
DieHarder: Securing the Heap

Gene Novark Emery D. Berger
Dept. of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

gnovark@cs.umass.edu, emery@cs.umass.edu

Abstract
Heap-based attacks depend on a combination of memory manage-
ment errors and an exploitable memory allocator. We analyze a
range of widely-deployed memory allocators, including those used
in Windows, Linux, FreeBSD, and OpenBSD. We show that de-
spite numerous efforts to improve their security, they remain vul-
nerable to attack. We present the design and security analysis of
DieHarder, a memory allocator that provides the highest degree of
security from heap-based attacks of any practical allocator.

1. Introduction
Heap-based exploits are an ongoing threat. Internet-facing appli-
cations, such as servers and web browsers, remain especially vul-
nerable to attack. Attackers have recently developed exploits that
can be triggered by viewing apparently benign objects or PDFs and
images. Even the use of memory-safe programming languages like
Flash, Java, or JavaScript does not mitigate these vulnerabilities be-
cause the language implementations themselves are typically writ-
ten in C or C++.

A heap-based exploit relies on two things: a memory manage-
ment error in the targeted program, and an exploitable heap imple-
mentation. Exploitable memory management errors include:

• Heap overflows/underflows. These errors arise when heap ob-
jects are too small to hold their input, or when an index into the
object can be hijacked to force an overflow.

• Dangling pointers. These “use-after-free” errors occur when a
program prematurely frees an object whose contents are still in
use.

• Double free. A program can incorrectly delete an object mul-
tiple times.

• Invalid free. A program can delete objects it never allocated
(such as the middle of an array or a stack pointer).

• Uninitialized reads. In C/C++, objects obtained via malloc
or new are not filled with default values, and thus generally
contain the contents of previously-freed objects.

The key to a successful exploit is the interaction between the
memory management error and the heap layout. For example, an

[copyright notice will appear here]

attacker can exploit an overflow to overwrite an adjacent vulnerable
object like a function pointer. This attack requires the ability to
force the heap to place these two objects next to each other, and to
overflow into that object without detection.

While correcting the memory error prevents exploits that de-
pend on it, programs remain vulnerable as long as they have any
memory errors. Rather than trusting applications to be error-free,
vendors have sought to harden allocators against attack.

Heap exploits have led to an arms race, where exploits are
followed by countermeasures, which are quickly followed by new
exploits that work around the countermeasure. For example, the
memory allocator in Windows XP SP2 added one-byte random
“cookies” to the headers that precede every allocated object. The
memory allocator checks the validity of these cookies when the
object is freed. However, this countermeasure only prevents forging
of some heap metadata, and so was quickly followed by a new
attack. This sequence of attack-countermeasure has continued from
XP SP3 to Vista (see Section 5 for more details).

These ad hoc countermeasures have failed because it has not
been possible to predict their effectiveness against new attacks.
In effect, these modifications are often attempts to “fight the last
war”, addressing only known vulnerabilities. Their susceptibility
to future attacks has remained an open question.

Contributions
This paper provides an extensive analysis of the security of exist-
ing memory allocators, including Windows, Linux, FreeBSD, and
OpenBSD. It presents the first formal treatment of the impact of
allocator design on security, and shows that all widely-used alloca-
tors suffer from security vulnerabilities.

We present the design and analysis of a new, security-focused
allocator called DieHarder. We show that its design—a combina-
tion of the best features of DieHard [8, 9] and OpenBSD’s new allo-
cator [22]—significantly reduces the exposure of programs to heap
exploits. An empirical evaluation demonstrates that DieHarder pro-
vides its security gains with modest performance overhead (around
20% for CPU-intensive applications), making it practical.

Outline
The remainder of this paper is organized as follows. Section 2
presents an overview of memory allocator algorithms and data
structures, focusing on allocators in wide use. Section 3 motivates
and describes our threat model. Section 4 describes heap-based
attacks—abstractly and concretely—that target the weaknesses of
these allocators, and Section 5 discusses the countermeasures em-
ployed to address these vulnerabilities. Section 6 describes the de-
sign of DieHarder, together with a security analysis that shows its
advantages over previous allocators, and Section 7 presents em-
pirical results that demonstrate its modest performance overhead.
Section 8 discusses related work, and Section 9 concludes.

1 2010/4/22

Windows DLMalloc 2.7 PHKmalloc OpenBSD DieHarder
No freelists (§ 2.1) X X X
No headers (§ 2.1) X X X
BiBOP (§ 2.2) X X X
Fully-segregated metadata (§ 2.2.1) X X
Destroy-on-free (§ 2.2.1) X? X
Sparse page layout (§ 2.2.1) X X
Placement entropy (bits) (§ 2.2.1) 0 0 0 4 O(logN) (§ 6)
Reuse entropy (bits) (§ 2.2.1) 0 0 0 5.4 O(logN) (§ 6)

Table 1: Allocator security properties (see the appropriate section for explanations). A check indicates the presence of a security-improving
feature (a question mark indicates that it is optional). While both OpenBSD’s allocator and DieHarder (Section 6) employ the full range of
security features, DieHarder provides higher entropy for certain key features (where N is the size of the heap) and is thus more secure.

2. Overview: Memory Allocators
The functions that support memory management for C and C++
(malloc and free or new and delete) are implemented in the
C runtime library. Different operating systems and platforms im-
plement these functions differently, with varying design decisions
and features. In nearly all cases, the algorithms underpinning these
allocators were primarily designed to provide provide rapid allo-
cation and deallocation while maintaining low fragmentation [37],
with no focus on security. We describe the allocation algorithms
used by Windows, Linux, FreeBSD, and OpenBSD, focusing on
implementation details with security implications. Table 1 summa-
rizes the security characteristics of these allocators.

2.1 Freelist-based Allocators
The memory managers used by both Windows and Linux are
freelist-based: they manage freed space on linked lists, generally
organized into bins corresponding to a range of object sizes. Fig-
ure 1 illustrates an allocated object within the Lea allocator (DL-
malloc), which forms the basis of the allocator in GNU libc [18].
The Lea allocator adds a header to each allocated object that con-
tains its size and the size of the previous object. This metadata
allows it to efficiently place freed objects on the appropriate free
list (since these are organized by size), and to coalesce adjacent
freed objects into a larger chunk.

Inline metadata. Freelist-based allocators invariably contain in-
line metadata next to objects and even within freed objects. Ob-
ject headers store information about the heap object, such as the
chunk size and freelist pointers, immediately before application
data. In addition, freelist-based allocators typically thread the freel-
ist through the freed chunks in the heap. Freed chunks thus con-
tain the size information (in the headers) as well as pointers to the
next and previous free chunks on the appropriate freelist (inside the
freed space itself) . This implementation has the significant advan-
tage over external freelists of requiring no additional memory to
manage the linked list of free chunks.

Unfortunately, inline metadata also provides an excellent attack
surface. Even small overflows from application objects are likely to
overwrite and corrupt allocator metadata. Attackers have found nu-
merous ways of exploiting this inherent weakness of freelist-based
allocators, including the ability to perform arbitrary code execu-
tion. Section 4 discusses in detail several attacks on freelist-based
allocators, and Section 5 describes a number of countermeasures.

