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Abstract

As multicast applications are deployed for mainstream use,

the need to secure multicast communications will become

critical. Multicast, however, does not �t the point-to-point

model of most network security protocols which were de-

signed with unicast communications in mind. As we will

show, securing multicast (or group) communications is fun-

damentally di�erent from securing unicast (or paired) com-

munications. In turn, these di�erences can result in scala-

bility problems for many typical applications.

In this paper, we examine and model the di�erences be-

tween unicast and multicast security and then propose Iolus:

a novel framework for scalable secure multicasting. Proto-

cols based on Iolus can be used to achieve a variety of se-

curity objectives and may be used either to directly secure

multicast communications or to provide a separate group

key management service to other \security-aware" applica-

tions. We describe the architecture and operation of Iolus

in detail and also describe our experience with a protocol

based on the Iolus framework.

1 Introduction

Multicast [7, 8, 9] is an internetwork service that provides

e�cient delivery of data from a source to multiple recip-

ients. It reduces sender transmission overhead, network

bandwidth requirements, and the latency observed by re-

ceivers. This makes multicast an ideal technology for com-

munication among a large group of principals.

Although multicast has been very successful at providing

an e�cient, best-e�ort data delivery service to large groups,

it has proven much more di�cult to extend other features

to multicast in a scalable manner. For example, scalable

reliability, 
ow control, and congestion control all continue

to be areas of very active research in the context of multicast,

and the solutions that have been proposed are not as mature

as their unicast counterparts.
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Separately, the need to secure electronic information has

become increasingly apparent. As multicast applications are

deployed for mainstream use the need to secure multicast

communications will become critical.

Moreover, as compared to unicast, multicast is inherently

more susceptible to attack [2]. In the �rst place, multicast

presents many more opportunities for interception of tra�c.

Second, when an attack does take place, multicast ensures

that a larger number of principals is a�ected. Additionally,

since multicasts are generally well advertised and the multi-

cast addresses well-known, it becomes easier for an attacker

to target an attack. Lastly, multicasts typically involve a

\crowd" of principals and this can potentially make it easier

for an attacker to pose as another (legitimate) principal or

to try attacks in parallel.

Unfortunately, while the protection of unicast commu-

nications is well understood, multicast security has received

scant attention. The few existing proposals for securing mul-

ticast communications neither address the unique require-

ments that arise from the group communications model of

multicast nor have key management schemes that can scale

to large groups [14] or groups with highly dynamic member-

ships.

In this paper, we examine and model the di�erences be-

tween securing multicast (or group)1 communications and

securing unicast (or paired) communications. We argue that

they are fundamentally di�erent in terms of key manage-

ment. Furthermore, we show how these di�erences create

scalability problems for many typical applications.

We then propose Iolus: a novel framework for scalable

secure multicasting based on the notion of a secure distri-

bution tree2. The Iolus framework is very general and can

be used to achieve a variety of security objectives. At an

abstract level, the Iolus framework enables scalable, secure

communication among a group of principals using multicast.

How this capability is utilized is left to the protocol:

1. Iolus can, of course, be used to build protocols that

directly secure multicast communications. When used

1What we refer to as a multicast security protocol may be more

abstractly termed a group communications security protocol. We use

the term multicast security protocol because, in practice, such a pro-

tocol would typically be used to protect multicast tra�c.
2In Greek mythology, Iolus helped Hercules with the �rst of his

twelve labors | slaying the many-headed water serpent Hydra.
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in this way, Iolus-based protocols can secure arbitrary

multicast transmissions.

2. By using the secure multicast communications capa-

bility as a base, Iolus can also be used to build pro-

tocols that provide an independent group key man-

agement service for other \security-aware" multicast

applications. For example, in the latter mode, an

Iolus-based protocol could be used to implement com-

mon key management service that works in conjunc-

tion with other specialized applications (e.g., for au-

dio and video) which together make up a complete,

component-based multicast solution.

3. The need for group key management is not limited

to multicast applications. As an example, consider

a database that can be queried (using unicast) by a

(changing) set of principals that logon and logo� the

database. In e�ect, the current set of authorized prin-

cipals constitutes a group. Instead of verifying the au-

thorization for each principal separately on a per-query

basis, the authorization for any query could be veri�ed

based on the possession of a common group key. The

advantage of using a common group key is that it ob-

viates the need to separately retrieve and apply the

principal's keying material on each query. Iolus can

also be used to build protocols that provide a group

key management service to unicast applications.

Next, we describe the architecture and operation of Iolus

in detail. As an example of its application, we have imple-

mented a user-level software package that uses a protocol

based on Iolus framework. This software has been used for

secure multicast data delivery and has also been used with

the vic video-conferencing application as a separate keying

service. We describe our implementation experience and

provide preliminary performance results.

The remainder of this paper is organized as follows. The

next section examines the fundamental issues in secure mul-

ticast and the di�erences between secure multicast and se-

cure unicast. Section 3 explains how these issues lead to

scalability problems. Section 4 presents the requirements

and constraints that shaped the design of the Iolus frame-

work. Section 5 describes the architecture of the Iolus frame-

work. Section 6 presents an operational overview of Iolus.

