of the
program may use values produced by other parts of the program.
The next step in our identification approach is to verify that the
proper dependence conditions hold (on the observed execution).
This checking is needed to avoid improper decompositions, and it
also further filters the potential encoding functions identified based
on taint degree.

Intuitively, the dependence conditions require that the encoding
function be independent of the rest of the program, except for the
specific relationships we expect. For serial decomposition, our tool
checks that the input bytes that were used as inputs to the surjec-
tive transformation are not used later in the program. For side-
condition decomposition, our tool checks that the result of the free
side-condition predicate is the only use of the value computed from
the main input (e.g., the computed checksum), and that the remain-
ing input (e.g., the expected checksum from a header) is not used
other than in the free side-condition. Our tool performs this check-
ing using the same kind of dynamic dependency analysis used to
measure taint degree.

In the example of Figure 1, our tool checks that the encrypted
input to aes_cbc_decrypt is not used later in the program (it
cannot be, because it is overwritten). It also checks that the hash
buffer pointed to by h is not used other than in the memcmp on line
11, and that the buffer m->hash, containing the expected hash
value, is not used elsewhere.
Identifying new encoding functions. The identification step may
need to be run in each iteration of the exploration because new en-
coding functions functions may appear that had not been seen in
previous iterations. As an optimization, BitFuzz runs the identifi-
cation on the first iteration of the exploration, as shown in Figure 3,
and then, on each new iteration, it checks whether the solver times
out when solving any constraint. If it does, it re-runs the identifica-
tion on the current execution trace.
A graph-based alternative. Our taint-degree dependency analysis
can be seen as simple special case of a broader class of algorithms
that identify interesting parts of a program from the structure of its
data dependency (data-flow) graph. The approach we currently use
has efficiency and simplicity advantages because it can operate in
one pass over a trace, but in the future we are also interested in
exploring more general approaches that explicitly construct the de-
pendency graph. For instance, the interface between the two stages
in a serial decomposition must be a cut in the constraint graph, and
we would generally expect it to be minimal cut in the sense of the
subset partial order. So we can search for candidate serial decom-

positions by using a maximum-flow-minimum-cut algorithm as in
McCamant and Ernst’s Flowcheck tool [28].

3.2.2 Identifying Inverse Functions
Recall that to re-stitch inputs after serial decomposition, our ap-

proach requires the inverses of surjective transformation functions.
This requirement is reasonable because surjective functions like de-
cryption and decompression are commonly the inverses of other
functions (encryption and compression) that apply to arbitrary data.
These functions and their inverses are often used in concert, so their
implementations can often be found in the same binaries or in pub-
licly available libraries (e.g., [33, 46]). Thus, we locate relevant
inverse functions by searching for them in the code being analyzed
as well as in publicly available libraries.

Specifically, we check whether two functions are each others’ in-
verses by random testing. If f and f ′ are two functions, and for sev-
eral randomly-chosen x and y, f ′(f(x)) = x and f(f ′(y)) = y,
then f and f ′ are likely inverses of each other over most of their do-
mains. Suppose f is the encoding function we wish to invert. Start-
ing with all the functions from the same binary module that were
exercised in the trace, we infer their interfaces using our previous
BCR tool [4]. To prioritize the candidates, we use the intuition that
the encryption and decryption functions likely have similar inter-
faces. For each candidate inverse g, we compute a 4-element fea-
ture vector counting how many of the parameters are used only for
input, only for output, or both, and how many are pointers. We then
sort the candidates in increasing order of the Manhattan distances
(sum of absolute differences) between their features and those of f .

For each candidate inverse g, we execute f ◦ g and g ◦ f on k
random inputs each, and check whether they both return the orig-
inal inputs in all cases. If so, we consider g to be the inverse of
f . To match the output interface of g with the input interface of
f , and vice-versa, we generate missing inputs either according to
the semantics inferred by BCR (such as buffer lengths), or ran-
domly; if there are more outputs than inputs we test each possible
mapping. Increasing the parameter k improves the confidence in
resulting identification, but the choice of the parameter is not very
sensitive: test buffers have enough entropy that even a single false
positive is unlikely, but since the tests are just concrete executions,
they are inexpensive. If we do not find an inverse among the exe-
cuted functions in the same module, we expand the search to other
functions in the binary, in other libraries shipped with the binary,
and in standard libraries.