2.2 BiBOP-style Allocators
In contrast to Windows and Linux, FreeBSD’s PHKmalloc [16] and
OpenBSD’s current allocator (derived from PHKmalloc) employ a
heap organization known as segregated-fits BiBOP-style. Figure 2
provides a pictorial representation of part of such a heap. The
allocator divides memory into contiguous areas that are a multiple

of the system page size (typically 4K). This organization into pages
gives rise to the name “Big Bag of Pages”, or “BiBOP” [15].
BiBOP allocators were originally used to provide cheap access to
type data for high-level languages, but they are also suitable for
general-purpose allocation.

In addition to dividing the heap into pages, both PHKmalloc
and OpenBSD’s allocator ensure that all objects in the same page
have the same size—in other words, objects of different sizes are
segregated from each other. Object size and other information is
stored in a metadata structure placed either at the start of each page
(for small size classes), or allocated from the heap itself. A pointer
to this structure is stored in the page directory, an array of pointers
for each managed page. The allocator can locate the metadata for
individual pages in constant time by masking off the low-order bits
and computing an index into the page directory.

On allocation, PHKmalloc first finds a page containing an
appropriately-sized free chunk. To enable this operation, it main-
tains a list of non-full pages within each size class. These freelists
are threaded through the corresponding page metadata structures.
Upon finding a page with an empty chunk, it scans the page’s
bitmap to find the first available free chunk, marks it as allocated,
and returns its address.

Page-resident metadata. Compared to freelist-based heaps, BiBOP-
style allocators generally have no inline metadata: no internal state
is maintained between allocated objects or within freed objects.
However, they often store heap metadata at the start of pages, or
within metadata structures allocated adjacent to application objects.
This property can be exploited to allow arbitrary code execution
when a vulnerable application object adjacent to heap metadata
can be overflowed [6] (see Section 4.1).

2.2.1 OpenBSD Allocator
OpenBSD originally used PHKmalloc, but recent versions of
OpenBSD (since version 4.4, released in 2008) incorporate a new
allocator based on PHKmalloc but heavily modified to increase
security [22]. It employs the following techniques:

• Fully-segregated metadata. OpenBSD’s allocator maintains
its heap metadata in a region completely separate from the heap
data itself, so overflows from application objects cannot corrupt
heap metadata.

• Sparse page layout. The allocator obtains individual pages
via a randomized mmap, spreading allocated pages across the
address space. This sparse page layout increases the likelihood
that there are unmapped “guard pages” interspersed among
application data, limiting the exploitability of overflows.

• Destroy-on-free. Optionally, OpenBSD’s allocator can scram-
ble the contents of freed objects.

2 2010/4/22

16 24

prev
chunk
size

curr
chunk
size

allocated space 24 12 free space

Figure 1: A fragment of a freelist-based heap, as used by Linux and Windows. Object headers precede each object, which make it easy to
free and coalesce objects but allow overflows to corrupt the heap.

aligned to
page

boundary

16 chunk 4096 first 4096 follow 8 chunk

16 16 16 16 16

8 chunkpage
directory

Figure 2: A fragment of a segregated-fits BiBOP-style heap, as used by the BSD allocators (PHKmalloc and OpenBSD). Memory is allocated
from page-aligned chunks, and metadata (size, type of chunk) is maintained in a page directory. The dotted lines indicate the list of free objects
inside the chunk.

• Randomized placement. Object placement within a page is
randomized by a limited amount: each object is placed ran-
domly in one of the first 16 free chunks on the page.

• Randomized reuse. The allocator delays reuse of freed objects
using a randomly-probed delay buffer. The buffer consists of
16 entries, and on each free, a pointer is stored into a random
index in this buffer. Any pointer already occupying that index
is then actually freed.

Together, these modifications dramatically increase security, al-
though the randomized placement and reuse algorithms are of lim-
ited value. We discuss these limitations further in Sections 4.1.3
and 4.3.1.

3. Threat Model
This section characterizes the landscape for heap-based attacks and
presents our threat model.

3.1 Landscape
The power of potential heap-attacks is affected by several factors,
including the presence of memory errors, the kind of application
being attacked, and whether the attacker has the ability to launch
repeated attacks.

Presence of memory errors. The first and most important factor
is the existence of a memory error, and the attacker’s ability to
trigger the code path leading to the error. A program with no
memory errors is not vulnerable to heap-based attacks.

Application class. The kind of application under attack affects
the attacker’s ability to control heap operations. Many attacks as-
sume an unfragmented heap, where the effects of heap operations
are predictable. For example, when there are no holes between ex-
isting objects, new objects will be allocated contiguously on a fresh
page. Many attack strategies assume the ability to allocate enough
objects to force the heap into a predictable state before launching
the actual attack.

When attacking a web browser, the attacker can run scripts
written in JavaScript or Flash. In most current browsers, JavaScript

objects are allocated in the same heap as the internal browser
data, allowing the attacker to control the state of the application
heap. Sotirov describes a sophisticated technique called Heap Feng
Shui that allows attacks on browsers running JavaScript to ensure
predictable heap behavior [34].

Server applications are generally less cooperative. The number
and types of allocated objects can be fixed by the application. How-
ever, an attacker may be able to place the heap into a predictable
state by issuing concurrent requests, forcing the application to allo-
cate a large number of contemporaneously live objects.

Other applications may provide attackers with no ability to
cause multiple object allocations. For example, many local exploits
target setuid root binaries which may run for a short time and then
terminate. In many cases, the attacker is limited to controlling the
command-line arguments and the resulting heap layout.

Ability to launch repeated exploits. An application’s context de-
fines the attacker’s ability to repeatedly launch an exploit. In a web
browser, if the first attempt fails and causes the browser to crash,
the user may not attempt to reload the page. In this case, the at-
tack has only one chance to succeed per target. On the other hand,
server applications generally restart after crashes to ensure avail-
ability, providing the attacker with more opportunities. If the server
assumes an attack is in progress and does not restart, then the vul-
nerability becomes a denial of service.

Given enough time, an attacker with any probability of success
will eventually succeed. If, however, the allocator can decrease this
probability of an attempt succeeding, the system maintainer may
be able to analyze the attack and fix the application error before the
attacker succeeds.

Randomization techniques such as address-space layout ran-
domization (ASLR) are designed to provide such attack unpre-
dictability. For example, Shacham et al. showed that ASLR on 32-
bit systems provides 16 bits of entropy for library address and can
thus be circumvented after about 216 seconds [32]. On 64-bit sys-
tems providing 32 bits of entropy, however, the attack would re-
quire an expected 163 days. During this time, it would be feasible
to fix the core application error and redeploy the system.

3 2010/4/22

While one can imagine a hypothetical supervisor program that
detected incoming attacks, such a system would be hard to make
practical. While it could detect a series of crashes coming from a
single source, sophisticated attackers control large, distributed bot-
nets which allow them to coordinate large numbers of attack re-
quests from different sources. Shacham et al. discuss the limitations
of such systems in more detail [32].

However, more sophisticated techniques can limit the vulnera-
bility of systems to repeated attacks. Systems such as Rx [29], Ex-
terminator [24, 25], and ClearView [28] can detect heap errors and
adapt the application to cope with them. For example, Exterminator
can infer the size of an overflow and pad subsequent allocations to
ensure that an overflow of the same size does not overwrite data.

The threat model. We assume the attacker has the power to
launch repeated attacks and allocate and free objects at will. Re-
peated attacks are most useful against Internet servers, while the
unlimited ability to allocate and free objects is most useful against
web browsers (especially when executing JavaScript). This model
thus assumes the worst-case for prime attack targets in the real
world.

