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Abstract CodiP2P is a distributed platform for computation based on the peer-to-
peer paradigm. This article presents a novel distributed authentication method that
suits the platform and adapts to its characteristics. The developed method is based
on the Web of Trust paradigm, i.e., not depending on a traditional PKI infrastructure,
and focuses on efficiency both in the number of messages transmitted and digital
signatures processed by exploiting the inherent locality found in the platform. As part
of the method, a reliable and efficient distributed public key repository is developed
taking CoDiP2P’s de Bruijn topology as a cornerstone.
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1 Introduction

The spreading demand of intensive computational resources from different emerging
research areas (life-science, fluid dynamics, molecular dynamic, weather simulation,
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etc.) has required high investments in HPC (High-Performance Computing) infras-
tructures during the last decades. These infrastructures pay higher cost of ownership,
not only for acquiring the hardware, but also for maintenance and administration
costs via staffing, power infrastructure, cooling, and networking.

In spite of such efforts and technology advances, there are many applications that
do not fit well in traditional HPC infrastructures due to their special features. For ex-
ample, some massively parallel applications (like cryptography challenges or protein
folding) require such huge volume of resources that can not be executed on a super-
computer (they would require the exclusive use of the infrastructure for months or
even years). In these HTC (High-Throughput Computing) applications, the execution
time is not so critical. Thus, the main factor is to aggregate enough computational
resources for large periods of time to achieve the application’s objectives.

Also, other types of applications (bioinformatics services, health care, etc.) will
not require so much performance but instead a good availability and accessibility.
Applications with response-time requirements cannot wait so much time in the job
queue in order to gain access to the computer for their execution.

These specific requirements—high maintenance costs, large high throughput per-
formance, and fast response—have motivated the development of new paradigms and
architectures of distributed computing capable of integrating and sharing multiple
computational resources from personal computers and providing them to the final
users through Internet or by an existing grid platform.

The CoDiP2P [1] is a new computing platform designed following these premises.
It is a decentralized architecture to distribute both the computation tasks and re-
source management among all participants (peers or nodes) using the P2P paradigm.
CoDiP2P is based in the concept of harvesting idle resources (cycles and storage)
from personal computers connected to the Internet. However, contrary to other volun-
tary computing systems (BOINC [2] for example), the gathered resources are shared
among all the users of the system and everybody can collaborate and take profit from
the system.

CoDiP2P is capable of providing high throughput computing to a wide range
of applications. It provides great advantages: scalability, fault-tolerance, low-com-
plexity applications, low-cost, and low footprint. However, all these benefits can be
not enough if users are not guaranteed on the protection of their resources and ap-
plications. Thus, one of the main challenges on CodiP2P is to achieve the safety of
users’ resources. This involves authorization and authentication, tracking malicious
peers behavior, keeping the confidentiality on both code and data and finally guaran-
teeing the invulnerability of the system. For all this, the goal of the present work is to
describe privacy-related mechanisms that provide the aforementioned features. First,
we introduce a novel distributed repository for public keys that exploits CoDiP2P’s
topology in order to obtain availability and efficiency. Second, we use an efficient dis-
tributed authentication method based on digital signature chains that eliminates the
need for a verified trusted third party. As a consequence of the use of public key cryp-
tography, we also achieve privacy in communications, message integrity, and precise
peer tracking.

The article is organized as follows. Section 2 reviews the literature. Sections 3
introduces CoDiP2P and a review on peer-to-peer authentication. In Sect. 4, our pro-
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posed authentication method is presented. Security is discussed in Sect. 5, and a com-
parison against a previous solution from the literature is shown in Sect. 6. Finally,
Sect. 7 shows the conclusions and future lines of work.

2 Related work

The authentication problem in fully distributed networks (without a centralized trust
model) is far from being solved. A full PKI (Public Key Infrastructure) approach
is hard to implement due to the lack of a certification authority and, therefore, sev-
eral research directions exist. Typically, distributed authentication solutions can be
divided into partially distributed and fully distributed. The former category relies on
one or more trusted third parties that provide authentication services to the nodes
in the network. The latter does not assume the presence of those entities, hence the
nodes themselves carry out the authentication task. Since we are addressing a fully
distributed scenario, we will only review the latter category. We refer the reader to
[3–5] for semidistributed authentication solutions.

