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Abstract

Fuzz testing is an effective technique for finding security

vulnerabilities in software. Traditionally, fuzz testing tools

apply random mutations to well-formed inputs of a pro-

gram and test the resulting values. We present an alterna-

tive whitebox fuzz testing approach inspired by recent ad-

vances in symbolic execution and dynamic test generation.

Our approach records an actual run of the program un-

der test on a well-formed input, symbolically evaluates the

recorded trace, and gathers constraints on inputs capturing

how the program uses these. The collected constraints are

then negated one by one and solved with a constraint solver,

producing new inputs that exercise different control paths

in the program. This process is repeated with the help of a

code-coverage maximizing heuristic designed to find defects

as fast as possible. We have implemented this algorithm

in SAGE (Scalable, Automated, Guided Execution), a new

tool employing x86 instruction-level tracing and emulation

for whitebox fuzzing of arbitrary file-reading Windows ap-

plications. We describe key optimizations needed to make

dynamic test generation scale to large input files and long

execution traces with hundreds of millions of instructions.

We then present detailed experiments with several Windows

applications. Notably, without any format-specific knowl-

edge, SAGE detects the MS07-017 ANI vulnerability, which

was missed by extensive blackbox fuzzing and static analy-

sis tools. Furthermore, while still in an early stage of de-

velopment, SAGE has already discovered 30+ new bugs in

large shipped Windows applications including image pro-

cessors, media players, and file decoders. Several of these

bugs are potentially exploitable memory access violations.

1 Introduction

Since the “Month of Browser Bugs” released a new bug
each day of July 2006 [25], fuzz testing has leapt to promi-
nence as a quick and cost-effective method for finding seri-
ous security defects in large applications. Fuzz testing is a
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form of blackbox random testing which randomly mutates
well-formed inputs and tests the program on the resulting
data [13, 30, 1, 4]. In some cases, grammars are used to
generate the well-formed inputs, which also allows encod-
ing application-specific knowledge and test heuristics. Al-
though fuzz testing can be remarkably effective, the limita-
tions of blackbox testing approaches are well-known. For
instance, the then branch of the conditional statement “if
(x==10) then” has only one in 232 chances of being ex-
ercised if x is a randomly chosen 32-bit input value. This in-
tuitively explains why random testing usually provides low
code coverage [28]. In the security context, these limita-
tions mean that potentially serious security bugs, such as
buffer overflows, may be missed because the code that con-
tains the bug is not even exercised.

We propose a conceptually simple but different approach
of whitebox fuzz testing. This work is inspired by recent ad-
vances in systematic dynamic test generation [16, 7]. Start-
ing with a fixed input, our algorithm symbolically executes
the program, gathering input constraints from conditional
statements encountered along the way. The collected con-
straints are then systematically negated and solved with a
constraint solver, yielding new inputs that exercise different
execution paths in the program. This process is repeated
using a novel search algorithm with a coverage-maximizing
heuristic designed to find defects as fast as possible. For
example, symbolic execution of the above fragment on the
input x= 0 generates the constraint x != 10. Once this con-
straint is negated and solved, it yields x = 10, which gives
us a new input that causes the program to follow the then
branch of the given conditional statement. This allows us
to exercise and test additional code for security bugs, even
without specific knowledge of the input format. Further-
more, this approach automatically discovers and tests “cor-
ner cases” where programmers may fail to properly allocate
memory or manipulate buffers, leading to security vulnera-
bilities.

In theory, systematic dynamic test generation can lead to
full program path coverage, i.e., program verification [16].
In practice, however, the search is typically incomplete both
because the number of execution paths in the program un-



der test is huge and because symbolic execution, constraint
generation, and constraint solving are necessarily impre-
cise. (See Section 2 for various reasons of why the latter
is the case.) Therefore, we are forced to explore practical
tradeoffs, and this paper presents what we believe is a par-
ticular sweet spot. Indeed, our specific approach has been
remarkably effective in finding new defects in large applica-
tions that were previously well-tested. In fact, our algorithm
finds so many defect occurrences that we must address the
defect triage problem (see Section 4), which is common in
static program analysis and blackbox fuzzing, but has not
been faced until now in the context of dynamic test genera-
tion [16, 7, 31, 24, 22, 18]. Another novelty of our approach
is that we test larger applications than previously done in
dynamic test generation [16, 7, 31].

We have implemented this approach in SAGE, short for
Scalable, Automated, Guided Execution, a whole-program
whitebox file fuzzing tool for x86 Windows applications.
While our current tool focuses on file-reading applications,
the principles also apply to network-facing applications. As
argued above, SAGE is capable of finding bugs that are be-
yond the reach of blackbox fuzzers. For instance, without
any format-specific knowledge, SAGE detects the critical
MS07-017 ANI vulnerability, which was missed by exten-
sive blackbox fuzzing and static analysis. Our work makes
three main contributions:

• Section 2 introduces a new search algorithm for sys-
tematic test generation that is optimized for large ap-
plications with large input files and exhibiting long ex-
ecution traces where the search is bound to be incom-
plete;

• Section 3 discusses the implementation of SAGE: the
engineering choices behind its symbolic execution al-
gorithm and the key optimization techniques enabling
it to scale to program traces with hundreds of millions
of instructions;

• Section 4 describes our experience with SAGE: we
give examples of discovered defects and discuss the
results of various experiments.

2 A Whitebox Fuzzing Algorithm

2.1 Background: Dynamic Test Generation

Consider the program shown in Figure 1. This program
takes 4 bytes as input and contains an error when the value
of the variable cnt is greater than or equal to 3 at the end
of the function top. Running the program with random
values for the 4 input bytes is unlikely to discover the error:
there are 5 values leading to the error out of 2(8∗4) possible
values for 4 bytes, i.e., a probability of about 1/230 to hit
the error with random testing, including blackbox fuzzing.

void top(char input[4]) {
int cnt=0;

if (input[0] == ’b’) cnt++;

if (input[1] == ’a’) cnt++;

if (input[2] == ’d’) cnt++;

if (input[3] == ’!’) cnt++;

if (cnt >= 3) abort(); // error

}

Figure 1. Example of program.

This problem is typical of random testing: it is difficult to
generate input values that will drive the program through all
its possible execution paths.

In contrast, whitebox dynamic test generation can easily
find the error in this program: it consists in executing the
program starting with some initial inputs, performing a dy-
namic symbolic execution to collect constraints on inputs
gathered from predicates in branch statements along the ex-
ecution, and then using a constraint solver to infer variants
of the previous inputs in order to steer the next executions
of the program towards alternative program branches. This
process is repeated until a given specific program statement
or path is executed [22, 18], or until all (or many) feasible
program paths of the program are exercised [16, 7].

For the example above, assume we start running the
function top with the initial 4-letters string good. Fig-
ure 2 shows the set of all feasible program paths for the
function top. The leftmost path represents the first run of
the program on input good and corresponds to the program
path ρ including all 4 else-branches of all conditional if-
statements in the program. The leaf for that path is labeled
with 0 to denote the value of the variable cnt at the end of
the run. Intertwined with the normal execution, a symbolic
execution collects the predicates i0 != b, i1 != a, i2 != d

and i3 != ! according to how the conditionals evaluate, and
where i0, i1, i2 and i3 are symbolic variables that represent
the values of the memory locations of the input variables
input[0], input[1], input[2] and input[3],
respectively.