We analyze vulnerabilities based on a single exploit attempt.
The lower the likelihood of success of a single attack, the longer
the expected time before the application is compromised. Given
enough time, the error can be corrected manually, or a system like
Exterminator can adapt the application to correct it.

4. Attacks
We now explain in detail how attackers perform heap-based ex-
ploits, and how these interact with the heap implementation itself.

Exploits often directly exploit heap-based overflows or dangling
pointer errors (including double frees), but can also start with heap
spraying attacks [14] and then later exploit a vulnerability.

We abstract out each of these attacks into an attack model. We
illustrate these models with examples from the security literature,
and show how certain memory management design decisions facil-
itate or complicate these attacks.

4.1 Heap Overflow Attacks
Perhaps the most common heap attack strategy to date exploits an
overflow of an object adjacent to heap metadata or application data.

4.1.1 Overflow attack model
Abstractly, an overflow attack involves two regions of memory,
one source chunk and one or more target chunks. Target chunks
can include application data or heap metadata, including allocator
freelist pointers. The attacker’s goal is to overwrite some part of
target chunk with attacker-controlled data.

A real attack’s success or failure depends on application behav-
ior. For example, an attack overwriting virtual function table point-
ers only succeeds if the application performs a virtual call on a
corrupted object. However, details of such application behavior is
outside the scope of our attack model, which focuses only on the in-
teraction between the heap allocator and overflows. For purposes of
analysis, we conservatively assume that an attack succeeds when-
ever a target chunk is overwritten.

Note that the attacker’s ability to exploit a heap overflow de-
pends on the specific application error, which may allow more or
less restricted overflows. For example, off-by-one errors caused by
failure to consider a null string termination byte allow only the
overflow of 1 byte, with a specific value. In general, strcpy-based
attacks do not allow the attacker to write null bytes. On the other
hand, some errors allow overwrites of arbitrary size and content.

4.1.2 Specific attacks
An overflow attack may target either heap metadata or application
data. In some cases, a single, specific heap object may be the target,
such as a string containing a filename. In others, there may be many
targeted chunks. For example, a potential target for application data
attacks is the virtual function table pointer in the first word of C++
objects with virtual functions. In some applications, many objects
on the heap have these pointers and thus are viable targets for
attack. Other attacks target inline heap metadata, present in the first
words of every free chunk.

1. The earliest heap overflow attacks targeted application data
such as filename buffers and function pointers [12]. A suscep-
tible program allocates two objects, the source (overflowed)
chunk and an object containing a function pointer (the target
chunk). A successful attack forces the allocator to allocate the
source chunk and victim chunk contiguously. It then overflows
the buffer, overwriting the function pointer with an attacker-
controlled address. If the chunks are not adjacent, a more gen-
eral attack may overwrite multiple objects in between the buffer
and the vulnerable object.

2. Solar Designer first described an attack relying on specifics
of the heap implementation [33]. The attack applies to any
allocator that embeds freelist pointers directly in freed chunks,
such as DLmalloc and Windows. The specific attack described
allowed a hostile web server to send a corrupt JPEG image
allowing arbitrary code execution within the Netscape browser.
This attack overwrites words in the free chunk header, over-
writing the freelist pointers with a specific pointer (generally to
shellcode) and the address of a target location. Candidate target
locations include function pointers in heap metadata structures,
such as free hook in DLmalloc, which is called during each
free operation. When the corrupted free chunk is reallocated,
the allocator writes the pointer to the target location.
In the worst case for this attack, every free chunk is a target.
Once a free chunk is corrupted, the attacker can simply force
allocations until the chunk is reused. However, existing attacks
in the literature target a single, attacker-controlled free chunk.

3. BBP describes overflow attacks targeting PHKmalloc metadata,
which resides at the beginning of some pages and also allocated
within the heap itself [6]. In this case, the attacker does not
directly control the target chunks. However, he may be able to
indirectly force the allocation of a metadata object by allocating
a page worth of objects of certain size classes. Target chunks
include these page info structures.

4.1.3 Allocator Analysis
A number of allocator features have a direct impact on their vulner-
ability to overflow attacks.

Inline metadata. Allocators such as DLmalloc and Windows that
have inline metadata provide an overflow with many targets. For
some attacks, effectively any chunk in the heap could be over-
written to cause a remote exploit. For example, a patient attacker
exploiting unlink could overwrite the freelist pointers in an ar-
bitrary free chunk, then simply wait for that chunk to be reused.
These allocators are similarly vulnerable to other such attacks, such
as those targeting an object’s size field.

Page-resident metadata. Allocators with no inline metadata,
such as PHKmalloc, may still have allocator metadata adjacent
to heap objects. PHKmalloc places page info structures at the be-
ginning of some pages (those containing small objects), and allo-
cates others from the heap itself, in between application objects.
Those allocated from the heap itself are obviously vulnerable to

4 2010/4/22

overwrites, especially if the attacker can control where they are
allocated due to determinism in object placement. PHKmalloc also
lacks guard pages, meaning that the page info structures placed at
the beginning of pages are also adjacent to overflowable application
chunks.

Guard pages. Guard pages can protect against overflows in mul-
tiple ways. First, for allocators like PHKmalloc which place meta-
data at the beginning of some pages, guard pages could be used to
protect that metadata against overflows (though they are not cur-
rently). Deterministically placing a guard page before each page
with metadata provides protection against contiguous overruns (the
most common case), but not against underruns or non-contiguous
overflows (such as an off-by-one on a multidimensional array).

Second, guard pages provide gaps in memory that cannot be
spanned by contiguous overflow attacks, limiting the number of
heap chunks that can be overwritten by a single attack. In this
sense, guard pages protect application data itself. However, if the
allocator is sufficiently deterministic, an attacker may be able to
ensure the placement of the source chunk well before any guard
page, allowing an attack to overwrite many chunks.

Canaries. The use of canaries to protect heap metadata an appli-
cation data may protect against overflows in some cases. However,
their effectiveness is limited by how often the canaries are checked.
Metadata canaries may be checked during every heap operation and
can substantially protect metadata against overflows. However, al-
locators that place canaries between heap objects must trade off
runtime efficiency for protection. For example, an overflow target-
ing a function pointer in application data requires no heap oper-
ations: only the overwrite and a jump through the pointer. Since
allocators that check canaries only do so on malloc and free,
they cannot protect against all such attacks.

Randomized placement. All existing allocators that do not ex-
plicitly randomize object placement can be forced to allocate con-
tiguous objects, assuming enough control of allocations and frees
by the attacker. Techniques such as Heap Feng Shui are designed to
force the allocator into such a deterministic state in order to enable
reliable exploitation of vulnerabilities.

OpenBSD randomizes placement of heap objects to a limited
extent. This approach reduces the reliability of overflow exploits
by randomizing which heap chunks are overwritten by any single
overflow. Attacks that depend on contiguous objects are also com-
plicated because it is unlikely that any given objects will be con-
tiguous in memory.

However, overflow attacks able to span multiple heap chunks
need not rely on contiguously-allocated objects. As long as the tar-
get object is placed after the source object on the same page, the
attacker can overwrite the target. The extent of placement random-
ization affects the probability of such an attack’s success.