For instance, in the example of Figure 1, our tool requires an
AES encryption function to invert the AES decryption used by the
bot program. In bots it is common for the encryption function to
appear in the same binary, since the bot often encrypts its reply
messages with the same cipher, but in the case of a standard func-
tion like AES we could also find the inverse in a standard library
like OpenSSL [33].

Once an inverse function is identified, we use our previous BCR
tool to extract the function [4]. The hybrid disassembly technique
used by BCR extracts the body of the function, including instruc-
tions that did not appear in the execution, which is important be-
cause when re-stitching a partial input branches leading to those,
previously unseen, instructions may be taken.

3.3 Multiple Encoding Layers
If a program has more than one encoding function, we can re-

peat our approach to decompose the constraints from each encoding
function in turn, creating a multi-layered decomposition. The de-
composition operates from the outside in, in the order the encoding
functions are applied to the input, intuitively like peeling the layers



of an onion. For instance, in the example of Figure 1, our tool de-
composes first the decryption function and then the hash-checking
function, finally leaving only the botnet client’s command parsing
and malicious behavior for exploration.

4. IMPLEMENTATION
In this section we provide implementation details for our BitFuzz

tool and describe our Internet-in-a-Workstation environment.

4.1 BitFuzz
We have implemented our approach in a tool called BitFuzz. Bit-

Fuzz’s operation is similar to previous exploration tools for pro-
gram binaries such as SAGE [21], SmartFuzz [31], and Elcano [5],
but with the addition of our stitched dynamic symbolic execution
techniques. BitFuzz shares some underlying infrastructure with our
previous tools including Elcano, but it lacks support for protocol in-
formation and adds other new features such as distributed operation
on computer clusters.

BitFuzz is implemented using the BitBlaze [42] platform for bi-
nary analysis, which includes TEMU, an extensible whole-system
emulator that implements taint propagation, and Vine, an interme-
diate language and analysis library that represents the precise se-
mantics of x86 instructions in terms of a few basic operations. Bit-
Fuzz uses TEMU to collect execution traces and Vine to generate
a symbolic representation of the program’s computations and path
condition. To solve modified path conditions, the experiments in
this paper use STP [16], a complete decision procedure incorporat-
ing the theories of arrays and bit-vectors.

BitFuzz maintains two pools, of program inputs and execution
traces: each input gives a trace, and each trace can yield one or
more new inputs. To bias this potentially unbounded feedback
towards interesting paths, it performs a breadth-first search (i.e.,
changing a minimal number of branches compared to the original
input), prioritizes traces that cover the most new code blocks, and
only reverts one occurrence of a loop condition.
Vulnerability detection. BitFuzz supports several techniques for
vulnerability detection and reports any inputs flagged by these tech-
niques. It detects program termination and invalid memory access
exceptions. Executions that exceed a timeout are flagged as poten-
tial infinite loops. It also uses TEMU’s taint propagation module
to identify whether the input (e.g., network data) is used in the pro-
gram counter or in the size parameter of a memory allocation.
Decomposition and re-stitching details. Following the approach
introduced in Section 3.1.1, our system implements decomposition
by making local modifications constraints generated from execu-
tion, with some additional optimizations. For serial decomposi-
tion, it uses a TEMU extension mechanism called a hook to imple-
ment the renaming of symbolic values. As a further optimization,
the hook temporarily disables taint propagation inside the encoding
function so that no symbolic constraints are generated. To save the
work of recomputing a checksum on each iteration in the case of
side-condition decomposition, our tool can also directly force the
conditional branch implementing the predicate p to take the same
direction it did on the original execution.

4.2 Internet-in-a-Workstation
We have developed an environment where we can run malware

in isolation, without worrying about malicious behavior leaking to
the Internet. Many malware programs, e.g., bots, act as network
clients that start connections to remote C&C servers. Thus, the
input that BitFuzz needs to feed to the program in each iteration is
often the response to some request sent by the program.

All network traffic generated by the program, running in the ex-
ecution monitor, is redirected to the local workstation in a manner
that is transparent to the program under analysis. In addition, we
have developed two helper tools: a modified DNS server which can
respond to any DNS query with a preconfigured or randomly gen-
erated, IP address, and a generic replay server. The generic replay
server takes as input an XML file that describes a network dialog
as an ordered sequence of connections, where each connection can
comprise multiple messages in either direction. It also takes as in-
put the payload of the messages in the dialog. Such generic server
simplifies the task of setting up different programs and protocols.
Given a network trace of the communication we generate the XML
file describing the dialog to explore, and give the replay server the
seed messages for the exploration. Then, at the beginning of each
exploration iteration BitFuzz hands new payload files (i.e., the re-
stitched program input) to the replay server so that they are fed
to the network client program under analysis when it opens a new
connection.