The path constraint φρ = 〈i0 != b, i1 != a, i2 != d, i3 !=
!〉 represents an equivalence class of input vectors, namely
all the input vectors that drive the program through the
path that was just executed. To force the program through
a different equivalence class, one can calculate a solution
to a different path constraint, say, 〈i0 != b, i1 != a, i2 !=
d, i3 = !〉 obtained by negating the last predicate of the cur-
rent path constraint. A solution to this path constraint is
(i0 = g, i1 = o, i2 = o, i3 = !). Running the program
top with this new input goo! exercises a new program
path depicted by the second leftmost path in Figure 2. By
repeating this process, the set of all 16 possible execution



bad!
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good goo! godd god! gaod gao! gadd gad! bood boo! bodd bod! baod bao! badd

Figure 2. Search space for the example of Fig-
ure 1 with the value of the variable cnt at the
end of each run and the corresponding input
string.

paths of this program can be exercised. If this systematic
search is performed in depth-first order, these 16 executions
are explored from left to right on the Figure. The error is
then reached for the first time with cnt==3 during the 8th
run, and full branch/block coverage is achieved after the 9th
run.

2.2 Limitations

Systematic dynamic test generation [16, 7] as briefly de-
scribed above has two main limitations.

Path explosion: systematically executing all feasible
program paths does not scale to large, realistic programs.
Path explosion can be alleviated by performing dynamic
test generation compositionally [14], by testing functions
in isolation, encoding test results as function summaries ex-
pressed using function input preconditions and output post-
conditions, and then re-using those summaries when testing
higher-level functions. Although the use of summaries in
software testing seems promising, achieving full path cov-
erage when testing large applications with hundreds of mil-
lions of instructions is still problematic within a limited
search period, say, one night, even when using summaries.

Imperfect symbolic execution: symbolic execution of
large programs is bound to be imprecise due to complex
program statements (pointer manipulations, arithmetic op-
erations, etc.) and calls to operating-system and library
functions that are hard or impossible to reason about sym-
bolically with good enough precision at a reasonable cost.
Whenever symbolic execution is not possible, concrete val-
ues can be used to simplify constraints and carry on with
a simplified, partial symbolic execution [16]. Randomiza-
tion can also help by suggesting concrete values whenever

1 Search(inputSeed){
2 inputSeed.bound = 0;

3 workList = {inputSeed};
4 Run&Check(inputSeed);

5 while (workList not empty) {//new children

6 input = PickFirstItem(workList);

7 childInputs = ExpandExecution(input);

8 while (childInputs not empty) {
9 newInput = PickOneItem(childInputs);

10 Run&Check(newInput);

11 Score(newInput);

12 workList = workList + newInput;

13 }
14 }
15 }

Figure 3. Search algorithm.

automated reasoning is difficult. Whenever an actual exe-
cution path does not match the program path predicted by
symbolic execution for a given input vector, we say that a
divergence has occurred. A divergence can be detected by
recording a predicted execution path as a bit vector (one bit
for each conditional branch outcome) and checking that the
expected path is actually taken in the subsequent test run.

2.3 Generational Search

We now present a new search algorithm that is designed
to address these fundamental practical limitations. Specifi-
cally, our algorithm has the following prominent features:

• it is designed to systematically yet partially explore the
state spaces of large applications executed with large
inputs (thousands of symbolic variables) and with very
deep paths (hundreds of millions of instructions);

• it maximizes the number of new tests generated from
each symbolic execution (which are long and expen-
sive in our context) while avoiding any redundancy in
the search;

• it uses heuristics to maximize code coverage as quickly
as possible, with the goal of finding bugs faster;

• it is resilient to divergences: whenever divergences oc-
cur, the search is able to recover and continue.

This new search algorithm is presented in two parts in
Figures 3 and 4. The main Search procedure of Figure 3
is mostly standard. It places the initial input inputSeed
in a workList (line 3) and runs the program to check
whether any bugs are detected during the first execution
(line 4). The inputs in the workList are then pro-
cessed (line 5) by selecting an element (line 6) and ex-
panding it (line 7) to generate new inputs with the function



1 ExpandExecution(input) {
2 childInputs = {};
3 // symbolically execute (program,input)

4 PC = ComputePathConstraint(input);

5 for (j=input.bound; j < |PC|; j++) {
6 if((PC[0..(j-1)] and not(PC[j]))

has a solution I){
7 newInput = input + I;

8 newInput.bound = j;

9 childInputs = childInputs + newInput;

10 }
11 return childInputs;

12 }

Figure 4. Computing new children.

ExpandExecution described later in Figure 4. For each
of those childInputs, the program under test is run with
that input. This execution is checked for errors (line 10) and
is assigned a Score (line 11), as discussed below, before
being added to the workList (line 12) which is sorted by
those scores.

The main originality of our search algorithm is in the
way children are expanded as shown in Figure 4. Given an
input (line 1), the function ExpandExecution sym-
bolically executes the program under test with that input
and generates a path constraint PC (line 4) as defined ear-
lier. PC is a conjunction of |PC| constraints, each cor-
responding to a conditional statement in the program and
expressed using symbolic variables representing values of
input parameters (see [16, 7]). Then, our algorithm at-
tempts to expand every constraint in the path constraint
(at a position j greater or equal to a parameter called
input.bound which is initially 0). This is done by
checking whether the conjunction of the part of the path
constraint prior to the jth constraint PC[0..(j-1)] and
of the negation of the jth constraint not(PC[j]) is sat-
isfiable. If so, a solution I to this new path constraint is
used to update the previous solution input while values of
input parameters not involved in the path constraint are pre-
served (this update is denoted by input + I on line 7).
The resulting new input value is saved for future evaluation
(line 9).

In other words, starting with an initial input
inputSeed and initial path constraint PC, the new
search algorithm depicted in Figures 3 and 4 will attempt
to expand all |PC| constraints in PC, instead of just the
last one with a depth-first search, or the first one with a
breadth-first search. To prevent these child sub-searches
from redundantly exploring overlapping parts of the search
space, a parameter bound is used to limit the backtracking
of each sub-search above the branch where the sub-search
started off its parent. Because each execution is typically

expanded with many children, we call such a search order
a generational search.

Consider again the program shown in Figure 1. Assum-
ing the initial input is the 4-letters string good, the leftmost
path in the tree of Figure 2 represents the first run of the
program on that input. From this parent run, a generational
search generates four first-generation children which cor-
respond to the four paths whose leafs are labeled with 1.
Indeed, those four paths each correspond to negating one

constraint in the original path constraint of the leftmost par-
ent run. Each of those first generation execution paths can
in turn be expanded by the procedure of Figure 4 to gen-
erate (zero or more) second-generation children. There are
six of those and each one is depicted with a leaf label of
2 to the right of their (first-generation) parent in Figure 2.
By repeating this process, all feasible execution paths of the
function top are eventually generated exactly once. For
this example, the value of the variable cnt denotes exactly
the generation number of each run.