Section 7 describes the use of Iolus as a key management

service. Section 8 discusses deployment issues. Section 9

describes our implementation experience and some prelimi-

nary performance results. Section 10 presents related work.

Finally, in Section 11 we conclude.

2 Network Security: Adding Multicast

The fundamental task of any network security protocol is

to allow authorized principals to communicate securely over

an insecure network where an attacker is assumed to be able

to read, modify, or delete the raw communications. Typi-

cally, this is achieved by creating a security association be-

tween the authorized principals through authentication and

key exchange. The security association de�nes a set of key-

ing material shared only by the authorized principals that

then can be used for a variety of security objectives such

as authentication, con�dentiality, and integrity. While the

concept of security associations is well understood in the

context of unicast, the multipoint-to-multipoint model of

multicast inherently changes the meaning and management

of security associations.

Consider what happens under unicast. Two principals

decide to communicate and employ a (unicast) network se-

curity protocol to setup a security association between them.

This association then allows the pair to communicate se-

curely. Note that the security association is entirely static

| it begins when the two principals begin communication

and is destroyed when they end their communication.

Something similar occurs under multicast, but instead of

two principals forming a pair, any number of principals form

a group. And, whereas the security association is static in

the unicast case, beginning and ending with the existence of

the pairing, the security association must be dynamic in the

case of multicast changing as the membership in the group

changes.

Thus, a secure multicast can be thought of as consisting

of blocks of time (see Figure 1). A principal may be autho-

rized to participate in the secure multicast during various

blocks of time. A multicast security protocol must ensure

that a principal is only allowed to participate during those

periods when it is authorized to do so. Mapping to actual

multicast operations, the demarcation between blocks corre-

sponds to members joining and leaving the group. The secu-

rity association and thus the group keying material (KGRP
in short) it de�nes must be changed on each join and leave.

This change is to ensure that a joining entity is not able to

access previously multicast data and a leaving entity is not

able to continue to access data multicast after it leaves the

group3.

To map this concept to a simple real-life situation con-

sider a video-conference between a group of prosecuting at-

torneys who are discussing strategy for a criminal trial. At

various (possibly overlapping) times, they wish to interview

certain other people (e.g., police o�cers, witnesses, the de-

fendant, and his attorneys). These people need to partici-

pate in the secure multicast, but only while they are being

interviewed | they should not have access to any other pre-

vious or future communications.

Note that we are not implying that the keying material

must be changed on each and every join or leave. That is an

application-dependent policy decision. However, a multicast

security protocol must be prepared to change the keying ma-

terial on each and every join or leave to protect the integrity

of the current group.

In general, the design of a given network security proto-

col is a complex business which must take into consideration

a large number of factors. However, the management of a

dynamic security association and its keying material is the

basic di�erence between unicast and multicast security pro-

tocols.

3Of course, another option is to make the group immutable and

start a new group whenever membership needs to change, but that

is extremely expensive and even less scalable because it requires re-

authentication on the part of all the group members.
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Alice joins Carol joins

Bob leaves Alice leaves

ti ti+1 ti+2 ti+3

. . . . . . . . . .

Figure 1: An Example Timeline for a Secure Multicast

3 The Scalability Problem

Loosely speaking, multicast protocols exhibit two types of

scalability failures that are speci�c to multicast:

1. a 1 a�ects n type failure which occurs when the pro-

tocol allows the action of one member to a�ect the

entire group. For example, DVMRP [9] allows this

to happen whenever a new sender joins the multicast

group. A new source-based delivery tree rooted at the

sender has to be built and all routers have to update

state information.

2. a 1 does not equal n failure which occurs when the

protocol cannot deal with the group as a whole and

instead, must consider the con
icting demands of each

member on an individual basis. For example multi-

cast 
ow control protocols exhibit this property. At

any given time some receivers would like to adjust

the transmission rate up, while others want to take

it down.

In the last section we showed how unicast key manage-

ment was fundamentally di�erent from multicast key man-

agement. In this section, we will show how this di�erence

leads to scalability problems for secure multicast protocols

(of both the types just mentioned).

As noted previously, when a member joins the group,

the group keying material (KGRP ) must be replaced and a

new set of group keying material (K 0

GRP ) must be generated

and distributed to the current group members as well as the

joining member. There are a number of ways to do this.

One simple method that works is to multicast K0

GRP to the

current members using KGRP to secure the transmission.

Separately, the joining member can be apprised of the new

key by unicasting K0

GRP to it using some unicast secure

channel (e.g., the one used to request the join).

Thus, joins exhibit a 1 a�ects n scalability failure be-

cause they require all members to process the change in

KGRP when one new member joins.

A member leaving the group, creates a much more dif-

�cult problem. As with joins a new set of keying material

must be generated, but in this case it must be distributed to

the remaining members in the group and there is no e�cient

means to communicate K0

GRP to them alone because there

is no secret which is shared with them alone (and not also

the leaving member)4. Indeed, K0

GRP is exactly this secret.

Given this chicken and egg situation, the keying material

associated with each remaining member individually (i.e.,

unicast keys) must somehow be utilized to securely commu-

nicate K0

GRP . For example, using these unicast keys, a sep-

arate copy of K0

GRP could be sent to each of the remaining

members5. The basic problem is that each of the members

must be considered individually on each leave and this is

extremely ine�cient if the group is large or has a highly

dynamic membership.