5. EXPERIMENTAL EVALUATION
This section evaluates our approach by finding bugs in malware

that uses complex encoding functions. It demonstrates that our de-
composition and re-stitching approach finds some bugs in malware
that would not be found without it, and that it significantly increases
the efficiency of the exploration in other cases. It presents the mal-
ware bugs we find and shows that these bugs have persisted in the
malware families for long periods of time, sometimes years.
Malware samples. The first column of Table 1 presents the four
popular families of malware that we have used in our evaluation.
Three of them (Cutwail, Gheg, and MegaD) are spam bots, while
Zbot is a trojan used for stealing private information from com-
promised hosts. At the time of writing MegaD accounts for over
15% of the spam in the Internet, Cutwail/Pushdo for over 7% [27].
Gheg is a smaller spam contributor but is still significant with an
estimated size over 60,000 bots [22].

All four malware families act as network clients, that is, when
run they attempt to connect to a remote C&C server rather than
opening a listening socket and await for commands. All four of
them use encryption to obfuscate their network communication,
avoid signature-based NIDS detection, and make it harder for ana-
lysts to reverse-engineer their C&C protocol. Cutwail, Gheg, and
MegaD use proprietary encryption algorithms, while Zbot uses the
well-known RC4 stream cipher. In addition to encryption, Zbot
also uses an MD5 cryptographic hash function to verify the in-
tegrity of a configuration file received from the server.
Experimental setup. For each bot we are given a network trace of
the bot communication from which we extract an XML representa-
tion of the dialog between the bot and the C&C server, as well as
the payload of the network packets in that dialog. This information
is needed by the replay server to provide the correct sequence of
network packets to the bot during exploration. For example, this
is needed for MegaD where the response sent by the replay server
comprises two packets that need to be sent sequentially but cannot
be concatenated together due to the way that the bot reads from
the socket. As a seed for the exploration we use the same content
observed in the dialog captured in the network trace. Other seeds
can alternatively be used. Although our setup can support explor-
ing multiple connections, currently, we focus the exploration on the
first connection started by the bot.

For the experiments we run BitFuzz on a 3GHz Intel Core 2 Duo
Linux workstation with 4GB of RAM running Ubuntu Server 9.04.



Name Program Input size # Instruction Decryption Checksum/hash Runtime
size (KB) (bytes) (×103) Algorithm Max. taint degree Algorithm Max. taint degree (sec)

Zbot 126.5 5269 1307.3 RC4-256 1 MD5 4976 92
MegaD 71.0 68 4687.6 64-bit block cipher 8 none n/a 105
Gheg 32.0 271 84.5 8-bit stream cipher 128 none n/a 5

Cutwail 50.0 269 23.1 byte-based cipher 1 none n/a 2

Table 1: Summary of the applications on which we performed identification of encoding functions.

The emulated guest system where the malware program runs is a
Microsoft Windows XP SP3 image with 512MB of emulated RAM.

5.1 Identification of Encoding Functions and
Their Inverses

The first step in our approach is to identify the encoding func-
tions. The identification of the encoding functions happens on the
execution trace produced by the seed at the beginning of the ex-
ploration. We set the taint degree threshold to 4, so that any byte
that has been generated from 5 or more input bytes is flagged. Ta-
ble 1 summarizes the results. The identification finds an encoding
function in three of the four samples: Gheg, MegaD, and Zbot. For
Cutwail, no encoding function is identified. The reason for this is
that Cutwail’s cipher is simple and does not contain any mixing of
the input, which is the property that our encoding function iden-
tification technique detects. Without input mixing the constraints
generated by the cipher are not complex to solve. We show this in
the next section. In addition, Cutwail’s trace does not contain any
checksum functions.

For Zbot, the encoding function flagged in the identification cor-
responds to the MD5 checksum that it uses to verify the integrity of
the configuration file it downloads from the C&C server. In addi-
tion to the checksum, Zbot uses the RC4 cipher to protect its com-
munication, which is not flagged by our technique. This happens
because RC4 is a stream cipher that does no mixing of the input,
i.e., it does not use input or output bytes to update its internal state.
The input is simply combined with a pseudo-random keystream us-
ing bit-wise exclusive-or. Since the keystream is not derived from
the input but from a key in the data section, it is concrete for the
solver. Thus, the solver only needs to invert the exclusive-or com-
putation to generate an input, which means that RC4 introduces no
hard-to-solve constraints.