Since the procedure ExpandExecution of Figure 4
expands all constraints in the current path constraint (below
the current bound) instead of just one, it maximizes the
number of new test inputs generated from each symbolic
execution. Although this optimization is perhaps not sig-
nificant when exhaustively exploring all execution paths of
small programs like the one of Figure 1, it is important when
symbolic execution takes a long time, as is the case for large
applications where exercising all execution paths is virtu-
ally hopeless anyway. This point will be further discussed
in Section 3 and illustrated with the experiments reported in
Section 4.

In this scenario, we want to exploit as much as possi-
ble the first symbolic execution performed with an initial
input and to systematically explore all its first-generation
children. This search strategy works best if that initial input
is well formed. Indeed, it will be more likely to exercise
more of the program’s code and hence generate more con-
straints to be negated, thus more children, as will be shown
with experiments in Section 4. The importance given to the
first input is similar to what is done with traditional, black-
box fuzz testing, hence our use of the term whitebox fuzzing

for the search technique introduced in this paper.

The expansion of the children of the first parent run is
itself prioritized by using a heuristic to attempt to maxi-
mize block coverage as quickly as possible, with the hope
of finding more bugs faster. The function Score (line 11
of Figure 3) computes the incremental block coverage ob-
tained by executing the newInput compared to all previ-
ous runs. For instance, a newInput that triggers an execu-
tion uncovering 100 new blocks would be assigned a score
of 100. Next, (line 12), the newInput is inserted into the
workList according to its score, with the highest scores
placed at the head of the list. Note that all children compete



with each other to be expanded next, regardless of their gen-
eration number.

Our block-coverage heuristic is related to the “Best-First
Search” of EXE [7]. However, the overall search strategy is
different: while EXE uses a depth-first search that occasion-
ally picks the next child to explore using a block-coverage
heuristic, a generational search tests all children of each ex-
panded execution, and scores their entire runs before pick-
ing the best one from the resulting workList.

The block-coverage heuristics computed with the func-
tion Score also helps dealing with divergences as defined
in the previous section, i.e., executions diverging from the
expected path constraint to be taken next. The occurrence
of a single divergence compromises the completeness of
the search, but this is not the main issue in practice since
the search is bound to be incomplete for very large search
spaces anyway. A more worrisome issue is that divergences
may prevent the search from making any progress. For in-
stance, a depth-first search which diverges from a path p to
a previously explored path p′ would cycle forever between
that path p′ and the subsequent divergent run p. In contrast,
our generational search tolerates divergences and can re-
cover from this pathological case. Indeed, each run spawns
many children, instead of a single one as with a depth-first
search, and, if a child run p divergences to a previous one
p′, that child p will have a zero score and hence be placed at
the end of the workListwithout hampering the expansion
of other, non-divergent children. Dealing with divergences
is another important feature of our algorithm for handling
large applications for which symbolic execution is bound
to be imperfect/incomplete, as will be demonstrated in Sec-
tion 4.

Finally, we note that a generational search parallelizes
well, since children can be checked and scored indepen-
dently; only the work list and overall block coverage need
to be shared.

3 The SAGE System

The generational search algorithm presented in the pre-
vious section has been implemented in a new tool named
SAGE, which stands for Scalable, Automated, Guided Exe-

cution. SAGE can test any file-reading program running on
Windows by treating bytes read from files as symbolic in-
puts. Another key novelty of SAGE is that it performs sym-
bolic execution of program traces at the x86 binary level.
This section justifies this design choice by arguing how it
allows SAGE to handle a wide variety of large production
applications. This design decision raises challenges that are
different from those faced by source-code level symbolic
execution. We describe these challenges and show how they
are addressed in our implementation. Finally, we outline
key optimizations that are crucial in scaling to large pro-

grams.

3.1 System Architecture

SAGE performs a generational search by repeating four
different types of tasks. The Tester task implements the
function Run&Check by executing a program under test on
a test input and looking for unusual events such as access vi-
olation exceptions and extreme memory consumption. The
subsequent tasks proceed only if the Tester task did not
encounter any such errors. If Tester detects an error, it
saves the test case and performs automated triage as dis-
cussed in Section 4.

The Tracer task runs the target program on the same
input file again, this time recording a log of the run which
will be used by the following tasks to replay the program
execution offline. This task uses the iDNA framework [3] to
collect complete execution traces at the machine-instruction
level.

The CoverageCollector task replays the recorded
execution to compute which basic blocks were executed
during the run. SAGE uses this information to implement
the function Score discussed in the previous section.

Lastly, the SymbolicExecutor task implements the
function ExpandExecution of Section 2.3 by replaying
the recorded execution once again, this time to collect input-
related constraints and generate new inputs using the con-
straint solver Disolver [19].

Both the CoverageCollector and
SymbolicExecutor tasks are built on top of the
trace replay framework TruScan [26] which consumes
trace files generated by iDNA and virtually re-executes
the recorded runs. TruScan offers several features that
substantially simplify symbolic execution. These include
instruction decoding, providing an interface to program
symbol information, monitoring various input/output
system calls, keeping track of heap and stack frame allo-
cations, and tracking the flow of data through the program
structures.

3.2 Trace-based x86 Constraint Generation

SAGE’s constraint generation differs from previous dy-
namic test generation implementations [16, 31, 7] in two
main ways. First, instead of a source-based instrumen-
tation, SAGE adopts a machine-code-based approach for
three main reasons:

Multitude of languages and build processes. Source-
based instrumentation must support the specific language,
compiler, and build process for the program under test.
There is a large upfront cost for adapting the instrumen-
tation to a new language, compiler, or build tool. Cover-
ing many applications developed in a large company with



a variety of incompatible build processes and compiler ver-
sions is a logistical nightmare. In contrast, a machine-code
based symbolic-execution engine, while complicated, need
be implemented only once per architecture. As we will see
in Section 4, this choice has let us apply SAGE to a large
spectrum of production software applications.

Compiler and post-build transformations. By perform-
ing symbolic execution on the binary code that actually
ships, SAGE makes it possible to catch bugs not only in
the target program but also in the compilation and post-
processing tools, such as code obfuscators and basic block
transformers, that may introduce subtle differences between
the semantics of the source and the final product.

Unavailability of source. It might be difficult to ob-
tain source code of third-party components, or even com-
ponents from different groups of the same organization.
Source-based instrumentation may also be difficult for self-
modifying or JITed code. SAGE avoids these issues by
working at the machine-code level. While source code does
have information about types and structure not immediately
visible at the machine code level, we do not need this infor-
mation for SAGE’s path exploration.