OpenBSD’s limited randomization allows certain such attacks
to succeed with high probability. In an unfragmented heap, succes-
sive allocations of the same size objects will be clustered on the
same page, even though their placement is randomized within that
page. An attacker that can control heap operations so that the source
and target are allocated on the same page has a 50% probability of
allocating the source at a lower address than the target, enabling the
attack to succeed.

For small objects, object placement is not fully randomized
within a page, because the allocator uses only 4 bits of entropy
for a single allocation. For example, two successive allocations on
a fresh page will always lie placed within 16 chunks of each other.
An attack can exploit this property to increase attack reliability by
limiting the length of the overflow, reducing the risk of writing past
the end of a page and causing the application to crash.

4.2 Heap Spraying Attacks
Heap spraying attacks are used to make exploitation of other vul-
nerabilities simpler. In modern systems, guessing the location of
heap-allocated shellcode or the address of a specific function for
a return-to-libc attack can be difficult due to ASLR. However, on
many systems, the heap lies within a restricted address space. For
example, on 32-bit systems the heap generally lies within the first
2 GB of virtual address space. If the attacker allocates hundreds of
megabytes of shellcode, jumping to a random address within this 2
GB region has a high probability of success.

4.2.1 Heap spraying attack model
To successfully exploit a heap spray, the attacker must guess the
address contained within some (large) set of attacker-allocated ob-
jects. However, the attacker need not guess a pointer out of thin
air. The simplest attack exploits an overflow to overwrite an ap-
plication pointer with the guessed value. However, if this pointer
already contains an address within the heap, overwriting only the
low-order 2 or 3 bytes of the pointer on a little-endian machine re-
sults in a different pointer, but to an address close to the original
address. In general, we assume that the attacker can base the guess
on the value of another heap object, whether implicitly due to a
partial overwrite, or explicitly based on information leakage.

To account for these effects, our heap spraying attack model
requires the attacker guess the address of one of a specific set of
sprayed objects, V , given some known address into the heap. In
some cases, the attacker may control when the known object is
allocated. For example, allocating it between 2 shellcode buffers
will make it easy to guess a shellcode address if the heap allocates
objects contiguously.

4.2.2 Allocator Analysis
We quantitatively analyze allocator design choices with respect to
heap spraying attacks in two ways. First, we analyze the probability
of an attacker guessing the address of one of a set of V target
objects, which model the set of objects sprayed into the heap. Note
that unlike the overflow case, the attacker can cause |V | to be close
to |H|, the size of the heap. Thus, the probability of guessing the
address of heap-allocated shellcode or other target heap data is
roughly equivalent to guessing the address of any heap object.

This probability is almost entirely dependent on the target sys-
tem’s ASLR implementation. On 32-bit systems, an attacker spray-
ing hundreds of megabytes of data into the heap has a high proba-
bility of guessing an address within this data.

On 64-bit systems, however, the situation is vastly improved.
Even on modern x86-64 systems, which limit the effective virtual
address range to 48 or 52 bits, the amount of physical memory
available in current systems limits the attacker’s ability to fill a sig-
nificant portion of this space. If ASLR randomizes the addresses
of mmap regions across the entire space, the probability of guess-
ing a valid address is low. Further evaluation of existing ASLR
systems, which have been discussed by Shacham et al. [32] and
Whitehouse [35], is outside the scope of this paper.

From the allocator’s perspective, the problem of guessing the
address of an object in V given the address of a heap object O
depends upon the number of objects allocated contiguously withO.
The addresses of contiguous objects are dependent upon each other.
For example, if the entire heap is contiguous, then the addresses
of all heap objects are mutually dependent, and thus amenable to
guessing.

Qualitatively, we can evaluate the predictability of object ad-
dresses by considering the entropy of the conditional probability
distribution of the addresses of V given the address of o. Address
distributions with lower entropy are more predictable than those
with higher entropy.

5 2010/4/22

In a contiguous heap, the address distribution has low entropy.
An address δ bytes after the known object O is valid if and only if
O lies within the first H − δ bytes of the heap. In the worst case,
we have no knowledge of the position of O within the heap, so the
probability distribution of the validity of the addresses surrounding
it is a triangle distribution, having low entropy.

By contrast, consider the Archipelago allocator [19]. Archipel-
ago allocates each object in a random position on an separate page,
compressing cold pages to limit its consumption of physical mem-
ory. Since it allocates objects randomly throughout a large address
space, Archipelago delivers high entropy, because all object ad-
dresses are independent. The probability density is uniform across
the entire address space, maximizing entropy.

Practical allocators must trade off performance with predictabil-
ity. While Archipelago works well for certain programs with low
heap footprint and allocation rate, it is by no means a general pur-
pose allocator. Practical allocators must allocate multiple objects
on the same page in order to provide spatial locality to the virtual
memory system. The page granularity thus limits the entropy an
allocator can provide, and thus the protection it can supply against
heap spray attacks.

4.3 Dangling Pointer Attacks
Temporal attacks rely on an application’s use of a free chunk of
memory. If the use is a write, the error is generally called a dangling
pointer error. If the subsequent use is another free, it is called a
double-free error. There are two general attack strategies targeting
these errors, one based on reuse of the prematurely freed object,
and another based on a freelist-based allocator’s use of free chunks
to store heap metadata.

4.3.1 Reuse Vulnerabilities
The first strategy exploits the reuse of chunks still referred to
by a dangled pointer. The attacker’s goal is to change the data
contained in the object so that the later (incorrect) use of the first
pointer causes an unintended, malicious effect. For example, if the
dangled object contains a function pointer, and the attacker can
force the allocator to reuse the chunk for an attacker-controlled
object, he can overwrite the function pointer. Later use of the
original pointer results in a call through the overwritten function
pointer, resulting in a jump to an attacker-controlled location. This
attack strategy is previously known [36], but we know of no specific
attacks described in the literature.

This strategy exploits the predictability of object reuse by the
allocator. A reliable attack can only be created if the attacker knows
when the dangled chunk will be recycled. We formalize this by
designating the dangled chunk as the target chunk. The attacker
succeeds by forcing the allocator to recycle the target chunk.

Unlike buffer overflows, where each attempt by the attacker may
cause the program to crash (e.g. by attempting to overflow into
unmapped memory), repeated attempts to reallocate the dangled
chunk need not perform any illegal activity. The attacker must
simply allocate many objects and fill them with valid data. This
necessarily limits the ability the runtime system to cope with such
an attack, unless it somehow prevents the original dangling pointer
error, for example using conservative garbage collection.

To cope with this limitation, an allocator implementation can
implement two policies to combat this attack strategy. First, it can
delay reuse for as long as possible, for example by using a FIFO
freelist. However, in a defragmented heap, this policy has little ef-
fect. In order to increase the reuse time, the allocator could purpose-
fully increase heap fragmentation by forcing a minimum threshold
before objects are recycled. However, any specific threshold is in-
herently deterministic and predictable.

Alternatively, it may attempt to make its reuse of freed objects
unpredictable via randomization. This policy will generally make
attacks less reliable. For example, if an attacker has only one chance
to force the application to call the overwritten function pointer,
randomizing object reuse forces him to make a tradeoff between
time and probability of success.