For the other two samples (Gheg and MegaD) the encoding func-
tion flagged by the identification corresponds to the cipher. MegaD
uses a 64-bit block cipher, which mixes 8 bytes from the input be-
fore combining them with the key. Gheg’s cipher uses a one-byte
key that is combined with the first input byte to produce a one-byte
output that is used also as key to encode the next byte. This pro-
cess repeats and the mixing (taint degree) of each new output byte
increases by one. Neither Gheg nor MegaD uses a checksum.

Once the encoding functions have been identified, BitFuzz in-
troduces new symbols for the outputs of those encoding functions,
effectively decomposing the constraints in the execution into two
sets and ignoring the set of hard-to-solve constraints introduced by
the encoding function.

The results of our encoding function identification, for the first it-
eration of the exploration, are summarized in Table 1, which presents
on the left the program name and program size, the size of the in-
put seed, and the number of instructions in the execution trace pro-
duced by the seed. The decryption and checksum columns describe
the algorithm type and the maximum taint degree the algorithm pro-
duces in the execution. The rightmost column shows the runtime

of the identification algorithm, which varies from a few seconds to
close to two minutes. Because the identification is reused over a
large number of iterations, the amortized overhead is even smaller.
Identifying the inverse functions. For Gheg and MegaD, BitFuzz
needs to identify the inverse of the decryption function so that it
can be used to re-stitch the inputs into a new program input for
another iteration. (The encryption function for MegaD is the same
one identified in previous work [4]; we use it to check the accuracy
of our new identification approach.)

As described in Section 3.2.2, BitFuzz extracts the interface of
each function in the execution trace that belongs to the same mod-
ule as the decoding function, and then prioritizes them by the sim-
ilarity of their interface to the decoding function. For both Gheg
and MegaD, the function with the closest prototype is the encryp-
tion function, as our tool confirms by random testing with k = 10
tests. These samples illustrate the common pattern of a matching
encryption function being included for two-way communication,
so we did not need to search further afield for an inverse.

5.2 Decomposition vs. Non-Decomposition
In this section we compare the number of bugs found by Bit-

Fuzz when it uses decomposition and re-stitching, which we call
full BitFuzz, and when it does not, which we call vanilla BitFuzz.
Full BitFuzz uses the identified decoding functions to decompose
the constraints into two sets, one with the constraints introduced by
the decryption/checksum function and the other with the remaining
constraints after that stage. In addition, each iteration of MegaD
and Gheg uses the inverse function to re-stitch the inputs into a
program input. Vanilla BitFuzz is comparable to previous dynamic
symbolic execution tools. In both full and vanilla cases, BitFuzz
detects bugs using the techniques described in Section 4.

In each iteration of its exploration, BitFuzz collects the execu-
tion trace of the malware program starting from the first time it
receives network data. It stops the trace collection when the mal-
ware program sends back a reply, closes the communication socket,
or a bug is detected. If none of those conditions is satisfied the
trace collection is stopped after 2 minutes. For each collected trace,
BitFuzz analyzes up to the first 200 input-dependent control flow
branches and automatically generates new constraints that would
explore new paths in the program. It then queries STP to solve
each generated set of constraints, uses the solver’s response to gen-
erate a new input, and adds it to the pool of inputs to test on future
iterations. Because constraint solving can take a very long time
without yielding a meaningful result, BitFuzz discards a set of con-
straints if STP runs out of memory or exceeds a 5-minute timeout
for constraint solving.