Thus, leaves su�er from both types of scalability failure;

they result in a 1 a�ects n scalability failure (in the same

way as joins), but they also result in a 1 does not equal

n scalability failure.

Additionally, care must be taken to achieve at-least-once

semantics when communicating updates to KGRP , because

members that do not receive the updates have the potential

to create transient security breaches. That is:

� Receivers failing to receive a KGRP update will not be

able to continue decrypting communications and may

also accept communications from members that have

been removed from the group.

� Senders failing to receive a KGRP update will continue

to encrypt transmissions using an outdated KGRP re-

sulting in receivers that are unable to decrypt its trans-

missions. More importantly, security may be compro-

mised because senders encrypting transmissions using

an old KGRP will allow former group members to con-

tinue decrypting transmissions.

If the underlying multicast service is unreliable, as it most

often is, substantial additional processing will be required

through the use of a reliable multicast protocol [12, 17]. And

in many applications (e.g., multicasts of live audio/video),

the use of such a protocol will only be for the purpose of

keying updates thus adding to the complexity of the appli-

cation.

Finally, these problems are exacerbated when the group

has a highly dynamic membership, resulting in 
urries of key

update messages that increase the probability of transient

security breaches and confusion.

4This assumes there has been no pre-distributon of keys. In any

case, key pre-distribution serves only to transfer the problem to the

time of a join rather than a leave.
5See Section 6.4 for other techniques and details.
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Therefore, changes in group membership involve \heavy-

duty" tasks not only from the standpoint of authentication

and approval of the join/leave request (which in and of it-

self may be time consuming requiring database accesses and

public key operations), but also from the distribution of new

group keying material (especially on leaves).

These scalability problems are especially troublesome be-

cause many proposed applications of multicast have an on-

going need to maintain the integrity of the group for eco-

nomic and other reasons. Of course, they also tend to have

large group sizes and can often have highly dynamic group

memberships.

For example, a large class of multicast applications are

information dissemination services (e.g., data, audio, and

videocasts). These applications can have large and dynamic

groups especially when combined with the idea of micro-

commerce and a \buy-on-the-
y" model for gaining access

to content. Multi-player games and other interactive simu-

lations also may have a need to ensure fairness among par-

ticipants as they join and leave. Finally, consider group key

management for services normally accessed using unicast.

OAG, Inc., for example, has a service that provides contin-

uously updated airline 
ight information. OAG charges for

this popular service on a per-minute basis and so its group is

large and constantly changing. Many other news and infor-

mation retrieval services (e.g., LEXIS-NEXIS) have a similar

business model and thus exhibit similar usage patterns.

4 Design Features and Requirements

We have discussed scalability as the driving force behind our

framework. We now formally lay down all the design fea-

tures and requirements that shaped our framework. Specif-

ically, we wanted the framework to provide:

Scalability. As noted previously, a number of typical multi-

cast applications have large groups and/or groups that have

highly dynamic memberships. In addition, multicast is an

emerging technology and all its possible applications in the

future are not known. Therefore, the framework should not

place any arbitrary limits on scaling.

Robustness. The framework should be able to adapt grace-

fully in the face of network disruptions (both malicious and

accidental) and their e�ect should be minimized as far as

possible. To that end, the framework should avoid the use

of hard-state and rely as far as possible on soft-state. It

should also attempt to localize the e�ects of disruption as

far as possible, and try to avoid single points of failure.

Security Objective Independence. Network security pro-

tocols can be used to achieve a variety of security objec-

tives. The framework is about enabling secure multicasting

through scalable key management. As such, it should not

de�ne what speci�c security objectives can or cannot be met.

Security Technology Independence. Given a set of secu-

rity objectives it usually possible to provide them using mul-

tiple cryptographic algorithms and protocols. The choice of

a given algorithm or protocol is dictated by factors such as

security threats, performance concerns, patent issues, and

export limitations. Thus, the framework may assume the

availability of standard cryptographic algorithms and pro-

tocols, but it should not stipulate the use of any speci�c

algorithms or protocols.

Communications Protocol Independence. To be as widely

applicable as possible, the framework should not make any

discretionary assumptions concerning the services o�ered by

the network or the communications protocol. It should be

possible to implement the framework on any network that

supports best-e�ort unicast and multicast services6.

Protocol Layer Independence. Finally, there has been con-

siderable discussion in the security community concerning

the \right" layer in which to support security. That dis-

cussion is beyond the scope of this paper, but it should be

possible to implement the framework at any layer that sup-

ports the basic communications services mentioned above.

5 The Iolus Framework

From our earlier discussion, it can be seen that large and/or

dynamic groups do not scale up in terms of multicast secu-

rity. Whenever the membership changes, all group members

are a�ected. This creates an inherent scalability problem.

The Iolus framework seeks to directly address this prob-

lem by completely doing away with the idea of single 
at

secure multicast group. Instead, Iolus substitutes the no-

tion of a secure distribution tree. The secure distribution

tree is composed of a number of smaller secure multicast

\subgroups" arranged in a hierarchy to create a single vir-

tual secure multicast group (see Figure 2).