OpenBSD implements limited reuse by storing freed pointers
in a random index of a 16-element array. The object is only truly
freed when a subsequent free maps to the same array index. Thus,
each subsequent free is a Bernoulli trial with a 1/16 probability of
success, making the distribution of t, the time before the object is
reused, follow a geometric distribution with approximately 5.4 bits
of entropy.

4.3.2 Allocator Analysis
Our analysis focuses on the predictability of object reuse. We con-
sider the effects of allocator design choices on this predictability
in this section. We evaluate each allocator feature by analyzing the
entropy of t, the random variable representing the number of allo-
cations before a just-freed object is recycled.

Freelists. Freelist-based allocators commonly use LIFO freelists.
Independent of other allocator properties such as coalescing, such
freelists always return the most-recently allocated object, providing
zero entropy and thus perfect predictability.

BiBOP-style allocators. BiBOP-style allocators may implement
different reuse policies. PHKmalloc tracks a freelist of pages, and
allocates in address-order first-fit within the first page on the freel-
ist. Thus t depends on the number of free chunks on a page. If the
freed object creates the only free chunk on the page, it was not pre-
viously on the freelist, and so the allocator will place the page at
its head. The subsequent allocation will choose this page, and re-
turn the only free chunk, which is the just-freed chunk. An attacker
can force this behavior by allocating a number of objects from the
same size class as the target object in order to eliminate fragmenta-
tion before the call to free.

Coalescing. Most freelist-based allocators perform coalescing,
the combination of adjacent free chunks. When a free chunk is
coalesced with an existing free chunk, its size class will change,
and thus be placed on an unpredictable freelist. While coalescing
is deterministic, it relies on several aspects of the heap layout,
making it difficult to create attacks when it occurs. However, in a
defragmented heap, the probability of coalescing occurring is low,
making it straightforward to work around in existing allocators.

4.3.3 Specific Attack: Inline Metadata
The second strategy relies on the behavior of the allocator itself.
Freelist-based allocators write data into the contents of free chunks.
If the free chunk is referred to by a dangling pointer, then the
pointer now refers to invalid data. If the attacker can control or
predict the data the allocator writes into the freed chunk, he can
maliciously corrupt the contents of the object.

Example. Afek describes a technique that relies on the object
layout of C++ objects, combined with the freelist behavior of the
Windows heap [1]. On most implementations, the first word of
a C++ object with virtual functions contains the pointer to the
virtual function table. This same word is also use by freelist-based
allocators to store the pointer to the next object on the freelist.
Afek’s technique allocates a fake vtable object containing pointers
to shellcode, then frees the object. Then, the dangling pointer error
is triggered, placing the dangled chunk at the head of the freelist
and storing a reference to the fake vtable in the first word. When
the application erroneously uses the dangled pointer and performs
a virtual function call, the runtime looks up the address of the target

6 2010/4/22

function from the forged vtable installed by the allocator, resulting
in a jump to shellcode.

4.3.4 Allocator Analysis
This vulnerability is specific to freelist-based allocators, and does
not generalize to allocators with no inline metadata. BiBOP-style
allocators do not write metadata to free chunks, so they cannot be
forced to write attacker-controlled data into dangled objects. The
vulnerability also exploits deterministic reuse order, discussed in
detail in the previous section.

5. Countermeasures
Allocator implementors have introduced a variety of techniques to
protect inline metadata against attacks. The first countermeasures
were freelist integrity checks, included in modern freelist-based
allocators to prevent unlink attacks. Instead of naı̈vely trusting the
free chunk header, the allocator ensures that memory pointed to
by the heap chunk header is a valid chunk that refers back to the
supplied chunk, and thus forms a valid doubly-linked list.

In addition to freelist integrity checks, Windows XP SP2 added
an additional countermeasure. Each object header contains a 1-
byte cookie computed from a per-heap pseudorandom value and
the chunk address. The allocator checks the integrity of this cookie
on each free operation, (possibly) aborting the program if it fails.
An attack that contiguously overflows the previous object must cor-
rectly forge this value in order to overwrite freelist pointers. How-
ever, some heap metadata, notably the size field, lies before the
cookie, allowing small overwrites to modify the inline metadata
without corrupting the cookie. McDonald et al. describe a tech-
nique that can achieve a single null byte overflow, such as a string
terminator [20] (used in the “heap desynchronization” attack de-
scribed in that work). Furthermore, there are only 256 possible 1-
byte values, so if an attack that can repeatedly guess random cook-
ies, it will succeed after a relatively low number of trials.

Despite the introduction of these countermeasures, attackers
have found new methods of corrupting heap metadata to allow ar-
bitrary code execution. McDonald and Valasek present a compre-
hensive summary of attacks against the Windows XP Service Pack
2/3 heap [20], and Ferguson provides an accessible overview of
techniques targeting DLmalloc [13].

While freelist integrity checks were added to the Windows XP
heap in service pack 2, a similar structure called the lookaside list
(LAL) was not left unprotected, allowing similar attacks. Similarly,
the allocator did not consistently check the header cookie (in par-
ticular, during LAL operations), making it possible exploit certain
chunk header overwrites without guessing the correct value [4].

More comprehensive protection for chunk headers was added
in Windows Vista. In Vista, the entire chunk header is “encrypted”
by XORing with a random 32-bit value. All uses of header fields
must be decrypted before use, meaning that the allocator must con-
sistently check the header integrity in order to function correctly. In
order to supply a specific value to a header field, an attacker must
determine the 32-bit value, which is harder to brute force than the
single-byte cookie.

While header encryption has stifled the ability of simple buffer
overflows to successfully attack heap metadata, the technique is
just the most recent reaction to inline metadata attacks. All of these
techniques simply cope with an underlying design flaw: allocators
with no inline data are not susceptible to this kind of attack.

6. DieHarder: Design and Analysis
In this section, we present the design of DieHarder, a memory
allocator designed with security as a primary design goal. As its
name implies, DieHarder is based on DieHard, a fully-randomized

heap allocator designed to improve the resilience of programs to
memory errors [8]. Our implementation is based on the adaptive
version of DieHard [9].

While DieHard was designed to increase reliability, it does so
by fully randomizing the placement and reuse of heap objects. Due
to this randomization, allocator behavior is highly unpredictable, a
primary goal for our secure allocator. We first describe the DieHard
allocator and analyse its strengths and weaknesses with respect to
our attack models. We then present DieHarder, our secure allocator
which modifies DieHard to correct those weaknesses. Figure 3
presents an overview of DieHarder’s architecture.

6.1 DieHard Overview
DieHard consists of two features: a bitmap-based, fully-randomized
memory allocator and a replicated execution framework; we dis-
cuss only the former [8]. The adaptive version of DieHard, upon
which DieHarder is based, adaptively sizes its heap to be some
multiple M larger than the maximum needed by the application
(for example, M could be 2) [9]. This version of DieHard allocates
memory from increasingly large chunks called miniheaps. Each
miniheap contains objects of exactly one size. DieHard allocates
new miniheaps to ensure that, for each size, the ratio of allocated
objects to total objects is never more than 1/M . Each new mini-
heap is twice as large, and thus holds twice as many objects, as the
previous largest miniheap.

Allocation randomly probes a miniheap’s bitmap for the given
size class for a 0 bit, indicating a free object available for reclama-
tion, and sets it to 1. Freeing a valid object resets the appropriate bit.
Both malloc and free take O(1) expected time. DieHard’s use
of randomization across an over-provisioned heap makes it likely
that buffer overflows will land on free space, and unlikely that a
recently-freed object will be reused soon.