We run both vanilla and full BitFuzz for 10 hours and report
the bugs found, which are summarized in Table 2. Detailed de-
scriptions of the bugs follow in Section 5.3. We break the results
in Table 2 into three categories. The first category includes Zbot
and MegaD for which full BitFuzz finds bugs but Vanilla BitFuzz
does not. Full BitFuzz finds a total of 4 bugs, three in Zbot and



Name Vulnerability Disclosure Encoding Search time (min.)
type public identifier functions full vanilla

Zbot
Null dereference OSVDB-66499 [38] checksum 17.8 >600

Infinite loop OSVDB-66500 [37] checksum 129.2 >600
Buffer overrun OSVDB-66501 [36] checksum 18.1 >600

MegaD Process exit n/a decryption 8.5 >600
Gheg Null dereference OSVDB-66498 [35] decryption 16.6 144.5

Cutwail Buffer overrun OSVDB-66497 [34] none 39.4 39.4

Table 2: Description of the bugs our system finds in malware. The column “full” shows the results from the BitFuzz system including
our decomposition and re-stitching techniques, while the “vanilla” column gives the results with these techniques disabled. “>600”
means we run the tool for 10 hours and it is yet to find the bug.

one in MegaD. Three of the bugs are found in under 20 minutes
and the second Zbot bug is found after 2 hours. Vanilla BitFuzz
does not find any bugs in the 10-hour period. This happens due to
the complexity of the constraints being introduced by the encoding
functions. In particular, using full BitFuzz the 5-minute timeout
for constraint solving is never reached and STP never runs out of
memory, while using vanilla BitFuzz more than 90% of the gener-
ated constraints result in STP running out of memory.

The second category comprises Gheg for which both vanilla and
full BitFuzz find the same bug. Although both tools find the same
bug, we observe that vanilla BitFuzz requires almost ten times as
long as full BitFuzz to do so. The cipher used by Gheg uses a
one-byte hardcoded key that is combined with the first input byte
using bitwise exclusive-or to produce the first output byte, that out-
put byte is then used as key to encode the second byte also using
bitwise exclusive-or and so on. Thus, the taint degree of the first
output byte is one, for the second output byte is two and so on un-
til the maximum taint degree of 128 shown in Table 1. The high
maximum taint degree makes it harder for the solver to solve and
explains why vanilla BitFuzz takes much longer than full BitFuzz
to find the bug. Still, the constraints induced by the Gheg cipher are
not as complex as the ones induced by the Zbot and MegaD ciphers
and the solver eventually finds solutions for them. This case shows
that even in cases where the solver will eventually find a solution,
using decomposition and re-stitching can significantly improve the
performance of the exploration.

The third category comprises Cutwail for which no encoding
functions with high taint degree are identified and thus vanilla Bit-
Fuzz and full BitFuzz are equivalent.

In summary, full BitFuzz using decomposition and re-stitching
clearly outperforms vanilla BitFuzz. Full BitFuzz finds bugs in
cases where vanilla BitFuzz fails to do so due to the complexity of
the constraints induced by the encoding functions. It also improves
the performance of the exploration in other cases were the encoding
constraints are not as complex and will eventually be solved.

5.3 Malware Vulnerabilities
In this section we present the results of our manual analysis to

understand the bugs discovered by BitFuzz and our experiences re-
porting the bugs.
Zbot. BitFuzz finds three bugs in Zbot. The first one is a null
pointer dereference. One of the C&C messages contains an array
size field, which the program uses as the size parameter in a call to
RtlAllocateHeap. When the array size field is larger than the
available memory left in its local heap, the allocation returns a null
pointer. The return value of the allocation is not checked by the

program, which later attempts to write to the buffer, crashing when
it tries to dereference the null pointer.

The second bug is an infinite loop condition. A C&C message
comprises of a sequence of blocks. Each block has a 16-byte header
and a payload. One of the fields in the header represents the size
of the payload, s. When the trojan program finishes processing a
block, it iteratively moves to the next one by adding the block size,
s + 16, to a cursor pointer. When the value of the payload size is
s = −16, the computed block size becomes zero, and the trojan
keeps processing the same block over and over again.