Scalability is achieved by having each subgroup be rela-

tively independent. More speci�cally each subgroup in the

secure distribution tree has its own multicast group (with

its own address) and can be created using any suitable mul-

ticast routing protocol (e.g., DVMRP, CBT [1], PIM [10]).

Moreover, each group has its own subgroup keying mate-

rial (KSGRP in short) and there is no global KGRP . Thus,

when a member joins or leaves, it joins or leaves only its

local subgroup. As a result, only the local KSGRP needs to

be changed and the scalability problem is greatly mitigated.

Subgrouping for scalability is only the �rst component

of our framework. The creation of a single secure multicast

group image is the second. This is akin to the creation of

a single system image in distributed systems. To do this,

Iolus introduces two new types of entities that manage and

connect the various subgroups. These are the group secu-

rity controller which manages the top-level subgroup and

the group security intermediaries (GSIs), one per subgroup,

which manage each of the other subgroups. Generically they

are called group security agents (GSAs).

Because of the single secure multicast group image, very

little changes for senders and receivers under Iolus. They

continue to send and receive as they ordinarily would. The

6Of course, it should be noted that multicast can be simulated

using either unicast or broadcast, albeit with a loss of e�ciency.
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GSI

GSI GSI

GSIGSI
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G3B

Figure 2: Example of a Secure Distribution Tree

only di�erence is that instead of all of them joining a single

multicast group, they join separate local multicast groups7.

The GSAs connect the subgroups and \conspire" to deliver

locally multicast data to all the subgroups in the virtual

group.

More speci�cally, the GSAs form a hierarchy of sub-

groups. The GSC maintains control of the top-level sub-

group at the root of the secure distribution tree. It is ulti-

mately responsible for the security of the entire group. GSIs

are special trusted servers that are authorized to act as prox-

ies of the GSC or their parent GSIs and control their local

subgroup. The GSIs are grouped according to levels within

the secure distribution tree. GSIs at a given level join the

subgroups of the GSI at the next higher level or the subgroup

of the GSC. They form a bridge between subgroups by re-

ceiving data multicast in their parent or child subgroups and

re-multicasting to their child or parent subgroups respec-

tively. Although it may seem that this would require de-

cryption and re-encryption of the entire packet (to account

for the di�erent KSGRP s in the two di�erent subgroups) we

will show that this is not the case.

Note that the hierarchy imposed on the subgroups serves

a dual purpose. It nicely captures the delegation of authority

between the GSC and the GSIs at di�erent levels. But,

it also simpli�es how data is re-multicast throughout the

di�erent subgroups without incurring loopbacks.

Although there are a number of other deployment issues,

we defer further discussion (see section 8 for details) and in-

stead �rst present an operational overview of the framework.

Please note that in the remainder of the paper, we use

the word group to refer to the virtual secure multicast group

as a whole, while we use the term subgroup when we refer

7This could be hidden by using a directory service (like sd) to

automatically map a global multicast group to the local multicast

subgroup (see Section 8.3 for details).

to a speci�c subgroup in that virtual group. Thus, a mem-

ber joins the secure multicast group by accessing its local

subgroup.

6 Iolus Operational Overview

We now provide a detailed description of the operation of

the Iolus framework by considering each phase in the op-

eration of a protocol based on it. The description in this

section concerns the use of Iolus as a complete framework

for securing multicast communications. In the next section,

we describe an use of Iolus as a separate key management

service.

Please note that that the description below is mainly

from the point of view of the Iolus framework. Other oper-

ations may be required by the underlying communications

protocol (e.g., core selection and bandwidth reservation) but

these are not a part of the secure multicast protocol and are

not discussed here.

6.1 Startup

Strictly speaking startup of the secure multicast group re-

quires only that the GSC for the group be started. The GSC

is supplied with an access control list (ACL) that it uses to

set the security policy concerning who may have what access

to the group. Once it is started, GSIs and other members

apply to join its subgroup.

As a matter of policy some or all the GSIs may also be

started at this time, but this is not necessary; they can also

wait and see if they have any members interested in their

subgroup �rst.
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HDR {K GRP’} K GRP

Figure 3: GRP KEY UPDATE message on a JOIN

HDR {K GRP’} K GSA-MBR1
{K GRP’} K GSA-MBR2

{K GRP’} K GSA-MBRn

. . . . .

Figure 4: GRP KEY UPDATE message on a LEAVE

6.2 Joins

To join a secure multicast group, a sender or receiver locates

its designated GSA and communicates a JOIN request to it

using a secure unicast channel8.

Upon receiving the JOIN request, the GSA checks its

database and decides whether to approve or deny the re-

quest. Assuming the request is approved, it (1) generates a

secret (KGSA�MBR) to be shared only with the new mem-

ber, (2) stores this secret along with any other relevant in-

formation concerning the new member in a private database

it maintains, and then (3) communicates KGSA�MBR to

the new member using the secure channel. The usage of

KGSA�MBR as a way to isolate communications within a

multicast will become clear shortly.

As described in section 3, the GSA now needs to change

KSGRP and make K0

SGRP known to the current members of

the subgroup and the joining member. To do this, the GSA

multicasts a GRP KEY UPDATEmessage containing K 0

SGRP en-

crypted with KSGRP to the current multicast subgroup (see

Figure 3). It then communicates K0

SGRP to the joining

member via the separate secure channel.