Regarding fully distributed authentication solutions, and according to the nice sur-
vey in [6], one can find different approaches. Most of them use public key cryptog-
raphy. Probably the most popular is the Web of Trust approach, in which a node A
explicits its trust in another, B, by signing B’s public key. Nodes trusting A can use
A’s public key to verify the signature. Based on this mechanism, signature chains
can be built in order to express trust transitivity (if A trusts B and B trusts C then
A trusts C). Some works that use this idea as a cornerstone are [7–9] and this very
work. The work in [10] applies the idea in a hierarchical way for a MANET scenario.
A different approach is followed by [11–13]: a poll is carried out regarding the au-
thenticity of a peer’s identity, and only if enough peers give an affirmative reply then
the authentication is successfull. Finally, [3] combines the use of secret-sharing and
trust graphs into a reliable and smart solution.

3 CoDiP2P architecture

CoDiP2P architecture is organized in logical areas, each one formed by a set of peers
administered by a super-peer, namely a manager. Each manager controls and assigns
the area’s resources by applying the system policies.

The system is structured in a two-levels overlay, namely the primary overlay, to
assure the system scalability and locality. All peers inside an area are connected with
the manager, making up the first level of the overlay. The second level is formed by
interconnecting managers by means of a tree topology (as shown in Fig. 1), however,
other topologies can be used. By this, each peer has a number of K neighbors (links),
where K � N , with N being the total number of online peers in the system.

Following this structure, all policies in the system are implemented hierarchically.
They start with a request for peers that will be redirected to the corresponding man-
ager as a first resort. If the manager cannot fulfill the request at all, then it is spread to
neighboring managers and so on, until the request is completed. This hierarchical and
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Fig. 1 CoDiP2P Architecture and job scheduling

distributed design is applied to all system policies (like scheduling or authentication)
in order to distribute over all the peers the management process and then avoiding
bottlenecks.

Peers can have three different roles: manager, worker, and master. An additional
responsibility of a manager (M) is to find workers for task execution. A worker (W )
is responsible for executing assigned tasks. Finally, a master (MS) is any peer which
submits the application for its execution by the system.

CoDiP2P is based on JAVATM on both system and application development. Ap-
plications follow the master-worker paradigm: the master peer creates multiple jobs
that are distributed among worker peers and executed in parallel. The master executes
the main program, meanwhile workers execute jobs.

The CodiP2P architecture includes a logical structure based on a de Bruijn graph
[14]. This allows to reduce the resources search time throughout the network. Thus,
resources are grouped by locality [15], indicating the closeness of peers with similar
resources, mapped into a multidimensional space by using the distances provided by
the de Bruijn overlay.

The de Bruijn directed graph dimension is defined by N = eD , where e is the
number of peer edges and D is the diameter (maximum distance between any two
peers). In a d-dimensional, k-base de Bruijn graph, each peer i is connected to k

out-neighbors, being those peers whose de Bruijn indexes are (ki + j)modkd, j =
0, . . . , k − 1. Thus, the topology is able to reach any peer in at most logk N hops.

The main achievements of the CoDiP2P are: scalability by ensuring the massive
entry and exit of peers; distributed management to harness the peers computing re-
sources; robustness to deal with the high probability of a peer failure without affecting
the working of the global system; self-organization to allow peers to change their role
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dynamically according to the needs of the system; heterogeneous resource manage-
ment in order to perform efficiently the scheduling and load balancing of jobs among
peers.

4 The CoDiP2P authentification proposal

This section introduces the proposed distributed public keys repository and the rou-
tines associated. In this CA-less model, users express their trust in others by signing
the others’ public keys, and thus done by transitive trust. The use of this model in a
peer-to-peer network deals with two problems: (i) distributed public keys storage and
(ii) efficiency for a large number of peers.

The notation used for the rest of the paper is the following. IDX is the identifier
for peer X. (+KX,−KX) denote the public and private keys of peer X respectively.
SIGN(message,−KX) denotes the signature of message with the private key of X.
The concatenation of data a and b is expressed by a||b. The number of online peers
in the network is N , and P the number of offline peers at a given time. Peer Y is an
in-neighbor of X if there is a directed link from Y to X. X is an out-neighbor of Y

for the same reason.

4.1 Authentication of public keys: a distributed repository and locality exploitation

We take advantage of the de Bruijn topology to design the distributed repository of
public keys in a DHT-like manner [18]. The peer index value i can be obtained from
the hash function i = H(IDX) that produces a binary value of n bits with negligible
collision probability for any peer identifier.