Second, instead of an online instrumentation, SAGE
adopts an offline trace-based constraint generation. With
online generation, constraints are generated as the program
is executed either by statically injected instrumentation
code or with the help of dynamic binary instrumentation
tools such as Nirvana [3] or Valgrind [27] (Catchconv
is an example of the latter approach [24].) SAGE adopts
offline trace-based constraint generation for two reasons.
First, a single program may involve a large number of bi-
nary components some of which may be protected by the
operating system or obfuscated, making it hard to replace
them with instrumented versions. Second, inherent nonde-
terminism in large target programs makes debugging online
constraint generation difficult. If something goes wrong in
the constraint generation engine, we are unlikely to repro-
duce the environment leading to the problem. In contrast,
constraint generation in SAGE is completely deterministic
because it works from the execution trace that captures the
outcome of all nondeterministic events encountered during
the recorded run.

3.3 Constraint Generation

SAGE maintains the concrete and symbolic state of the
program represented by a pair of stores associating every
memory locations and registers to a byte-sized value and a
symbolic tag respectively. A symbolic tag is an expression
representing either an input value or a function of some in-
put value. SAGE supports several kinds of tags: input(m)
represents the mth byte of the input; c represents a constant;
t1 op t2 denotes the result of some arithmetic or bitwise

operation op on the values represented by the tags t1 and
t2; the sequence tag 〈t0 . . . tn〉 where n = 1 or n = 3
describes a word- or double-word-sized value obtained by
grouping byte-sized values represented by tags t0 . . . tm to-
gether; subtag(t, i) where i ∈ {0 . . . 3} corresponds to
the i-th byte in the word- or double-word-sized value rep-
resented by t. Note that SAGE does not currently reason
about symbolic pointer dereferences. SAGE defines a fresh
symbolic variable for each non-constant symbolic tag. Pro-
vided there is no confusion, we do not distinguish a tag from
its associated symbolic variable in the rest of this section.

As SAGE replays the recorded program trace, it updates
the concrete and symbolic stores according to the semantics
of each visited instruction.

In addition to performing symbolic tag propagation,
SAGE also generates constraints on input values. Con-
straints are relations over symbolic variables; for example,
given a variable x that corresponds to the tag input(4),
the constraint x < 10 denotes the fact that the fifth byte of
the input is less than 10.

When the algorithm encounters an input-dependent con-
ditional jump, it creates a constraint modeling the outcome
of the branch and adds it to the path constraint composed of
the constraints encountered so far.

The following simple example illustrates the process of
tracking symbolic tags and collecting constraints.

# read 10 byte file into a

# buffer beginning at address 1000

mov ebx, 1005

mov al, byte [ebx]

dec al # Decrement al

jz LabelForIfZero # Jump if al == 0

The beginning of this fragment uses a system call to read
a 10 byte file into the memory range starting from address
1000. For brevity, we omit the actual instruction sequence.
As a result of replaying these instructions, SAGE updates
the symbolic store by associating addresses 1000 . . . 1009
with symbolic tags input(0) . . . input(9) respectively.
The two mov instructions have the effect of loading the
fifth input byte into register al. After replaying these in-
structions, SAGE updates the symbolic store with a map-
ping of al to input(5). The effect of the last two instruc-
tions is to decrement al and to make a conditional jump
to LabelForIfZero if the decremented value is 0. As a
result of replaying these instructions, depending on the out-
come of the branch, SAGE will add one of two constraints
t = 0 or t != 0 where t = input(5) − 1. The former con-
straint is added if the branch is taken; the latter if the branch
is not taken.

This leads us to one of the key difficulties in generating
constraints from a stream of x86 machine instructions—
dealing with the two-stage nature of conditional expres-



sions. When a comparison is made, it is not known how
it will be used until a conditional jump instruction is ex-
ecuted later. The processor has a special register EFLAGS

that packs a collection of status flags such as CF, SF, AF,
PF, OF, and ZF. How these flags are set is determined by
the outcome of various instructions. For example, CF—the
first bit of EFLAGS—is the carry flag that is influenced by
various arithmetic operations. In particular, it is set to 1 by
a subtraction instruction whose first argument is less than
the second. ZF is the zero flag located at the seventh bit of
EFLAGS; it is set by a subtraction instruction if its arguments
are equal. Complicating matters even further, some instruc-
tions such as sete and pushf access EFLAGS directly.

For sound handling of EFLAGS, SAGE defines bitvec-
tor tags of the form 〈f0 . . . fn−1〉 describing an n-bit value
whose bits are set according to the constraints f0 . . . fn−1.
In the example above, when SAGE replays the dec instruc-
tion, it updates the symbolic store mapping for al and for
EFLAGS. The former becomes mapped to input(5) − 1;
the latter—to the bitvector tag 〈t < 0 . . . t = 0 . . .〉 where
t = input(5) − 1 and the two shown constraints are lo-
cated at offsets 0 and 6 of the bitvector—the offsets corre-
sponding to the positions of CF and ZF in the EFLAGS reg-
ister.

Another pervasive x86 practice involves casting between
byte, word, and double word objects. Even if the main code
of the program under test does not contain explicit casts, it
will invariably invoke some run-time library function such
as atol, malloc, or memcpy that does.

SAGE implements sound handling of casts with the help
of subtag and sequence tags. This is illustrated by the fol-
lowing example.

mov ch, byte [...]

mov cl, byte [...]

inc cx # Increment cx

Let us assume that the two mov instructions read addresses
associated with the symbolic tags t1 and t2. After SAGE re-
plays these instructions, it updates the symbolic store with
the mappings cl &→ t1 and ch &→ t2. The next instruc-
tion increments cx—the 16-bit register containing cl and
ch as the low and high bytes respectively. Right before the
increment, the contents of cx can be represented by the se-
quence tag 〈t1, t2〉. The result of the increment then is the
word-sized tag t = (〈t1, t2〉 + 1). To finalize the effect
of the inc instruction, SAGE updates the symbolic store
with the byte-sized mappings cl &→ subtag(t, 0) and
ch &→ subtag(t, 1). SAGE encodes the subtag relation
by the constraint x = x′ + 256 ∗ x′′ where the word-sized
symbolic variable x corresponds to t and the two byte-sized
symbolic variables x′ and x′′ correspond to subtag(t, 0)
and subtag(t, 1) respectively.

3.4 Constraint Optimization

SAGE employs a number of optimization techniques
whose goal is to improve the speed and memory usage of
constraint generation: tag caching ensures that structurally
equivalent tags are mapped to the same physical object; un-

related constraint elimination reduces the size of constraint
solver queries by removing the constraints which do not
share symbolic variables with the negated constraint; local

constraint caching skips a constraint if it has already been
added to the path constraint; flip count limit establishes the
maximum number of times a constraint generated from a
particular program instruction can be flipped; concretiza-

tion reduces the symbolic tags involving bitwise and multi-
plicative operators into their corresponding concrete values.

These optimizations are fairly standard in dynamic test
generation. The rest of this section describes constraint sub-

sumption, an optimization we found particularly useful for
analyzing structured-file parsing applications.

The constraint subsumption optimization keeps track of
the constraints generated from a given branch instruction.
When a new constraint f is created, SAGE uses a fast syn-
tactic check to determine whether f definitely implies or is
definitely implied by another constraint generated from the
same instruction. If this is the case, the implied constraint
is removed from the path constraint.