6.2 DieHard Analysis
Like OpenBSD, DieHard randomizes the placement of allocated
objects and the length of time before freed objects are recycled.
However, unlike OpenBSD’s limited randomization, DieHard ran-
domizes placement and reuse to the largest practical extent. We
show how these two randomization techniques greatly improve pro-
tection against attacks by decreasing predictability.

Randomized Placement. When choosing where to allocate a
new object, DieHard chooses uniformly from every free chunk of
the proper size. Furthermore, DieHard’s overprovisioning ensures
O(N) free chunks, where N is the number of allocated objects.
DieHard thus provides O(logN) bits of entropy for the position of
allocated objects, significantly improving on OpenBSD’s 4 bits.

This entropy decreases the probability that overflow attacks will
succeed. We can compute the probability of overflow attacks. The
probability is dependent upon the limitations of the specific appli-
cation error. For example, small overflows (at most the size of a
single chunk) require that the source object be allocated contigu-
ously with the target chunk.

Theorem 1. The probability of a small overflow overwriting a
specific vulnerable target under DieHard is O(1/N), where N is
the number of allocated heap objects when the later of the source
or target chunk was allocated.

Proof. Due to overprovisioning (by a factor ofM) there are at least
MN free heap chunks to choose for each allocation. Each of these
slots is equally likely to be chosen. The probability of the chunks
being allocated contiguously is thus at most 2/MN , assuming free
chunks on both sides of the first-allocated chunk (otherwise, the
probability is lower).

7 2010/4/22

1 24 6 4 5

4
inUse

4
inUse bitmap

... ...

Allocation space (randomly placed pages)

Miniheaps

Figure 3: An overview of DieHarder’s heap layout.

The probability of a k-chunk overflow overwriting one of V
vulnerable objects generalizes this result. To derive the result, we
consider the k object slots following the source object. The first
object in V , v0 has a (MN−k)/MN chance of being outside these
k slots, since there are MN possible positions. Each successive vi

has a (MN − k− i)/MN chance, since each v0...vi−1 consumes
one possible position. Multiplying these probabilities gives

(MN − k)!
MN · (MN − k − |V | − 1)!

,

the probability of all vulnerable objects residing outside the over-
written region. Thus the overwrite succeeds with probability

1− (MN − k)!
MN · (MN − k − |V | − 1)!

.

If |V | << N , each factor is approximately (MN − k)/MN ,
making the probability of a successful attack

1−
„

(MN − k)
MN

«|V |
.

Randomized Reuse. DieHard chooses the location of newly-
allocated chunks randomly across all free chunks of the proper
size. Because of its overprovisioning (M -factor), the number of
free chunks is always proportional to N , the number of allocated
objects. Thus the probability of returning the most-recently-freed
chunk is at most 1/MN . This bound holds even if we continuously
allocate without freeing, since the allocator maintains its M over-
provisioning factor. In other words, the allocator is sampling with
replacement. Thus, like OpenBSD, t follows a geometric distribu-
tion with p = 1/MN . Unlike OpenBSD, which has low fixed reuse
entropy, DieHard provides O(logN) bits, making reuse much less
predictable.

6.3 DieHarder Design and Implementation
As shown in the previous section, DieHard provides greater se-
curity guarantees than other general-purpose allocators. However,
DieHard was designed to increase reliability against memory er-
rors rather than for increased security. Several features of DieHard
enable the program to continue running after experiencing mem-
ory errors, rather than thwarting potential attackers. In this section,
we describe changes to the original DieHard allocator that substan-
tially enhance its protection against heap-based attacks.

Sparse Page Layout
DieHard’s first weakness is its use of large, contiguous regions
of memory. Allocating such regions is more efficient than sparse
pages, requiring fewer system calls and smaller page tables. This
heap layout results in large regions without guard pages, allowing
single overflows to overwrite large numbers of heap chunks.

By contrast, OpenBSD’s allocator uses a sparse page layout,
where small objects are allocated within pages spread sparsely
through the address space. This approach relies on OpenBSD’s
ASLR to allocate randomly-placed pages via mmap. On 64-bit
systems, ASLR makes it highly unlikely that two pages will be
placed next to each other in memory. As a result, a single overflow
cannot span a page boundary without hitting unmapped memory
and thus crashing the program.

Our first enhancement to DieHard is to use sparse page allo-
cation. Similarly to OpenBSD, DieHarder randomly allocates indi-
vidual pages from a large section of address space. DieHarder treats
these pages like DieHard, carving them up into size-segregated
chunks tracked by an allocation bitmap. Allocation is also per-
formed as in DieHard, with an extra level of indirection to cope
with sparse page mapping.

Object deallocation is more complicated, since finding the cor-
rect bitmap given an object address is not straightforward. DieHard
finds the correct metadata using a straightforward search, exploit-
ing its heap layout to require expected constant time. With sparse
pages, however, using DieHard’s approach would require O(N)
time. DieHarder instead uses a hash table to store references to page
metadata, ensuring constant-time free operations.

Address Space Sizing
To achieve full randomization under operating systems with limited
ASLR entropy, DieHarder explicitly randomizes the addresses of
small object pages. It does so by mapping a large, fixed-size region
of virtual address space and then sparsely using individual pages.
This implementation wastes a large amount of virtual memory,
but uses physical memory efficiently as most virtual pages are not
backed by physical page frames.

While the size of the virtual region does not affect the amount
of physical memory used by application data, it does affect the
size of the process’s page tables. The x86-64 uses a 4-level page
table. Contiguous allocations of up to 1 GB (218 pages) require
only 1 or 2 entries in the top three levels of the table, consuming
approximately 512 pages or 2 MB of memory for the page table
itself. In contrast, sparsely allocating 1 GB of pages within the
full 48-bit address space requires mostly-complete middle levels
of the table. Each 512-entry second-level PMD spans 1 GB, and
the expected number of pages contained within each 1 GB region
is 1. The resulting page table would thus require on the order of
2 · 218 PMDs and PTEs, for a staggering 2 GB page table.

Even if physical memory is not an issue, these sparse page tables
can drastically decrease cache efficiency when the application’s
working set exceeds the TLB reach. When each PMD and PTE
is sparse, the cache lines containing the actual entries have only 1/8
utilization (8 of 64 bytes). Combined with needing a line for each
PMD and PTE, the effective cache footprint for page tables grows
by 16X under a sparse layout.

To combat this effect, we restrict DieHarder’s randomization to
a much smaller virtual address range. We explore the tradeoff be-
tween a larger space (and its increased entropy) with performance
in Section 6.3.

Destroy-on-free
DieHarder adopts OpenBSD’s policy of filling freed objects with
random data. While this policy empirically helps find memory
errors, within the context of DieHarder, it is required to limit the
effectiveness of certain attack strategies.