Of course, in order to process the JOIN, the GSA (if it is

a GSI) must itself be a part of the secure multicast group. If

it is not, then it needs to follow a similar procedure to join

its parent subgroup. The only di�erence between the JOIN

of a GSI as opposed to that of a sender or receiver is that

the GSI is also supplied (via the secure channel) an ACL or

other database that it can use to process JOINs of its own.

6.3 Refreshes

Each JOIN has a expiration time associated with it. If the

JOIN is set to expire and the member wishes to remain in

the group it must send a REFRESH message using the secure

channel. In this way the GSA only has soft-state associated

with it. This allows the framework to gracefully handle net-

work partitions. Subgroups that have become partitioned

from the top-level subgroup are implicitly removed from the

group after some threshold time has elapsed.

8Here, by secure channel we mean any unicast communications

channel secured using a unicast security protocol. The exact protocol

is not important; any unicast security protocol that provides mutual

authentication with key exchange can be used.

6.4 Leaves

Leaves occur under two conditions: (1) a member wishes

to voluntarily leave the subgroup in which case it sends a

LEAVE request to the GSA, or (2) the GSA wants to expel

a member of the subgroup and sends a noti�cation to that

e�ect to the expelled member.

Either way, KSGRP needs to be changed to disallow the

leaving member's continued participation in the subgroup.

As described in section 3 there is no keying material that

can be used to securely communicate K0

SGRP only to the

remaining members of the subgroup.

As we mentioned before, one straightforward scheme for

handling this problem is to send a copy of K0

SGRP to each

member encrypted with that member's KGSA�MBR. Note,

however, that this does not imply the use of unicast. Instead

of sending separate unicast messages to each member of the

group, the GSA simply multicasts one message containing

n copies of K0

SGRP (assuming n remaining members) each

encrypted with a di�erent member's KGSA�MBR (see Fig-

ure 4). In this way, a more e�cient single message of size

O(n) can replace O(n) separate messages9.

Although we propose the use of the above scheme in Io-

lus, it should be understood that there are also numerous

cryptographic techniques for handling this problem. For ex-

ample, the literature describes methods that make use of

group extensions to the Di�e-Hellman key exchange [5, 18,

24], secure locks based on the Chinese Remainder Theo-

rem [6] or polynomial interpolation [13], and secret sharing

schemes [4].

Unfortunately, given our purposes, these techniques are

only of theoretical interest because they provide performance

that is no better than the simple scheme presented above.

To our knowledge, they all require computation that, at a

minimum, is proportional to the number of remaining mem-

bers (because they consider each member's keying material

separately) and in addition the per-member computation is

relatively expensive. Besides this, the resulting mathemati-

cal structure (i.e., the key) is sometimes quite large because

its size is proportional to the number of members.

Finally, note that if the GSA is not the GSC and if after

the leave the GSI is has no more children interested in the

9Sending one large message instead of sending multiple small mes-

sages is not a solution to the scalability problem. In a large scale

multicast n is very large and having to send such a message on each

change in membership is not scalable (especially since it must be sent

reliably).
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Figure 5: Data multicast in group G2A is re-multicast throughout the secure distribution tree

secure multicast group, the GSI can in turn leave its parent's

subgroup.

6.5 Data Transmission

Under Iolus, sending data is not as simple as multicasting

the data to the group encrypted10 with KSGRP because such

a multicast will only reach the local subgroup. Instead the

hierarchy of multicasts must be considered and there must

be some mechanism for the entire secure multicast group to

receive the transmissions. We present two related methods.

The �rst method is simple and completely transparent

to the sender. The sender multicasts the data directly to

its local subgroup encrypted with KSGRP . The parent GSI

(if this is not the top-level subgroup) listens for multicast

transmissions, decrypts them, and then re-multicasts them

to its parent subgroup encrypted with the KSGRP of its

parent subgroup. In a similar manner, child GSIs of the

subgroup receive multicast transmissions, decrypt them, and

then re-multicast them to their child subgroups encrypted

with the KSGRP of their child subgroups. Since this process

will repeat in the other subgroups where the data is re-

multicast, the data will eventually reach every subgroup (see

Figure 5).

Although it may seem that having the GSIs decrypt and

re-encrypt data would require an enormous amount of en-

cryption bandwidth, we can use the old trick of indirection

to sharply reduce the cost of re-encryption. Instead of hav-

ing the sender directly encrypt the data with KSGRP , the

sender generates a random key on a per-transmission basis

and uses this key to encrypt the data. It then includes this

10Although, for purposes of clarity, we have framed the discussion

here in terms of encryption, it is easy to see how KSGRP can also be

used for meeting other security objectives such as authentication and

message integrity. For example, KSGRP could also be used to derive

keys for digital signatures.

key with the data, encrypted with KSGRP . In this way, de-

crypting and re-encrypting the packet is reduced to simply

decrypting and re-encrypting the random key.

While this technique is e�cient and will su�ce for most

applications, it may result in transient security breaches of

the type described in section 3. As noted in that section, the

problem is due to the fact that senders and receivers may

not have the latest KSGRP . Thus senders may send data

secured using an outdated KSGRP allowing former group

members to decrypt the data. At the same time receivers

using an outdated KSGRP may accept data from senders

who are no longer in the secure multicast group.