To adapt our distributed repository to the de Bruijn topology, each peer i will
store the public keys of her online de Bruijn out-neighbors, i.e., (ki + j)modkd,

j = 0, . . . , k − 1, plus the public keys of the offline nodes whose identifiers are clos-
est. This makes the peer store k + P

N
public keys plus her own and allows to find

any public key in the network in at most (logk N) − 1 hops. We also define function
dist(i, j), as the distance between peers with indexes i and j . Any peer looking for a
given public key can obtain it by following Algorithm 1.

Every peer signs the public keys of her out-neighbours providing transitive trust
(see Sect. 4.2), which assures redundancy of a given key. Also, different instances of
the same key are signed by different peers, allowing to authenticate any legal node
IDX by recovering her public key from any of her in-neighbors.

4.1.1 Exploiting locality

The construction explained above allows for public key authentication in a logarith-
mic number of hops. However, CoDiP2P’s primary overlay shows a strong sense
of inherent locality that we have not exploited so far. For example, managers keep
pools of workers formed by their neighbors. What is more, the manager will store the
workers public keys she controls so masters can obtain them all from the manager
rather than starting their own logarithmic searches. In a similar way, managers keep
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Algorithm 1 Public key search
get_public_key(IDcurrent, IDsearched)

INPUT:
IDcurrent : current peer’s identifier
IDsearched : searched peer’s identifier

OUTPUT:
+Ksearched : searched peer’s public key

1. if IDsearched ∈ out_neighbours(IDcurrent) return +Ksearched
2. else
3. find IDclosest ∈ out_neighbours(IDcurrent) \ with min(dist(H(IDclosest), H(IDsearched)))

4. return get_public_key(IDclosest, IDsearched)

links among them. As a consequence, peers can share the public key information
they handle to minimize the number of searches, while the latter remains as a backup
repository in case the required public key is not found in the neighbourhood.

Peers keep a cache to store the authenticated public keys they know at a given
time. Let us assume the size of that cache is c. A number of slots k + P

N
are used to

store those keys allocated by the de Bruijn repository (recall k is the number of out-
neighbors in that topology). Also, as a manager, the peer will keep the public keys of
her neighboring managers in the primary overlay. This set of keys, of size mg, will be
frequently accessed during an online session and probably in consecutive sessions,
hence it is not expected to change frequently. On the other hand, when the peer plays
the role of master she will be given a number w of workers that will carry out jobs for
her. Due to the CoDiP2P worker search model the set of workers executing jobs for a
given master is likely to change between different jobs, so this set of keys should be
rotatory: these keys should be ready to be replaced in case a given maximum cache
size is reached. Finally, when the peer acts as a worker she must request jobs from
one or more masters at a given time. Therefore, she must store ms keys from them:
These keys are also good candidates to be replaced if new keys are obtained. The total
number of keys is then c = (k + P

N
) + mg + w + ms, from which those under w and

ms should be the first keys to replace in case the storage limit is reached. The keys in
mg might vary between sessions, and the remaining k should only change if the de
Bruijn topology does. An efficient replacement policy for those under w and ms will
minimize the number of cache misses (a simple approach would be to base on both
age and number of reads). We leave the latter out of the scope of this article. Note
that we do not take in consideration the space required for the distributed mirroring
for the off-line peers public keys.

4.2 Bootstrapping, obtaining trust, and initial signatures

CoDiP2P uses a tracker host to allow new peers enter the system. Thus, the newcomer
receives a list with her de Bruijn in-neighbors and out-neighbors, then each peer
knows k public keys while k other peers store her public key. Additionally, a fraction
of currently offline peers’ public keys ( P

N
) is stored by every peer.
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Before submitting the first job, any peer must obtain a minimum trust threshold
from others that can be achieved by means of tickets: We define a ticket as a proof
of having solved a previous job, and it is issued by a master including the signature
of the (i) worker’s public key, (ii) worker’s identifier, (iii) master’s identifier, (iv)
absolute issue date and (v) a score mark from the worker’s performance (the previous
job difficulty and execution time, for example). Equation (1) shows a ticket TY→X

issued by master Y for worker X.