The subsumption optimization has a critical impact on
many programs processing structured files such as various
image parsers and media players. For example, in one of the
Media 2 searches described in Section 4, we have observed
a ten-fold decrease in the number of constraints because of
subsumption. Without this optimization, SAGE runs out of
memory and overwhelms the constraint solver with a huge
number of redundant queries.

Let us look at the details of the constraint subsumption
optimization with the help of the following example:

mov cl, byte [...]

dec cl # Decrement cl

ja 2 # Jump if cl > 0

This code fragment loads a byte into cl and decrements it
in a loop until it becomes 0. Assuming that the byte read
by the mov instruction is mapped to a symbolic tag t0, the
algorithm outlined in Section 3.3 will generate constraints
t1 > 0, . . ., tk−1 > 0, and tk ≤ 0 where k is the concrete
value of the loaded byte and ti+1 = ti −1 for i ∈ {1 . . . k}.
Here, the memory cost is linear in the number of loop iter-
ations because each iteration produces a new constraint and
a new symbolic tag.

The subsumption technique allows us to remove the first
k − 2 constraints because they are implied by the follow-
ing constraints. We still have to hold on to a linear number
of symbolic tags because each one is defined in terms of



the preceding tag. To achieve constant space behavior, con-
straint subsumption must be performed in conjunction with
constant folding during tag creation: (t−c)−1 = t−(c+1).
The net effect of the algorithm with constraint subsumption
and constant folding on the above fragment is the path con-
straint with two constraints t0−(k−1) > 0 and t0−k ≤ 0.

Another hurdle arises from multi-byte tags. Consider the
following loop which is similar to the loop above except
that the byte-sized register cl is replaced by the word-sized
register cx.

mov cx, word [...]

dec cx # Decrement cx

ja 2 # Jump if cx > 0

Assuming that the two bytes read by the mov instruction are
mapped to tags t′0 and t′′0 , this fragment yields constraints
s1 > 0, . . ., sk−1 > 0, and sk ≤ 0 where si+1 = 〈t′i, t

′′

i 〉−1
with t′i = subtag(si, 0) and t′′i = subtag(si, 1) for
i ∈ {1 . . . k}. Constant folding becomes hard because each
loop iteration introduces syntactically unique but semanti-
cally redundant word-size sequence tags. SAGE solves this
with the help of sequence tag simplification which rewrites
〈subtag(t, 0), subtag(t, 1)〉 into t avoiding duplicating
equivalent tags and enabling constant folding.

Constraint subsumption, constant folding, and sequence
tag simplification are sufficient to guarantee constant
space replay of the above fragment generating constraints
〈t′0, t

′′

0〉 − (k − 1) > 0 and 〈t′0, t
′′

0〉 − k ≤ 0. More gen-
erally, these three simple techniques enable SAGE to effec-
tively fuzz real-world structured-file-parsing applications in
which the input-bound loop pattern is pervasive.

4 Experiments

We first describe our initial experiences with SAGE, in-
cluding several bugs found by SAGE that were missed by
blackbox fuzzing efforts. Inspired by these experiences, we
pursue a more systematic study of SAGE’s behavior on two
media-parsing applications. In particular, we focus on the
importance of the starting input file for the search, the ef-
fect of our generational search vs. depth-first search, and
the impact of our block coverage heuristic. In some cases,
we withold details concerning the exact application tested
because the bugs are still in the process of being fixed.

4.1 Initial Experiences

MS07-017. On 3 April 2007, Microsoft released an out of
band critical security patch for code that parses ANI format
animated cursors. The vulnerability was originally reported
to Microsoft in December 2006 by Alex Sotirov of Deter-
mina Security Research, then made public after exploit code
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Figure 5. On the left, an ASCII rendering of
a prefix of the seed ANI file used for our
search. On the right, the SAGE-generated
crash for MS07-017. Note how the SAGE test
case changes the LIST to an additional anih
record on the next-to-last line.

appeared in the wild [32]. This was only the third such out-
of-band patch released by Microsoft since January 2006,
indicating the seriousness of the bug. The Microsoft SDL
Policy Weblog states that extensive blackbox fuzz testing of
this code failed to uncover the bug, and that existing static
analysis tools are not capable of finding the bug without ex-
cessive false positives [20]. SAGE, in contrast, synthesizes
a new input file exhibiting the bug within hours of starting
from a well-formed ANI file.

In more detail, the vulnerability results from an incom-
plete patch to MS05-006, which also concerned ANI pars-
ing code. The root cause of this bug was a failure to vali-
date a size parameter read from an anih record in an ANI
file. Unfortunately, the patch for MS05-006 is incomplete.
Only the length of the first anih record is checked. If a file
has an initial anih record of 36 bytes or less, the check is
satisfied but then an icon loading function is called on all
anih records. The length fields of the second and subse-
quent records are not checked, so any of these records can
trigger memory corruption.

Therefore, a test case needs at least two anih records
to trigger the MS07-017 bug. The SDL Policy Weblog at-
tributes the failure of blackbox fuzz testing to find MS07-
017 to the fact that all of the seed files used for blackbox
testing had only one anih record, and so none of the test
cases generated would break the MS05-006 patch. While of
course one could write a grammar that generates such test
cases for blackbox fuzzing, this requires effort and does not
generalize beyond the single ANI format.

In contrast, SAGE can generate a crash exhibiting MS07-



Test # SymExec SymExecT Init. |PC| # Tests Mean Depth Mean # Instr. Mean Size

ANI 808 19099 341 11468 178 2066087 5400
Media 1 564 5625 71 6890 73 3409376 65536
Media 2 3 3457 3202 1045 1100 271432489 27335
Media 3 17 3117 1666 2266 608 54644652 30833
Media 4 7 3108 1598 909 883 133685240 22209

Compressed File 47 1495 111 1527 65 480435 634
OfficeApp 1 3108 15745 3008 6502 923731248 45064

Figure 6. Statistics from 10-hour searches on seven test applications, each seeded with a well-formed
input file. We report the number of SymbolicExecutor tasks during the search, the total time spent
in all SymbolicExecutor tasks in seconds, the number of constraints generated from the seed file,
the total number of test cases generated, the mean depth per test case in number of constraints, the
mean number of instructions executed after reading the input file, and the mean size of the symbolic
input in bytes.

017 starting from a well-formed ANI file with one anih
record, despite having no knowledge of the ANI format.
Our seed file was picked arbitrarily from a library of well-
formed ANI files, and we used a small test driver that called
user32.dll to parse test case ANI files. The initial test
case generated a path constraint with 341 branch constraints
after parsing 1279939 total instructions over 10072 sym-
bolic input bytes. SAGE then created a crashing ANI file at
depth 72 after 7 hours 36 minutes of search and 7706 test
cases, using one core of a 2 GHz AMD Opteron 270 dual-
core processor running 32-bit Windows Vista with 4 GB
of RAM. Figure 5 shows a prefix of our seed file side by
side with the crashing SAGE-generated test case. Figure 6
shows further statistics from this test run.