We present the solution as our second method. Instead

of senders multicasting directly to the group, senders unicast

the data to the GSA encrypted with their uniqueKGSA�MBR.

The GSA then decrypts the data, re-encrypts it withKSGRP ,

signs it, and then multicasts it to the group as well as to its

parent subgroup (if any). In this way, senders do not use

KSGRP obviating the possibility of their using an outdated

KSGRP , while receivers have the assurance of their GSA's

signature as proof that the message is from a valid source.

And, security breaches are avoided without using a reliable

multicast protocol (at the cost of an extra unicast). Fig-

ures 6a and 6b demonstrate the di�erence between these

two methods.

6.6 Re-keying

With use,KSGRP will \wear out" and will need to be changed.

If a simple key-update scheme is used, K0

SGRP can be made

known to the group by multicasting it to the subgroup en-

crypted under the old KSGRP .

However, this has the weakness that it sets up a chain of

keying material and a compromise in one link of the chain

results in a compromise of all the keying material following

it in the chain. Instead, since the KSGRP is always local to
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Figure 6: Two Methods for Sending

a given subgroup, we can use the scheme used for changing

KSGRP on leaves to apprise the group members of K 0

SGRP

without creating a chain or running into scalability prob-

lems.

6.7 Shutdown

As far as Iolus is concerned, ending a secure multicast re-

quires only that the GSC for the secure multicast group be

shutdown after sending GRP END noti�cation to all the mem-

bers in the top-level subgroup. In a similar manner, any

GSAs attached to the top-level subgroup will then multicast

the GRP END message to their subgroups and then shutdown,

and so on.

7 Iolus as a Key Management Service

Thus far we have described Iolus as a complete security

framework for multicasting which applications can use to

directly send and receive data. However, there are actually

two separate problems: (1) key management, and (2) secur-

ing and transmitting data. In Iolus these two operations

are linked because the secure multicast group exists only in

a virtual sense. In actuality, each member only has access

to its local multicast subgroup which has its own KSGRP .

Therefore, the GSAs must be involved in both the key man-

agement and data transmission to create the single secure

multicast group image.

However, there are many \security-aware" applications

that already know how best to secure and send their data.

They simply need access to some common KGRP which they

can then use to achieve their security objectives. The vic

video-conferencing software [20], for example, has this capa-

bility. In these cases, Iolus-based protocols can be used as

key management services.

To use Iolus as a key management service, members join

a secure multicast group as before by accessing a local sub-

group. The only di�erence is that instead of directly using

the secure multicast group to transmit \real" data, the se-

cure multicast group is used to transport a second set of

keying material (KGRP2). KGRP2 is generated by a spe-

cially designated member and sent to all the members using

an Iolus-based protocol. This allows all the secure multicast

group members to share a secret (KGRP 2) that they can use

as keying material to secure data multicast in an unrelated

and independent multicast group.

To complete the scheme, KGRP2 must be changed when-

ever membership in any of the secure multicast subgroups

change. However, actually doing this on each membership

change could potentially create a scalability problem simi-

lar to that described for joins in section 3. Therefore, we

provide an approximation by changing KGRP 2 \frequently."

While this does not provide enough security for all appli-

cations, it works well for a great majority. For example,

consider the information dissemination service we described

earlier. Since it charges on a per-minute basis, it only cares

that the integrity of the group is maintained on a per-minute

basis (not on each join and leave). This can be easily ac-

complished by changing KGRP 2 every minute.

Moreover, using Iolus as a group key management service

has a number of other bene�ts:

� It decouples key management and distribution from

data transmission. This allows the use of the best

existing multicast communications protocols without

the limits based on subgrouping. Indeed, it also allows

the use of Iolus with non-multicast applications that

nonetheless require group keying.

� It also decouples key management and distribution

from key usage. This decoupling can be useful if, for
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example, the group members want to use a propriety

encryption algorithm which they do not wish to share

with the GSAs.

� It has been suggested, that in the future, multicast

conferences might be implemented in a modular man-

ner as a collection of specialized applications connected

to a \conference bus" [20]. In such a paradigm, Iolus

could e�ectively provide a common key management

service to the other applications, thus obviating the

need for them to individually implement key manage-

ment.

8 Deployment Issues

Thus far we have glossed over many deployment issues re-

lated to the Iolus framework. For example, we have assumed

use of the secure distribution tree and its component GSAs,

but we have not considered how it is built or how it is man-

aged.

Of course, these issues are beyond the scope of the frame-

work and can only really be discussed in the context of an

actual protocol implementation and the network on which

the protocol is used. However, to gain some understand-

ing of these issues, we brie
y consider them in this section

though we caution the reader that these issues require fur-

ther research.

8.1 Secure Distribution Tree Management

The management of the secure distribution tree encompasses

two issues: (1) who controls the tree along with it component

GSAs and (2) whether the tree is �xed or dynamic within

the network, i.e., is it built for a single secure multicast and

then destroyed or it is reused for other multicasts.

One possibility, is that GSAs are owned and operated by

the principal in charge of the multicast group and the tree is

setup dynamically to be used solely for one particular secure

multicast group. This is most secure because the principal

in charge of the multicast retains control over the entire

tree and because the GSAs are not shared among di�erent

multicasts.