TY→X : IDX, IDY ,+KX,+KY ,date, score,

SIGN
(+KX||IDX||IDY ||date||score,−KY

)
(1)

Masters should give workers correct tickets after completion of assigned jobs that
the peers will handle to unknown managers or masters to prove her reliability. Tickets
allow managers to evaluate the quality of any peer in order to decide whether to
recommend her for a job. Clearly, a worker will always decide to send the best scored
tickets but recall that an issue date has also been included, so it is up to the manager to
decide on questions like the balance between a ticket’s age and score, the maximum
number of tickets accepted, or whether more than one ticket coming from the same
issuer is accepted when evaluating the trust on the worker. We leave those questions
open to future work.

4.3 Seeking workers

To launch any job, the master asks its manager for a given number of workers. If there
are not enough available workers, then the manager redirects the request to another
manager, and so on, until enough workers are found. There are three interesting facts:
(i) the master only needs to know the first manager in the chain, (ii) the master will
be contacted by workers previously unknown to her, and (iii) those workers will not
possibly know the master either. Note therefore that the need for authentication can
be found in both directions of the master ↔ manager ↔ worker relationship: not only
the master needs to verify the workers, but also workers need to validate the source
of the code they will be running. Moreover, the whole trust chain should be built in
an efficient way, minimizing the messages sent and signatures to process.

The locality property can be exploited thanks to transitive trust. First, let us analyze
how the master trusts workers. The first manager, say M(1), gives each worker from
her pool, say W(1, i), the signature of the worker’s public key with M(1)’s private
key, i.e., SIGN(+KW(1,i),−KM(1)). This signature can be handled later to the master
(namely MS) by the worker in order to prove her relationship with M(1). It is enough
to do it just once, at bootstrapping. M(1) can use the same approach when passing
the job over to other managers: M(1) gives SIGN(+KM(2),−KM(1)) to M(2), who
will give it to worker W(2, i) along with SIGN(+KW(2,i),−KM(2)). This way work-
ers provide the master with enough material to reconstruct the trust chain, which is
extended in a similar manner until enough available workers are found.

A similar process might be applied to allow workers authenticate the master
by adding (+KMS,SIGN(+KMS,−KM(1)),+KM(1),SIGN(+KM(1),−KM(2)), . . .)

to the chain. However, the chain can be shortened if each manager directly signs the
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Algorithm 2 Authenticated worker search
get_workers(j, workers_needed, trust_chain)

INPUT:
j : manager ordinal in the managers’ trust chain: 1,2,3, . . .

workers_needed: number of workers to find
trust_chain: chain of public keys and signatures

OUTPUT:
Void.

1. workers_hired = 0
2. if authenticate_master(trust_chain) is not successful then return
3. trust_chain = trust_chain − SIGN(+KMS,−KM(j−1))

4. trust_chain = trust_chain ∪ SIGN(+KMS,−KM(j)) ∪ SIGN(+KM(j+1),−KM(j))

5. while (workers_hired < workers_available ‖ workers_hired < workers_needed)

6. W(j, i) = get_next_available_worker()
7. send trust_chain to W(j, i)

8. if W(j, i) accepts
9. workers_hired + +

10. workers_needed − −
11. if workers_needed == 0 then return
12. else
13. get_workers(j + 1,workers_needed − workers_hired, trust_chain)

master’s public key after authenticating her: M(j) can give (+KMS,SIGN(+KMS,

−KM(j))) to its pool workers and to the next manager, thus the length of the trust
chain and verifications needed are reduced.

Algorithm 2 shows how managers build the chain. We assume that M(j) already
trusts M(j − 1) (or MS if M(1)) and M(j + 1). We assume that W(j, i) obtained
SIGN(+KW(j,i),−KM(j)) at bootstrap. The length of trust_chain grows linearly by
the number of managers. In any case, the composition of the chain is efficient if M(j)

keeps SIGN(+KM(α),−KM(j)) stored for every neighboring manager α.
We analyze the number of processed signatures needed for peer authentication

in a workers search. Assume that I is the average number of available peers in a
manager’s pool of workers, J is the total number of managers involved in the search,
1 ≤ i ≤ I and 1 ≤ j ≤ J .

The best case implies zero signatures processed since the peer might trust all other
involved peers already. If managers keep their neighboring managers’ public keys
signed, then they can build the trust chain at zero cost. This is a real possibility if a
worker executes more than one job for the same master. Let us now analyze the worst
case in each role, which corresponds to an hypothetical situation in which peers know
no public key other than theirs.