Compressed File Format. We released an alpha version of
SAGE to an internal testing team to look for bugs in code
that handles a compressed file format. The parsing code
for this file format had been extensively tested with black-
box fuzzing tools, yet SAGE found two serious new bugs.
The first bug was a stack overflow. The second bug was
an infinite loop that caused the processing application to
consume nearly 100% of the CPU. Both bugs were fixed
within a week of filing, showing that the product team con-
sidered these bugs important. Figure 6 shows statistics from
a SAGE run on this test code, seeded with a well-formed
compressed file. SAGE also uncovered two separate crashes
due to read access violations while parsing malformed files
of a different format tested by the same team; the corre-
sponding bugs were also fixed within a week of filing.

Media File Parsing. We applied SAGE to parsers for four
widely used media file formats, which we will refer to as
“Media 1,” “Media 2,” “Media 3,” and “Media 4.” Through
several testing sessions, SAGE discovered crashes in each
of these media files that resulted in nine distinct bug reports.
For example, SAGE discovered a read violation due to the

program copying zero bytes into a buffer and then reading
from a non-zero offset. In addition, starting from a seed
file of 100 zero bytes, SAGE synthesized a crashing Media
1 test case after 1403 test cases, demonstrating the power
of SAGE to infer file structure from code. Figure 6 shows
statistics on the size of the SAGE search for each of these
parsers, when starting from a well-formed file.

Office 2007 Application. We have used SAGE to success-
fully synthesize crashing test cases for a large application
shipped as part of Office 2007. Over the course of two
10-hour searches seeded with two different well-formed
files, SAGE generated 4548 test cases, of which 43 crashed
the application. The crashes we have investigated so far
are NULL pointer dereference errors, and they show how
SAGE can successfully reason about programs on a large
scale. Figure 6 shows statistics from the SAGE search on
one of the well-formed files.

Image Parsing. We used SAGE to exercise the image pars-
ing code in a media player included with a variety of other
applications. While our initial run did not find crashes, we
used an internal tool to scan traces from SAGE-generated
test cases and found several uninitialized value use errors.
We reported these errors to the testing team, who expanded
the result into a reproducible crash. This experience shows
that SAGE can uncover serious bugs that do not immedi-
ately lead to crashes.

4.2 Experiment Setup

Test Plan. We focused on the Media 1 and Media 2 parsers
because they are widely used. We ran a SAGE search for the
Media 1 parser with five “well-formed” media files, chosen
from a library of test media files. We also tested Media 1
with five “bogus” files : bogus-1 consisting of 100 zero
bytes, bogus-2 consisting of 800 zero bytes, bogus-3



stack hash wff-1 wff-2 wff-3 wff-4 wff-5 bogus-1

1867196225 × × × × ×
2031962117 × × × × ×
612334691 × ×
1061959981 × ×
1212954973 × ×
1011628381 × × ×
842674295 ×
1246509355 × × ×
1527393075 ×
1277839407 ×
1392730167 ×
1951025690 ×

stack hash wff-1 wff-3 wff-4 wff-5

790577684 × × × ×
825233195 × × ×
795945252 × × × ×
1060863579 × × × ×
1043337003 ×
808455977 ×
1162567688 ×

Figure 7. SAGE found 12 distinct stack hashes (shown left) from 357 Media 1 crashing files and 7
distinct stack hashes (shown right) from 88 Media 2 crashing files.

consisting of 25600 zero bytes, bogus-4 consisting of 100
randomly generated bytes, and bogus-5 consisting of 800
randomly generated bytes. For each of these 10 files, we
ran a 10-hour SAGE search seeded with the file to estab-
lish a baseline number of crashes found by SAGE. If a task
was in progress at the end of 10 hours, we allowed it to fin-
ish, leading to search times slightly longer than 10 hours in
some cases. For searches that found crashes, we then re-
ran the SAGE search for 10 hours, but disabled our block
coverage heuristic. We repeated the process for the Me-
dia 2 parser with five “well-formed” Media 2 files and the
bogus-1 file.

Each SAGE search used AppVerifier [8] configured to
check for heap memory errors. Whenever such an error
occurs, AppVerifier forces a “crash” in the application un-
der test. We then collected crashing test cases, the absolute
number of code blocks covered by the seed input, and the
number of code blocks added over the course of the search.
We performed our experiments on four machines, each with
two dual-core AMD Opteron 270 processors running at 2
GHz. During our experiments, however, we used only one
core to reduce the effect of nondeterministic task schedul-
ing on the search results. Each machine ran 32-bit Windows
Vista, with 4 GB of RAM and a 250 GB hard drive.

Triage. Because a SAGE search can generate many differ-
ent test cases that exhibit the same bug, we “bucket” crash-
ing files by the stack hash of the crash, which includes the
address of the faulting instruction. It is possible for the same
bug to be reachable by program paths with different stack
hashes for the same root cause. Our experiments always
report the distinct stack hashes.

Nondeterminism in Coverage Results. As part of our ex-
periments, we measured the absolute number of blocks cov-
ered during a test run. We observed that running the same
input on the same program can lead to slightly different ini-

tial coverage, even on the same machine. We believe this is
due to nondeterminism associated with loading and initial-
izing DLLs used by our test applications.

4.3 Results and Observations

The Appendix shows a table of results from our exper-
iments. Here we comment on some general observations.
We stress that these observations are from a limited sample
size of two applications and should be taken with caution.

Symbolic execution is slow. We measured the total amount
of time spent performing symbolic execution during each
search. We observe that a single symbolic execution task is
many times slower than testing or tracing a program. For
example, the mean time for a symbolic execution task in
the Media 2 search seeded with wff-3 was 25 minutes 30
seconds, while testing a Media 2 file took seconds. At the
same time, we can also observe that only a small portion of
the search time was spent performing symbolic execution,
because each task generated many test cases; in the Media
2 wff-3 case, only 25% of the search time was spent in
symbolic execution. This shows how a generational search
effectively leverages the expensive symbolic execution task.
This also shows the benefit of separating the Tester task
from the more expensive SymbolicExecutor task.

Generational search is better than depth-first search.
We performed several runs with depth-first search. First, we
discovered that the SAGE search on Media 1 when seeded
with the bogus-1 file exhibited a pathological divergence
(see Section 2) leading to premature termination of the
search after 18 minutes. Upon further inspection, this diver-
gence proved to be due to concretizing an AND operator in
the path constraint. We did observe depth-first search runs
for 10 hours for Media 2 searches seeded with wff-2 and
wff-3. Neither depth-first searches found crashes. In con-



Figure 8. Histograms of test cases and of crashes by generation for Media 1 seeded with wff-4.

trast, while a generational search seeded with wff-2 found
no crashes, a generational search seeded with wff-3 found
15 crashing files in 4 buckets. Furthermore, the depth-first
searches were inferior to the generational searches in code
coverage: the wff-2 generational search started at 51217
blocks and added 12329, while the depth-first search started
with 51476 and added only 398. For wff-3, a generational
search started at 41726 blocks and added 9564, while the
depth-first search started at 41703 blocks and added 244.
These different initial block coverages stem from the non-
determinism noted above, but the difference in blocks added
is much larger than the difference in starting coverage. The
limitations of depth-first search regarding code coverage are
well known (e.g., [23]) and are due to the search being too
localized. In contrast, a generational search explores alter-
native execution branches at all depths, simultaneously ex-
ploring all the layers of the program. Finally, we saw that a
much larger percentage of the search time is spent in sym-
bolic execution for depth-first search than for generational
search, because each test case requires a new symbolic ex-
ecution task. For example, for the Media 2 search seeded
with wff-3, a depth-first search spent 10 hours and 27
minutes in symbolic execution for 18 test cases generated,
out of a total of 10 hours and 35 minutes. Note that any
other search algorithm that generates a single new test from
each symbolic execution (like a breadth-first search) has a
similar execution profile where expensive symbolic execu-
tions are poorly leveraged, hence resulting in relatively few
tests being executed given a fixed time budget.