At the other end of the spectrum it is possible to imag-

ine a situation where GSAs are basically �xed within the

network and are owned by trusted third-parties (e.g., net-

work service providers). When a principal wishes to initiate

a secure multicast, it \rents" a tree from the provider. Ob-

viously, this is not as secure as the �rst scheme, but it is

more practical.

More likely, both these possibilities will exist. There

may be some principals (e.g., media companies) that hold

so many secure multicasts that they may own and manage

their own GSAs, while most other people will simply avail

themselves of the services o�ered by third parties.

8.2 Secure Distribution Tree Construction

A related issue is the construction of the secure distribution

tree through the placement of the GSAs in the network. This

is an important issue because, in practice, any scalability

o�ered by the secure distribution tree (and so by Iolus) is

heavily dependent on how well the members are actually

distributed among the various subgroups.

Unfortunately, it is impossible to �nd an optimal place-

ment for GSAs in the network because doing so requires

knowledge of future joins and leaves. However, in practice

there are \natural" placements for GSAs that will generally

lead to scalability. This results from the fact that most net-

works are inherently hierarchical. Consider the Internet. At

the top of the hierarchy there are major nationwide back-

bones. These lead to regional networks, that in turn lead to

ISP networks or directly to corporate and campus networks.

Finally, these networks may be divided into subnets. There-

fore, it is quite natural to place GSAs at the entrance to each

of these networks (especially at lower levels). For example,

GSIs could be placed on �rewall machines at the entrance to

campus networks or building networks. This also suggests

that there will not be many GSAs between any given sender

and receiver.

Another option that will de�nitely ensure scalability is to

use \dynamic subgrouping." That is, when a speci�c GSA

becomes overloaded, another GSA is started at the same

level and within the same parent subgroup. The member-

ship of the overloaded GSA is then split and reallocated

between it and the new GSA.

8.3 Secure Distribution Tree Discovery

To begin accessing a secure multicast under Iolus, a prospec-

tive member must �rst locate its designated GSA and thereby

locate the secure distribution tree. The interesting issue here

is that GSA location requires mapping from a global name

(i.e., the name of the secure multicast group) to a local one

(i.e., the name of the GSA handling the local subgroup of

that secure multicast group).

If GSAs are more or less �xed, locating a GSA is easy

because there is always some set of well-known GSAs. How-

ever, if the GSAs are dynamic, then the solution must also

take their dynamic nature into account. We suggest two

possible solutions: (1) have GSAs notify some well-known,

local directory service whenever they start or stop handling

a secure multicast group so that the directory service knows

where to direct queries, or (2) use either multicasting or

anycasting [22] to locate the GSA.

Note that GSA location is equivalent to mapping a global

secure multicast group to the local multicast subgroup's ad-

dress because the GSA has the address of the local multicast

subgroup and can pass it to the newly joined member after

authorization.

8.4 Admission Control

We have noted that the Iolus framework is not tied to any

particular layer in the protocol stack and may be imple-

mented at any layer that o�ers basic best-e�ort unicast and

multicast communications. We have also noted that job of a

network security protocol is to secure communications over

an insecure network where attackers are assumed to have

more or less free rein. In particular, keeping attackers o�

the network is beyond the scope of a network security pro-

tocol and requires external network admission control.
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However, it has also been argued that current multicast

communications protocols make the job of an attacker very

easy [2]. That is, an attacker simply has to declare itself

a receiver to receive multicast communications. Not only

does this make it easier for the attacker to access the com-

munication, but it also facilitates certain types of denial of

service attacks. For instance, if the multicast routing imple-

ments rendezvous routing (as in CBT or PIM), an attacker

could begin mass subscription to the group, displace the ren-

dezvous point, and thus potentially cause communications

to be degraded.

To counter these threats, it has been suggested that any

secure multicast protocol must be combined with the multi-

cast routing protocol and make use of routers to perform

admission control (perhaps using some form of security-

enhanced IGMP). However, this scheme has its own draw-

back because routers are inherently a part of the (insecure)

network11.

Although the Iolus framework could also be combined

with multicast routing protocols, it should be noted that it

is not necessary to do so in order to counter these threats.

Protocol designers worried about these threats can include

hooks to routers which will provide \advisory" admission

control. That is, routers will contact their designated GSA

to seek permission prior to extending the group. In this way

good routers that can be trusted will provide the requisite

control, while rogue routers which could not be trusted in

any case will continue to do as they please.

9 Implementation Experience and Performance Results

Ultimately, the merits of the Iolus framework can be under-

stood only after wide-scale deployment. However, we wished

to have a better understanding of some key issues concern-

ing the framework. More speci�cally we were interested in

the following issues:

1. Complexity: How di�cult would it be to implement a

protocol based on the Iolus framework?

2. Application Interfacing: How di�cult would it be for

applications to use an Iolus-based protocol, either for

secure multicasting or for key management?

3. Performance: What performance penalty is incurred

by GSAs in forwarding data between multicast sub-

groups?

To answer these questions we have implemented a simple

software package that uses an Iolus-based protocol.