Unlike allocators with deterministic reuse, repeated malloc
and free operations in DieHarder return different chunks of mem-
ory. If freed objects were left intact, an attacker with limited con-
trol of heap operations (e.g., only able to hold only one object live
at a time), could fill an arbitrary fraction of the heap with attacker-

8 2010/4/22

0	

0.25	

0.5	

0.75	

1	

1.25	

1.5	

1.75	

2	

40
0.p
er
lbe
nc
h	

40
1.b
zip
2	

40
3.g
cc
	

42
9.m

cf	

44
5.g
ob
mk
	

45
6.h
mm

er
	

45
8.s
jen
g	

46
2.l
ibq
ua
nt
um
	

46
4.h
26
4r
ef	

47
1.o
mn
et
pp
	

47
3.a
sta
r	

48
3.x
ala
nc
bm
k	

ge
om
ea
n	

N
or
m
al
iz
ed

	 E
xe
cu
0
on

	 T
im

e	

Run0me	 Overhead	

GNU	 libc	 OpenBSD	 DieHard	 DieHarder	

Figure 4: Runtime overhead of the different allocators, normalized to their runtime using OpenBSD’s allocator. In exchange for a substantial
increase in entropy, DieHarder imposes on average a 20% performance penalty vs. OpenBSD.

controlled data by exploiting random placement. In the same sce-
nario, overwriting the contents of freed objects ensure only one
chunk at a time contains attacker-controlled data.

6.3.1 DieHarder Analysis
Using a sparse page heap layout provides greater protection against
heap overflow attacks and heap spraying. Unlike DieHard, DieHarder
does not allocate small objects on contiguous pages.

Overflows
The sparse layout provides two major protections against overflow
attacks. First, because pages are randomly distributed across a large
address space, the probability allocating two contiguous pages is
low. Thus pages are protected by guard pages on both sides with
high probability. Overflows past the end of a page will hit the guard
page, causing the attack to fail.

The chance of hitting a guard page depends on H , the number
of allocated pages and V , the size in pages of DieHarder’s allocated
virtual address space. The chance of having a guard page after any
allocated page is (V − H)/V . This probability increases with V ;
however, large values of V can degrade performance, as discussed
in Section 6.3.

Combined with randomized object placement, the memory im-
mediately after every allocated object has a significant probability
of being unmapped. The worst case for DieHarder is 16-byte ob-
jects, since there are 256 16-byte chunks per page. The probability
of a 1-byte overflow crashing immediately is at least

(V −H)

V
· 1

256
.

The first term represents the probability of the following page being
unmapped, and the second term the probability of the overflowed
object residing in the last slot on the page.

Heap Spraying
DieHarder’s sparse layout protects against heap spraying attacks
by providing more entropy in object addresses. DieHarder’s fully-
randomized allocation eliminates dependence between the ad-
dresses of objects on different pages. The number of objects easily
guessable given a valid object address is limited to the number that

reside on a single page, which is further reduced by DieHarder’s
overprovisioning factor, inherited from DieHard.

7. DieHarder Evaluation
We measure the runtime overhead of DieHarder compared to three
existing allocators, DLmalloc, DieHard, and OpenBSD. We use the
adaptive version of DieHard [9]. To isolate allocator effects, we
ported OpenBSD’s allocator to Linux. We run DieHarder using a 4
GB virtual address space for randomizing small object pages. We
discuss the impact of this design parameter in Section 6.3.

Our experimental machine is a single-socket, quad-core Intel
Xeon E5520 (Nehalem) running at 2.27GHz with 4 GB of physi-
cal memory. We evaluate the CPU overhead of various allocators
using the SPECint2006 benchmark suite. Unlike its predecessor
(SPECint2000), this suite places more stress on the allocator, con-
taining a number of benchmarks with high allocation rates and large
heap memory footprints.

Figure 4 shows the runtime of the benchmark suite using each
allocator, normalized to its runtime under OpenBSD’s allocator.
DieHarder’s overhead varies from -7% to 117%, with a geometric
mean performance impact of 20%. Most benchmarks have very
little overhead (less than 2%). The benchmarks that suffer the
most, perlbench, omnetpp, and xalancbmk, significantly
stress the allocator due to their high allocation rates. We expect
the performance impact of DieHarder to be far lower on its target
class of applications, namely Internet servers and browsers. 1

8. Related Work
This section describes key related work not mentioned elsewhere.

8.1 Security enhancements to memory allocators
Most previous work to increase the security of memory allocators
has focused on securing heap metadata and the use of randomiza-
tion to increase non-determinism.

One approach is to secure the metadata via encryption: Robert-
son describes the use of XOR-encoded heap metadata [31], a coun-

1 We plan to evaluate DieHarder on server applications and Firefox for the
final version of the paper.

9 2010/4/22

termeasure that was incorporated (in slightly modified form) by Lea
into DLmalloc version 2.8. Younan et al. instead present a modi-
fied version of the Lea allocator that fully-segregates metadata, but
which implements no other security enhancements [38]. Kharbutli
et al. describe an approach to securing heap metadata that places it
in a separate process [17]. Isolation of heap metadata helps prevent
certain attacks but, for example, does not mitigate attacks against
the heap data itself. Like DieHard, DieHarder completely segre-
gates heap metadata, and its randomized placement of heap meta-
data in a sparse address space effectively protects the metadata.

Several uses of randomization have been proposed to increase
the non-determinism of object placement and reuse, including lo-
cating the heap at a random base address [10, 26], adding random
padding to allocated objects [11], and shuffling recently-freed ob-
jects [17]. None of these approaches generate as much entropy as
DieHarder.

8.2 Object-per-page allocators
Several memory allocators have been proposed that use one page
for each object (PageHeap [21], Electric Fence [27], and Archipel-
ago). The first two were designed specifically for debugging and are
not suitable for deployment. Archipelago provides higher perfor-
mance and significantly reduces space overhead, but its overhead
still makes it prohibitive for use in many situations.

8.3 Other countermeasures
We briefly describe other countermeasures (not mentioned in Sec-
tion 5) that are orthogonal and complementary to DieHarder.

One noteworthy countermeasure by Ratanaworabhan et al.
called Nozzle addresses heap spraying attacks aimed at prevent-
ing code injection attacks [30]. Nozzle operates by scanning the
heap looking for valid x86 code sequences—a large number of
such sequences indicates that a spray attack is in progress, and can
be used to trigger program termination.

Libraries like LibSafe and HeapShield can prevent overflows
that stem from misuse of C APIs like strcpy [5, 7]. HeapShield
itself was integrated into DieHard [9] and is also integrated into
DieHarder, although we do not evaluate its impact here.

Finally, compiler-based techniques prevent buffer overflows
(though not dangling pointer errors) by implementing bounds
checks [23, 3, 2]. Limitations of these techniques include their re-
striction to C, the need to recompile all code (including libraries),
and in most cases, a substantial performance penalty. WIT [2]
works for both C and C++ and protects against overwrites (but
not out-of-bound reads) with low overhead. Baggy Bounds Check-
ing [3] relies on the same insight exploited by HeapShield, namely
that bounds checks can be implemented efficiently for BiBOP-style
allocators, and thus could easily be modified to use DieHarder as
its allocation substrate.

9. Conclusion
We present an extensive analysis of the impact of memory allo-
cator design decisions on their vulnerability to attack. Guided by
this analysis, we design a new allocator, DieHarder, that provides
the highest level of security from heap-based memory attacks. It
reduces the risk of heap buffer overflow attacks by fully isolat-
ing heap metadata from application data, by interspersing protected
guard pages throughout the heap, and by fully randomizing object
placement. It limits dangling-pointer based exploits by destroy-
ing freed data and destroys the contents of freed objects, and by
fully randomizing object reuse. We show analytically that, com-
pared to past allocators, DieHarder’s design decisions greatly com-
plicate the task of the attacker both by limiting exposure to some
attacks and by dramatically increasing entropy over past memory

allocators. Our empirical evaluation shows that DieHarder imposes
modest runtime overhead—on average, running 20% slower than
OpenBSD across a suite of CPU-intensive benchmarks.