The last bug is a stack buffer overrun. As mentioned above, a
C&C message comprises of a sequence of blocks. One of the flags
in the block header determines whether the block payload is com-
pressed or not. If the payload is compressed, the trojan program de-
compresses it by storing the decompressed output into a fixed-size
buffer located on the stack. When the length of the decompressed
payload is larger than the buffer size, the program will write be-
yond the buffer. If the payload is large enough, it will overwrite a
function return address and can eventually lead to control flow hi-
jacking. This vulnerability is exploitable and we have successfully
crafted a C&C message that exploits the vulnerability and hijacks
the execution of the malware.
MegaD. BitFuzz finds one input that causes the MegaD bot to exit
cleanly. We analyzed this behavior using the MegaD grammar pro-
duced by previous work [6] and found that the bug is present in
the handling of the ping message (type 0x27). If the bot receives
a ping message and the bot identifier (usually set by a previously
received C&C message) has not been set, then it sends a reply pong
message (type 0x28) and terminates. This behavior highlights the
fact that, in addition to bugs, our stitched dynamic symbolic exe-
cution can also discover C&C messages that cause the malware to
cleanly exit (e.g., kill commands), if those commands are available
in the C&C protocol. These messages cannot be considered bugs
but can still be used to disable the malware. They are specially
interesting because they may have been designed to completely re-
move all traces of the malware running in the compromised host.
In addition, their use could raise fewer ethical and legal questions
than the use of an exploit would.
Gheg. BitFuzz finds one null pointer dereference bug in Gheg.
The bug is similar to the one in Zbot. One of the C&C messages
contains an array size field, whose value is multiplied by a con-
stant (0x1e8) and the result used as the size parameter in a call to
RtlAllocateHeap. The return value of the allocation is not
checked by the program and the program later writes into the al-
located buffer. When the array size field value is larger than the
available memory in its local heap, the allocation fails and a null



Family MD5 First seen Reported by

Zbot
0bf2df85*7f65 Jun-23-09 Prevx
1c9d16db*7fc8 Aug-17-09 Prevx
7a4b9ceb*77d6 Dec-14-09 ThreatExpert

MegaD

700f9d28*0790 Feb-22-08 Prevx
22a9c61c*e41e Dec-13-08 Prevx

d6d00d00*35db Feb-03-10 VirusTotal
09ef89ff*4959 Feb-24-10 VirusTotal

Gheg

287b835b*b5b8 Feb-06-08 Prevx
edde4488*401e Jul-17-08 Prevx
83977366*b0b6 Aug-08-08 ThreatExpert
cdbd8606*6604 Aug-22-08 Prevx
f222e775*68c2 Nov-28-08 Prevx

Cutwail 1fb0dad6*1279 Aug-03-09 Prevx
3b9c3d65*07de Nov-05-09 Prevx

Table 3: Bug reproducibility across different malware variants.
The shaded variants are the ones used for exploration.

pointer is returned. The program fails to check that the returned
value is a null pointer and tries to dereference it.
Cutwail. BitFuzz finds a buffer overrun bug that leads to an out-
of-bounds write in Cutwail. One of the received C&C messages
contains an array. Each record in the array has a length field spec-
ifying the length of the record. This field is used as the size pa-
rameter in a call to RtlAllocateHeap. The returned pointer is
appended to a global array that can only hold 50 records. If the
array in the received message has more than 50 records, the 51st

record will be written outside the bounds of the global array. Near
the global array, there exists a pointer to a private heap handle and
the out-of-bounds write will overwrite this pointer. Further calls to
RtlAllocateHeap will then attempt to access the malformed
heap handle, and will lead to heap corruption and a crash.
Reporting the bugs. We reported the Gheg bug to the editors of the
Common Vulnerabilities and Exposures (CVE) database [9]. Our
suggestion was that vulnerabilities in malware should be treated
similarly to vulnerabilities in commercial or open source programs,
of course without reporting back to the developers. However, the
CVE editors felt that malware vulnerabilities were outside the scope
of their database. Subsequently, we reported the Gheg vulnerability
to the Open Source Vulnerability Database (OSVDB) moderators
who accepted it. Since then, we have reported all other vulnera-
bilities except the MegaD one, which may be considered intended
functionality by the botmaster. Table 2 presents the public identi-
fiers for the disclosed vulnerabilities. We further address the issue
of disclosing malware vulnerabilities in Section 6.

5.4 Bug Persistence over Time
Bot binaries are updated very often to avoid detection by anti-

virus tools. One interesting question is how persistent over time are
the bugs found by BitFuzz. To evaluate this, we retest our crashing
inputs on other binaries from the same malware families. Table 3
shows all the variants, with the shaded variants corresponding to
the ones explored by BitFuzz and mentioned in Table 1.

We replay the input that reproduces the bug BitFuzz found on
the shaded variant on the rest of variants from the same family. As
shown, the bugs are reproducible across all the variants we tested.
These means for instance that the MegaD bug has been present for
at least two years (the time frame covered by our variants). In ad-
dition, the MegaD encryption and decryption functions (and the
key they use), as well as the C&C protocol have not changed, or
barely evolved, through time. Otherwise the bug would not be
reproducible in older variants. The results for Gheg are similar.