• Manager j (M(j)) must verify one signature: SIGN(+KMS,−KM(j−1)). This is
deleted from the trust chain when passed to the next manager. Additionally, she
must generate 2+I signatures: one of the form SIGN(+KMS,−KM(j)) for authen-
tication in the W → MS direction plus one of the form SIGN(+KM(j+1),−KM(j))

and I of the form SIGN(+KW(i,j),−KM(j)) for the MS → W direction.
• Worker j, i (W(j, i)) needs only to verify one signature: SIGN(+KMS,−KM(j)).
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• The heaviest burden is taken by the master MS, who must verify JI +J signatures:
the whole trust chain (J signatures) in the MS → W direction and every worker’s
signature by the corresponding manager (JI signatures).

Worst case situations are not expected to occur since managers are trusted by their
workers and neighbouring managers from bootstrap on. In any case, an additional
signature can be added to assure the authenticity and integrity of every whole mes-
sage.

5 Security related considerations

Two kinds of adversaries are commonly assumed in the security and privacy field:
semi-honest and malicious [16]. The former follows the protocol correctly but ex-
ploits any available data to obtain knowledge about others. The latter deviates from
the correct protocol and takes arbitrary actions in order to obtain private information
or to carry out other kinds of attacks.

In a semihonest adversary scenario, our proposal achieves authentication, privacy,
and data integrity thanks to the use of public-key cryptography, and allows additional
features like peer tracing and statistical measures.

Distributed computing protocols commonly suffer from some well-known prob-
lems in a malicious adversary scenario. The first one, the Sybil attack, is always pos-
sible in a fully distributed environment as stated in [17], but can be partially alleviated
with the use of tickets (recall Sect. 4.2). The second one is a denial-of-service attack:
The adversary may refuse to provide a public key she stores in the de Bruijn topology,
preventing its owner from being authenticated. Our proposal, however, largely miti-
gates this problem thanks to (1) key replication at the de Bruijn topology by providing
different instances of the same public key from different sources, and (2) locality ex-
ploitation, hence authentication can also be carried out with the aid of already trusted
neighbours. Third, malicious peers may provide deliberately wrong results, easily
prevented if masters randomly issue test jobs (whose results are already known to the
master) to not trusted peers. Fourth, man-in-the-middle attacks are prevented by the
use of digital signature: Peers cannot be impersonated as long as their private keys
remain safe and no collusion amongst peers exists. In order to successfully carry out
such an attack the impersonating peer’s de Bruijn in-neighbors and the impersonated
peer’s manager should collude.

6 Schemes comparison

Next, we compare our de Bruijn-based distributed repository of public keys with
HDAM [7]. HDAM uses a chord-like [20] topology, which assures logarithmic per-
formance both on searches and storage. HDAM does not explicitly use locality for
performance enhancement, therefore, we are not considering it in the comparison for
the sake of fairness. Another difference relies on the fact that HDAM stores public
keys from online peers only, therefore, needing an external process for initial authen-
tication. Instead, our proposal stores public keys from both online and offline peers.
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Table 1 Comparison between HDAM and the CoDiP2P distributed repository

HDAM [7] de Bruijn

Storage/node, online keys only (in public keys) log2 N k

Storage/node, online + offline keys (in public keys) – k + P
N

Public key search (in hops) (log2 N) − 1 (logk N) − 1

Public key replication log2 N [k, k + 1]
Nodes affected per join/leave log2 N k

This allows for peer authentication without using external measures since only the
legal peer can be the owner of the public key in the repository (assuming no theft of
the private key).

Table 1 shows the comparison between both proposals (P and N are the number
of offline and online peers, respectively). We show the number of keys stored per
node in case that online keys only were considered: Our proposal would achieve a
smaller storage requirement since a typical k in CoDiP2P is lower than log2 N . If we
consider online and offline keys stored, our proposal needs to store k+ P

N
keys, which

increases storage needs at the cost of avoiding external authentication mechanisms.
Regarding efficiency in searches, the diameter of a HDAM topology is O(log2 N)

while ours is O(logk N), meaning that in a typical deployment of our topology the
higher degree of our peers shortens the worst case search. On the other hand, key
replication is also O(log2 N), which is more (and better) than our O(k). For the
same reason, the number of peers affected by a join or leave event is lower in our
case.

Next, we compare the performance of (1) HDAM, (2) our de Bruijn repository
without locality exploitation shown in Table 1, and (3) our de Bruijn repository with
cache for locality exploitation, namely CoDiP2P. To do so, we analytically model
the number of peers/accesses that must be consulted in order to resolve a public key
request.