Acknowledgments
The authors would like to thank Ben Zorn for conversations that
helped inspire this work.

The authors acknowledge the support of the Gigascale Systems
Research Center, one of six research centers funded under the Fo-
cus Center Research Program (FCRP), a Semiconductor Research
Corporation entity. This material is based upon work supported by
Intel, Microsoft Research, and the National Science Foundation un-
der CAREER Award CNS-0347339 and CNS-0615211. Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily re-
flect the views of the National Science Foundation.

References
[1] J. Afek and A. Sharabani. Dangling pointer: Smashing the pointer for

fun and profit. In Black Hat USA, 2007.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing
memory error exploits with wit. In SP ’08: Proceedings of the
2008 IEEE Symposium on Security and Privacy, pages 263–277,
Washington, DC, USA, 2008. IEEE Computer Society.

[3] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy bounds
checking: An efficient and backwards-compatible defense against
out-of-bounds errors. In Proceedings of the 18th USENIX Security
Symposium, pages 51–66. USENIX, Aug. 2009.

[4] A. Anisimov. Defeating Microsoft Windows XP SP2 heap protection
and DEP bypass, 2005.

[5] K. Avijit, P. Gupta, and D. Gupta. Tied, libsafeplus: Tools for runtime
buffer overflow protection. In Proceedings of the 13th USENIX
Security Symposium. USENIX, Aug. 2004.

[6] BBP. BSD heap smashing. http://www.ouah.org/BSD-heap-smashing.
txt.

[7] E. D. Berger. Heapshield: Library-based heap overflow protection for
free. Technical Report UMCS TR-2006-28, Department of Computer
Science, University of Massachusetts Amherst, May 2006.

[8] E. D. Berger and B. G. Zorn. DieHard: Probabilistic memory safety
for unsafe languages. In Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), pages 158–168, New York, NY, USA, 2006. ACM Press.

[9] E. D. Berger and B. G. Zorn. Efficient probabilistic memory safety.
Technical Report UMCS TR-2007-17, Department of Computer
Science, University of Massachusetts Amherst, Mar. 2007.

[10] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation:
An efficient approach to combat a broad range of memory error
exploits. In Proceedings of the 12th USENIX Security Symposium,
pages 105–120. USENIX, Aug. 2003.

[11] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient techniques
for comprehensive protection from memory error exploits. In
Proceedings of the 14th USENIX Security Symposium, pages 271–
286. USENIX, Aug. 2005.

[12] M. Conover and the w00w00 Security Team. w00w00 on heap
overflows. http://www.w00w00.org/files/articles/heaptut.txt, January
1999.

[13] J. N. Ferguson. Understanding the heap by breaking it. In Black Hat
USA, 2007.

[14] S. Gonchigar. Ani vulnerability: History repeats.

[15] D. R. Hanson. A portable storage management system for the
Icon programming language. Software Practice and Experience,
10(6):489–500, 1980.

10 2010/4/22

[16] P.-H. Kamp. Malloc(3) revisited. http://phk.freebsd.dk/pubs/malloc.
pdf.

[17] M. Kharbutli, X. Jiang, Y. Solihin, G. Venkataramani, and
M. Prvulovic. Comprehensively and efficiently protecting the heap.
In ASPLOS-XII: Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating
Systems, pages 207–218, New York, NY, USA, 2006. ACM Press.

[18] D. Lea. A memory allocator. http://gee.cs.oswego.edu/dl/html/malloc.html,
1997.

[19] V. B. Lvin, G. Novark, E. D. Berger, and B. G. Zorn. Archipelago:
trading address space for reliability and security. In ASPLOS XIII:
Proceedings of the 13th international conference on Architectural
support for programming languages and operating systems, pages
115–124, New York, NY, USA, mar 2008. ACM.

[20] J. McDonald and C. Valasek. Practical Windows XP/2003 heap
exploitation. In Black Hat USA, 2009.

[21] Microsoft Corporation. Pageheap. http://support.microsoft.com/kb/
286470.

[22] O. Moerbeek. A new malloc(3) for OpenBSD. In EuroBSDCon,
2009.

[23] G. C. Necula, S. McPeak, and W. Weimer. Ccured: Type-safe
retrofitting of legacy code. In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 128–139. ACM Press, Jan. 2002.

[24] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: automatically
correcting memory errors with high probability. In Proceedings of the
2007 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 1–11, New York, NY, USA, 2007.
ACM Press.

[25] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: Automatically
correcting memory errors with high probability. Communications of
the ACM, 51(12):87–95, 2008.

[26] PaX Team. PaX address space layout randomization (ASLR).
http://pax.grsecurity.net/docs/aslr.txt.

[27] B. Perens. Electric Fence v2.1. http://perens.com/FreeSoftware/
ElectricFence/.

[28] J. H. Perkins, S. Kim, S. Larsen, S. P. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-
F. Wong, Y. Zibin, M. D. Ernst, and M. C. Rinard. Automatically
patching errors in deployed software. In J. N. Matthews and T. E.
Anderson, editors, SOSP, pages 87–102. ACM, 2009.

[29] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs as
allergies: A safe method to survive software failures. In Proceedings
of the Twentieth Symposium on Operating Systems Principles,
volume XX of Operating Systems Review, Brighton, UK, Oct. 2005.
ACM.

[30] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle: A defense
against heap-spraying code injection attacks. In Proceedings of the
18th USENIX Security Symposium, pages 169–186. USENIX, Aug.
2009.

[31] W. Robertson, C. Kruegel, D. Mutz, and F. Valeur. Run-time detection
of heap-based overflows. In LISA ’03: Proceedings of the 17th
Large Installation Systems Administration Conference, pages 51–60.
USENIX, 2003.

[32] H. Shacham, M. Page, B. Pfaff, E. Jin Goh, N. Modadugu, and
D. Boneh. On the effectiveness of address-space randomization. In
CCS ’04: Proceedings of the 11th ACM conference on Computer and
communications security, 2004.

[33] Solar Designer. JPEG COM marker processing vulnerabil-
ity in Netscape browsers. http://www.openwall.com/advisories/
OW-002-netscape-jpeg/, 2000.

[34] A. Sotirov. Heap Feng Shui in JavaScript. In Black Hat Europe, 2007.

[35] O. Whitehouse. An analysis of address space layout randomization
on Windows Vista. http://www.symantec.com/avcenter/reference/

Address Space Layout Randomization.pdf, 2007.

[36] Wikipedia. Dangling pointer — Wikipedia, the free encyclopedia,
2010. [Online; accessed 16-April-2010].

[37] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic
storage allocation: A survey and critical review. In Proceedings of
the International Workshop on Memory Management, volume 986 of
Lecture Notes in Computer Science, pages 1–116, Kinross, Scotland,
Sept. 1995. Springer-Verlag.

[38] Y. Younan, W. Joosen, F. Piessens, and H. V. den Eynden. Security
of memory allocators for C and C++. Technical Report CW 419,
Department of Computer Science, Katholieke Universiteit Leuven,
Belgium, July 2005.

11 2010/4/22