The bug reproduces across all Gheg variants, although in this case
our most recent sample is from November, 2008. Note that, even
though the sample is relatively old it still works, meaning that it still
connects to a C&C server on the Internet and sends spam. For Zbot,
all three bugs reproduce across all variants, which means they have
been present for at least 6 months. These results are important be-
cause they demonstrate that there are components in bot software,
such as the encryption functions and C&C protocol grammar, that
tend to evolve slowly over time and thus could be used to identify
the family to which an unknown binary belongs, one widespread
problem in malware analysis.

6. DISCUSSION
In light of our results, this section provides additional discussion

on the applications for the discovered bugs and associated ethical
considerations. Then, it presents a potential scenario for using the
discovered bugs, and describes some limitations of our approach.

6.1 Applications and Ethical Considerations
Malware vulnerabilities could potentially be used in different

“benign” applications such as remediating botnet infestations, for
malware genealogy since we have shown that the bugs persist over
long periods of time, as a capability for law enforcement agencies,
or as a strategic resource in state-to-state cyberwarfare [39]. How-
ever, their use raises important ethical and legal questions. For ex-
ample, there may be a danger of significant negative consequences,
such as adverse effects to the infected machines. Also, it is unclear
which legal entity would perform such remediation, and whether
currently there exists any entity with the legal right to take such
action. On the other hand, having a potential avenue for cleanup
and not making use of it also raises some ethical concerns since if
such remediation were effective, it would be a significant service to
the malware’s future third-party victims (targets of DDoS attacks,
spam recipients, etc.). Such questions belong to recent and ongoing
discussions about ethics in security research (e.g., [13]) that have
not reached a firm conclusion.

Malware vulnerabilities could also be used for malign purposes.
For instance, there are already indications that attackers are tak-
ing advantage of known vulnerabilities in web interfaces used to
administer botnets to hijack each others’ botnets [11]. This raises
concerns about disclosing such bugs in malware. In the realm of
vulnerabilities in benign software, there has been significant de-
bate on what disclosure practices are socially optimal and there is a
partial consensus in favor of some kind of “responsible disclosure”
that gives authors a limited form of advance notice. However, it is
not clear what the analogous best practice for malware vulnerabil-
ities should be. We have faced this disclosure issue when decid-
ing whether to publicly disclose the vulnerabilities we found and
to which extent we should describe the vulnerabilities in the paper.
We hope this paper strikes a fine balance but we also believe further
discussion is needed on the proper avenue for disclosing malware
vulnerabilities.
Potential application scenario. While we have not used our
crashing inputs on bots in the wild, here we hypothetically dis-
cuss one possible scenario of how one might do so. The malware
programs we analyze start TCP connections with a remote C&C
server. To exploit the vulnerabilities we have presented, we need
to impersonate the C&C server and feed inputs in the response to
the initial request from the malware program. This scenario often
happens during a botnet takedown, in which law enforcement or
other responding entities identify the IP addresses and DNS names
associated with the C&C servers used by a botnet, and appeal to rel-



evant ISPs and registrars to have them de-registered or redirected
to the responders. The responders can then impersonate the C&C
server: one common choice is a sinkhole server that collects statis-
tics on requests but does not reply. But such responders are also
in a position to perform more active communication with bots, and
for instance vulnerabilities like the ones we present could be used
for cleanup if the botnet does not support cleanup via its normal
protocol. For example, such a scenario happened recently during
the attempted MegaD takedown by FireEye [29]. For a few days
FireEye ran a sinkhole server that received the C&C connections
from the bots. This sinkhole server was later handed to the Shad-
owserver Foundation [41].