As it was explained previously, the HDAM (Chord DHT) can be modeled as a
binary search, being the number of accesses required to resolve a request log2 N with
N the number of peers. On the other hand, the de Bruijn scheme depends on the peers
connectivity overlay. Thus, if the maximum number of neighbors of any peer is k, the
average number of accesses is logk N .

Our cache scheme corresponds to a M level hierarchy, being the first level the
own requesting peer, the second the peers in its own local area, and following levels,
2 < l < M those from remote areas located at distance l. The areas are connected by
a tree topology, thus in a cache level the number of areas depends on the level and the
nodal degree of the tree, O .

The model we apply to the CoDiP2P distributed cache behavior is based on the
work present in [21]. Thus, the number of accesses to a distributed cache depends on
the cache level that contains the requested public key pki .

CoDiP2P =
M∑

l=0

(P (Li = l)(l + 1)) + P(Li = M + 1) × Bruijncost (2)
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In this equation, Li is the number of cache levels that a request for pki has to
query in the caching hierarchy before being satisfied. P(Li = l) corresponds to the
probability that the request is solved at level l. Level M +1 determines the maximum
level of the hierarchical cache. In the CoDiP2P architecture, if the request reaches this
level it will be redirected to the de Bruijn DHT, adding the cost defined as the last
term of (2).

P(Li = l) can be expressed as

P(Li = l) = P(Li ≥ l) − P(Li ≥ l + 1) (3)

Note that P(Li ≥ l) is the probability that the number of cache levels accessed to
find pki is equal to l or higher. To calculate P(Li ≥ l), let us denote τ the time within
the interval [0,�] at which the request occurs. The random variable is uniformly
distributed over the interval, thus we have

P(Li ≥ l) = 1

�

∫ �

0
P

(
Li ≥ l | τ)

dτ (4)

where P(Li ≥ l | τ) is the probability that there is no request for [0, τ ]

P
(
Li ≥ l | τ) = e−Ol−1λi ·τ (5)

The value λi is the average request rate for the pki following a Poisson distribu-
tion. We assume that the pki access probability follows a Zipf distribution. Finally,
by combining (4) and (5), we get

P(Li ≥ l) = 1

Ol−1λi · �
(
1 − e−Ol−1λi ·�)

(6)

In order to perform the experimentation CoDiP2P was set with a binary tree topol-
ogy, O ≈ 3, with N = 10000 peers, being the de Bruijn connectivity k ≈ 4. The Zipf
distribution used to model the access probability for each public key is parameterized
by the skew factor α = 0.64.

Figure 2 is focused on comparing the three different schemes by varying the num-
ber of public key requested per hour in the Zipfz distribution, 1 ≤ β ≤ 200. The time
period evaluated is � = 24 hours, and we assume M = 5 as the maximum level on the
hierarchical cache. As we can observe, the HDAM scheme requires log2 N = 13.28
accesses to peers in the DHT in order to get the public key. The number of accesses is
reduced to logk N = 6.64 for the de Bruijn scheme, while CoDiP2P clearly performs
better. We can appreciate two different behaviors of the latter. For a low request rate,
≤14 req/h, the majority of public keys miss the cache and forces to access the de
Bruijn repository. This is because every next pki request arrives after its cache re-
placement. On the other hand, when the pki request rate increases, meaning a higher
popularity, the number of cache hits grows, and thus the number of required accesses
diminishes as can be observed in the figure.
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Fig. 2 CoDiP2P architecture and job scheduling

7 Conclusions and future work

The present article introduces a fully distributed authentication system for CoDiP2P,
a peer-to-peer computing platform. The proposed system is based on the Web of Trust
paradigm and implements efficient mechanisms for transitive trust usage and public
key search. First, the inherent locality found in CoDiP2P’s topology is exploited in
order to minimize the number of required public key searches per peer authentica-
tion. Second, the same locality property reduces the number of needed authentica-
tions (thus reducing the number of processed signatures too) since peers are likely
to interact with already trusted neighbours. Third, a reliable and efficient distributed
public key repository is built on top of CoDiP2P’s de Bruijn topology as a backbone
for public key search and authentication. The novel repository is compared against a
previous solution from the literature.

Future lines of work include the development of a quantitative trust evaluation
based on rewards per accomplished job, the study of replacement policies for the
local public key cache of peers, and experimental evaluation.
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