Divergences are common. Our basic test setup did not
measure divergences, so we ran several instrumented test
cases to measure the divergence rate. In these cases, we of-
ten observed divergence rates of over 60%. This may be due
to several reasons: in our experimental setup, we concretize
all non-linear operations (such as multiplication, division,
and bitwise arithmetic) for efficiency, there are several x86
instructions we still do not emulate, we do not model sym-
bolic dereferences of pointers, tracking symbolic variables
may be incomplete, and we do not control all sources of

nondeterminism as mentioned above. Despite this, SAGE
was able to find many bugs in real applications, showing
that our search technique is tolerant of such divergences.

Bogus files find few bugs. We collected crash data from
our well-formed and bogus seeded SAGE searches. The
bugs found by each seed file are shown, bucketed by stack
hash, in Figure 7. Out of the 10 files used as seeds for
SAGE searches on Media 1, 6 found at least one crash-
ing test case during the search, and 5 of these 6 seeds were
well-formed. Furthermore, all the bugs found in the search
seeded with bogus-1were also found by at least one well-
formed file. For SAGE searches on Media 2, out of the 6
seed files tested, 4 found at least one crashing test case, and
all were well-formed. Hence, the conventional wisdom that
well-formed files should be used as a starting point for fuzz
testing applies to our whitebox approach as well.

Different files find different bugs. Furthermore, we ob-
served that no single well-formed file found all distinct bugs
for either Media 1 or Media 2. This suggests that using a
wide variety of well-formed files is important for finding
distinct bugs as each search is incomplete.

Bugs found are shallow. For each seed file, we collected
the maximum generation reached by the search. We then
looked at which generation the search found the last of its
unique crash buckets. For the Media 1 searches, crash-
finding searches seeded with well-formed files found all
unique bugs within 4 generations, with a maximum num-
ber of generations between 5 and 7. Therefore, most of the
bugs found by these searches are shallow — they are reach-
able in a small number of generations. The crash-finding
Media 2 searches reached a maximum generation of 3, so
we did not observe a trend here.

Figure 8 shows histograms of both crashing and non-
crashing (“NoIssues”) test cases by generation for Media
1 seeded with wff-4. We can see that most tests exe-
cuted were of generations 4 to 6, yet all unique bugs can be
found in generations 1 to 4. The number of test cases tested
with no issues in later generations is high, but these new
test cases do not discover distinct new bugs. This behav-



ior was consistently observed in almost all our experiments,
especially the “bell curve” shown in the histograms. This
generational search did not go beyond generation 7 since
it still has many candidate input tests to expand in smaller
generations and since many tests in later generations have
lower incremental-coverage scores.

No clear correlation between coverage and crashes. We
measured the absolute number of blocks covered after run-
ning each test, and we compared this with the locations of
the first test case to exhibit each distinct stack hash for a
crash. Figure 9 shows the result for a Media 1 search seeded
with wff-4; the vertical bars mark where in the search
crashes with new stack hashes were discovered. While this
graph suggests that an increase in coverage correlates with
finding new bugs, we did not observe this universally. Sev-
eral other searches follow the trends shown by the graph for
wff-2: they found all unique bugs early on, even if code
coverage increased later. We found this surprising, because
we expected there to be a consistent correlation between
new code explored and new bugs discovered. In both cases,
the last unique bug is found partway through the search,
even though crashing test cases continue to be generated.

Effect of block coverage heuristic. We compared the num-
ber of blocks added during the search between test runs
that used our block coverage heuristic to pick the next child
from the pool, and runs that did not. We observed only
a weak trend in favor of the heuristic. For example, the
Media 2 wff-1 search added 10407 blocks starting from
48494 blocks covered, while the non-heuristic case started
with 48486 blocks and added 10633, almost a dead heat.
In contrast, the Media 1 wff-1 search started with 27659
blocks and added 701, while the non-heuristic case started
with 26962 blocks and added only 50. Out of 10 total search
pairs, in 3 cases the heuristic added many more blocks,
while in the others the numbers are close enough to be al-
most a tie. As noted above, however, this data is noisy due
to nondeterminism observed with code coverage.

5 Other Related Work

Other extensions of fuzz testing have recently been de-
veloped. Most of those consist of using grammars for
representing sets of possible inputs [30, 33]. Probabilis-
tic weights can be assigned to production rules and used as
heuristics for random test input generation. Those weights
can also be defined or modified automatically using cover-
age data collected using lightweight dynamic program in-
strumentation [34]. These grammars can also include rules
for corner cases to test for common pitfalls in input vali-
dation code (such as very long strings, zero values, etc.).
The use of input grammars makes it possible to encode
application-specific knowledge about the application under
test, as well as testing guidelines to favor testing specific ar-

eas of the input space compared to others. In practice, they
are often key to enable blackbox fuzzing to find interest-
ing bugs, since the probability of finding those using pure
random testing is usually very small. But writing gram-
mars manually is tedious, expensive and scales poorly. In
contrast, our whitebox fuzzing approach does not require
an input grammar specification to be effective. However,
the experiments of the previous section highlight the impor-
tance of the initial seed file for a given search. Those seed
files could be generated using grammars used for blackbox
fuzzing to increase their diversity. Also, note that blackbox
fuzzing can generate and run new tests faster than whitebox
fuzzing due to the cost of symbolic execution and constraint
solving. As a result, it may be able to expose new paths that
would not be exercised with whitebox fuzzing because of
the imprecision of symbolic execution.

As previously discussed, our approach builds upon re-
cent work on systematic dynamic test generation, intro-
duced in [16, 6] and extended in [15, 31, 7, 14, 29]. The
main differences are that we use a generational search al-
gorithm using heuristics to find bugs as fast as possible in
an incomplete search, and that we test large applications
instead of unit test small ones, the latter being enabled by
a trace-based x86-binary symbolic execution instead of a
source-based approach. Those differences may explain why
we have found more bugs than previously reported with dy-
namic test generation.