6.2 Limitations
We have found our techniques to be quite effective against the

current generation of malware. But since malware authors have
freedom in how they design encoding functions, and an incentive
to avoid analysis of their programs, it is valuable to consider what
measures they might take against analysis.
Preventing access to inverses. To stitch complete inputs in the
presence of a surjective transformation, our approach requires ac-
cess to an appropriate inverse function: for instance, the encryp-
tion function corresponding to a decryption function. So far, we
have been successful in finding such inverses either within the mal-
ware binary, or from standard sources, but these approaches could
be thwarted if malware authors made different choices of crypto-
graphic algorithms. For instance, malware authors could design
their protocols using asymmetric (public-key) encryption and dig-
ital signatures. Since we would not have access to the private key
used by the C&C server, we could not forge the signature in the
messages sent to the bot. We could still use our decomposition
and re-stitching approach to find bugs in malware, because the sig-
nature verification is a basically a free side-condition that can be
ignored. However, we could only build a exploit for our modified
bot, as other bots will verify the (incorrect) signature in the mes-
sage and reject it. Currently, most malware do not use public-key
cryptography, but that may change. In the realm of symmetric en-
cryption, malware authors could deploy different non-standard al-
gorithms for the server-to-bot and bot-to-server directions of com-
munication: though not theoretically infeasible, the construction of
an encryption implementation from a binary decryption implemen-
tation might be challenging to automate. For instance, Kolbitsch
et al. [25] faced such a situation in recreating binary updates for
the Pushdo trojan, which was feasible only because the decryption
algorithm used was weak enough to be inverted by brute force for
small plaintexts.
Obfuscating encoding functions. Malware authors could poten-
tially keep our system from finding encoding functions in binaries
by obfuscating them. General purpose packing is not an obsta-
cle to our dynamic approach, but more targeted kinds of obfus-
cation would be a problem. For instance, our current implemen-
tation recognizes only standard function calls and returns, so if a
malware author rewrote them using non-standard instructions our
tool would require a corresponding generalization to compensate.
Further along the arms race, there are also fundamental limitations
arising from our use of a dynamic dependency analysis, similar to
the limitations of dynamic taint analysis [8].

7. RELATED WORK
One closely related recent project is Wang et al.’s TaintScope

system [43]. Our goals partially overlap with theirs in the area of
checksums, but our work differs in three key aspects. First, Wang

et al.’s techniques do not apply to decompression or decryption.
Second, TaintScope performs exploration based on taint-directed
fuzzing [17], while our system harnesses the full generality of sym-
bolic execution. (Wang et al. use symbolic execution only for in-
verting the encodings of checksums, a task which is trivial in our
applications.) Third, Wang et al. evaluate their tool only on benign
software, while we perform the first automated study of vulnerabil-
ities in malware.

The encoding functions we identify within a program can also be
extracted from a program to be used elsewhere. The Binary Code
Reuse [4] and Inspector Gadget [25] systems can be used to ex-
tract encryption and checksum functionalities, including some of
the same ones our tool identifies, for applications such as network
defense. Our application differs in that our system can simply ex-
ecute the code in its original context instead of extracting it. In-
spector Gadget [25] can also perform so-called gadget inversion,
which is useful for the same reasons as we search for existing in-
verse functions. However, their approach does not work on strong
cryptographic functions.

Previous work in protocol reverse engineering has used alterna-
tive heuristics to identify cryptographic operations in malware bi-
naries. For instance ReFormat [44] proposes detecting such func-
tions by measuring the ratio of arithmetic and bitwise instructions
to other instructions. Our use of taint degree as a heuristic is more
specifically motivated by the limitations of symbolic execution: for
instance a simple stream cipher would be a target of the previous
approaches but is not for this paper.

Decomposition is a broad class of techniques in program anal-
ysis and verification, but most previous decomposition techniques
are symmetric in the sense that each of the sub-components of the
program are analyzed similarly, while a key aspect of our approach
is that different components are analyzed differently. In analysis
and verification, decomposition at the level of functions, as in sys-
tems like Saturn [45], is often called a compositional approach. In
the context of tools based on symbolic execution, Godefroid [18]
proposes a compositional approach that performs dynamic sym-
bolic execution separately on each function in a program. Because
this is a symmetric technique, it would not address our problem of
encoding functions too complex to analyze even in isolation. More
similar to our approach is grammar-based fuzzing [5, 19], an in-
stance of serial decomposition. However parsers require different
specialized techniques than encoding functions.

8. CONCLUSION
We have presented a new approach, stitched dynamic symbolic

execution, to allow analysis in the presence of functionality that
would otherwise be difficult to analyze. Our techniques for auto-
mated identification, decomposition, and re-stitching allow our sys-
tem to bypass functions like decryption and checksum verification
to find bugs in core program logic. Specifically, these techniques
enable the first automated study of vulnerabilities in malware. Our
BitFuzz tool finds 6 unique bugs in 4 prevalent malware families.
These bugs can be triggered over the network to terminate or take
control of a malware instance. These bugs have persisted across
malware revisions for months, and even years. There are still many
unanswered questions about the applications and ethical concerns
surrounding malware vulnerabilities, but our results demonstrate
that vulnerabilities in malware are an important security resource
that should be the focus of more research in the future.
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