Our work also differs from tools such as [11], which
are based on dynamic taint analysis that do not generate
or solve constraints, but instead simply force branches to
be taken or not taken without regard to the program state.
While useful for a human auditor, this can lead to false pos-
itives in the form of spurious program crashes with data
that “can’t happen” in a real execution. Symbolic exe-
cution is also a key component of static program analy-

sis, which has been applied to x86 binaries [2, 10]. Static
analysis is usually more efficient but less precise than dy-
namic analysis and testing, and their complementarity is
well known [12, 15]. They can also be combined [15, 17].
Static test generation [21] consists of analyzing a program
statically to attempt to compute input values to drive it along
specific program paths without ever executing the program.
In contrast, dynamic test generation extends static test gen-
eration with additional runtime information, and is therefore
more general and powerful [16, 14]. Symbolic execution
has also been proposed in the context of generating vulner-
ability signatures, either statically [5] or dynamically [9].

6 Conclusion

We introduced a new search algorithm, the generational

search, for dynamic test generation that tolerates diver-
gences and better leverages expensive symbolic execution



Figure 9. Coverage and initial discovery of stack hashes for Media 1 seeded with wff-4 and wff-2.
The leftmost bar represents multiple distinct crashes found early in the search; all other bars repre-
sent a single distinct crash first found at this position in the search.

tasks. Our system, SAGE, applied this search algorithm to
find bugs in a variety of production x86 machine-code pro-
grams running on Windows. We then ran experiments to
better understand the behavior of SAGE on two media pars-
ing applications. We found that using a wide variety of well-
formed input files is important for finding distinct bugs. We
also observed that the number of generations explored is a
better predictor than block coverage of whether a test case
will find a unique new bug. In particular, most unique bugs
found are found within a small number of generations.

While these observations must be treated with caution,
coming from a limited sample size, they suggest a new
search strategy: instead of running for a set number of
hours, one could systematically search a small number of
generations starting from an initial seed file and, once these
test cases are exhausted, move on to a new seed file. The
promise of this strategy is that it may cut off the “tail” of a
generational search that only finds new instances of previ-
ously seen bugs, and thus might find more distinct bugs in
the same amount of time. Future work should experiment
with this search method, possibly combining it with our
block-coverage heuristic applied over different seed files to
avoid re-exploring the same code multiple times. The key
point to investigate is whether generation depth combined
with code coverage is a better indicator of when to stop test-
ing than code coverage alone.

Finally, we plan to enhance the precision of SAGE’s
symbolic execution and the power of SAGE’s constraint
solving capability. This will enable SAGE to find bugs that
are currently out of reach.
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A Additional Search Statistics



Media 1: wff-1 wff-1nh wff-2 wff-2nh wff-3 wff-3nh wff-4 wff-4nh

NULL 1 (46) 1 (32) 1(23) 1(12) 1(32) 1(26) 1(13) 1(1)

ReadAV 1 (40) 1 (16) 2(32) 2(13) 7(94) 4(74) 6(15) 5(45)

WriteAV 0 0 0 0 0 1(1) 1(3) 1(1)

SearchTime 10h7s 10h11s 10h4s 10h20s 10h7s 10h12s 10h34s 9h29m2s

AnalysisTime(s) 5625 4388 16565 11729 5082 6794 5545 7671

AnalysisTasks 564 545 519 982 505 752 674 878

BlocksAtStart 27659 26962 27635 26955 27626 27588 26812 26955

BlocksAdded 701 50 865 111 96 804 910 96

NumTests 6890 7252 6091 14400 6573 10669 8668 15280

TestsToLastCrash 6845 7242 5315 13616 6571 10563 6847 15279

TestsToLastUnique 168 5860 266 13516 5488 2850 2759 1132

MaxGen 6 6 6 8 6 7 7 8

GenToLastUnique 3 (50%) 5 (83%) 2 (33%) 7 (87.5%) 4 (66%) 3 (43%) 4 (57%) 3 (37.5%)

Mean Changes 1 1 1 1 1 1 1 1

Media 1: wff-5 wff-5nh bogus-1 bogus-1nh bogus-2 bogus-3 bogus-4 bogus-5

NULL 1(25) 1(15) 0 0 0 0 0 0

ReadAV 3(44) 3(56) 3(3) 1(1) 0 0 0 0

WriteAV 0 0 0 0 0 0 0 0

SearchTime 10h8s 10h4s 10h8s 10h14s 10h29s 9h47m15s 5m23s 5m39s

AnalysisTime(s) 21614 22005 11640 13156 3885 4480 214 234

AnalysisTasks 515 394 1546 1852 502 495 35 35

BlocksAtStart 27913 27680 27010 26965 27021 27022 24691 24692

BlocksAdded 109 113 130 60 61 74 57 41

NumTests 4186 2994 12190 15594 13945 13180 35 35

TestsToLastCrash 4175 2942 1403 11474 NA NA NA NA

TestsToLastUnique 1504 704 1403 11474 NA NA NA NA

MaxGen 5 4 14 13 8 9 9 9

GenToLastUnique 3 (60%) 3 (75%) 10 (71%) 11 (84%) NA NA NA NA

Mean Changes 1 1 1 1 1 1 1 1

Media 2: wff-1 wff-1nh wff-2 wff-3 wff-3nh wff-4 wff-4nh wff-5 wff-5nh bogus1

NULL 0 0 0 0 0 0 0 0 0 0

ReadAV 4(9) 4(9) 0 4(15) 4(14) 4(6) 3(3) 5(14) 4(12) 0

WriteAV 0 0 0 0 0 0 0 1(1) 0 0

SearchTime 10h12s 10h5s 10h6s 10h17s 10h1s 10h3s 10h7s 10h3s 10h6s 10h13s

AnalysisTime(s) 3457 3564 1517 9182 8513 1510 2195 10522 14386 14454

AnalysisTasks 3 3 1 6 7 2 2 6 6 1352

BlocksAtStart 48494 48486 51217 41726 41746 48729 48778 41917 42041 20008

BlocksAdded 10407 10633 12329 9564 8643 10379 10022 8980 8746 14743

NumTests 1045 1014 777 1253 1343 1174 948 1360 980 4165

TestsToLastCrash 1042 989 NA 1143 1231 1148 576 1202 877 NA

TestsToLastUnique 461 402 NA 625 969 658 576 619 877 NA

MaxGen 2 2 1 3 2 2 2 3 2 14

GenToLastUnique 2 (100%) 2 (100%) NA 2 (66%) 2 (100%) 2 (100%) 1 (50%) 2 2 NA

Mean Changes 3 3 4 4 3.5 5 5.5 4 4 2.9

Figure 10. Search statistics. For each search, we report the number of crashes of each type: the
first number is the number of distinct buckets, while the number in parentheses is the total number
of crashing test cases. We also report the total search time (SearchTime), the total time spent in
symbolic execution (AnalysisTime), the number of symbolic execution tasks (AnalysisTasks), blocks
covered by the initial file (BlocksAtStart), new blocks discovered during the search (BlocksAdded),
the total number of tests (NumTests), the test at which the last crash was found (TestsToLastCrash),
the test at which the last unique bucket was found (TestsToLastUnique), the maximum generation
reached (MaxGen), the generation at which the last unique bucket was found (GenToLastUnique),
and the mean number of file positions changed for each generated test case (Mean Changes).