The package consists of the GSC and GSI applications

along with a Iolus client application that is used to interact

with the GSAs. Actual applications do not directly inter-

act with the GSAs. Instead, they use a library to interface

with the Iolus client. This allows for the use of the secure

multicast functionality while at the same time minimizing

modi�cations to the actual applications.

11Here, we are not implying that network layer security is bad idea.

Network layer security can be implemented end-to-end. We are simply

saying that it is unwise to trust arbitrary routers in the network.
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The client library is designed to be generic. That is, the

library can be used by applications that want to directly

secure multicast data, but it can also be used by applica-

tions that simply access to a group key management ser-

vice. Thus, the library provides the standard send() and

receive() functions along with a getkey() function for key

retrieval. Besides these functions, the library contains a set

of bootstrap routines to start up the Iolus client and begin

interfacing to it using shared memory.

The cryptographic routines in the client library and in

the other pieces of the package are implemented using the

publicly available CryptoLib library [19]. CryptoLib in-

cludes most commonly used cryptographic primitives, e.g.,

DES, RSA, MD5, etc. The key reasons behind its choice

were its general availability and portability. Our proto-

col utilizes DES [21] for encryption, keyed MD5 [23] for

MAC computation, and Di�e-Hellman [11] with authenti-

cated public values for mutual authentication with key ex-

change.

The basic package was coded in less than a month and

contains a little more than 3400 lines of code. In particular,

the client library was implemented in less than 250 lines of

code and should not increase code size dramatically for most

applications.

Because our library contains the requisite send and re-

ceive primitives, our package can be readily used to directly

send and receive secure multicast data. However, we wanted

to understand how di�cult it would be to retro�t an existing

\security-aware" multicast application to use our protocol as

a key management service. To that end we decided to mod-

ify vic to use our protocol. vic is already \security-aware"

in that it has the ability to encrypt and decrypt its transmis-

sions given a key. Normally this key is supplied using vic's

GUI, but we modi�ed vic to call our getkey() function prior

to each send and receive. Besides this, the only other mod-

i�cation we had to make was to have vic call our bootstrap

routines during startup. In sum, less than 30 lines of vic

code in two �les (i.e., main.cc and net.cc) were changed.

Our experience with vic suggests that applications will �nd

it easy to interface to our framework.

Finally, we wanted to gain some understanding of the

performance aspects of our framework. In particular, our

framework relies heavily on GSA forwarding of data between
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subgroups. To test the performance of multicast forwarding,

we setup a test in which we measured the response time of

the GSA on packets with payloads ranging in size from 64

bytes to 32 KB. To get a baseline value we also implemented

a NOP program that simply received packets by multicast

and then immediately re-multicast them. The results are

shown in Figure 7 and are for a GSA running on a 125MHz,

dual-processor SparcStation 20.

From the �gure it can be seen that the GSA forwarding

penalty (the di�erence between the two lines) is approxi-

mately 450�s. Almost all of this time is attributable to the

cryptographic operations. Since we imagine that there will

only be a few GSAs between any given sender and receiver,

this penalty is unlikely to be signi�cant for most applica-

tions. Note that because we use indirection in keying the

penalty is �xed and does not increase with larger payloads.

10 Related Approaches

In this section, we review the (rather sparse) literature per-

taining to multicast security protocols. These protocols are

primarily multicast key distribution protocols. That is, they

distribute a unchangingKGRP to members as they join; they

do not take care to change the key when the group mem-

bership changes.

Furthermore, most of these protocols are based on a cen-

tralized approach that basically works as follows. Each se-

cure multicast group is assigned a group controller (GC).

The GC processes all join requests and hands KGRP to the

joining member12. Protocols implementing this type of ap-

proach can be found in [25].

Also, Harney et al. describe the Group Key Management

Protocol (GKMP) [15, 16]. GKMP is similar to the above,

except that under GKMP the GC is implemented on a per-

group basis, i.e., a designated member of the current group

implements the GC.

This type of approach addresses neither the key man-

agement issues nor the scalability issues mentioned before.

Indeed, the centralized GC only adds to the scalability prob-

lem.

More recently, Ballardie [3] has presented the scalable

multicast key distribution scheme (SMKD) as part of the

CBT multicasting architecture. In this proposal each mul-

ticast group has a group key distribution center (GKDC)

similar to the GC that controls access to the group. It is

suggested that, initially, the CBT core assumes the role of

the GKDC. As nodes join the CBT distribution tree some of

the functionality of the GKDC is \passed on" to the other

nodes. In e�ect, each joining router is provided with a group

access package that contains an ACL and KGRP . When a

node decides to join the multicast it contacts the nearest

router acting as a GKDC which authenticates the joining

member and passes it the group key.

Although SMKD does an admirable job of distributing

KGRP (by exploiting the implicit hierarchy of the multicast

distribution tree), it too is unable to change KGRP in the

face of membership changes.

12Note the GC does not really need to be involved on leaves because

the group keying material does not change on leaves.

Both GKMP and SMKD note that changing the key-

ing material may be necessary when the group membership

changes, but they o�er no solution beyond establishing a

new group. Of course, establishing a new group is clearly

not scalable as it requires re-authentication on the part of

all the group members.

11 Concluding Remarks

The primary motivation behind our design was enhanced

scalability. In closing, however, it is interesting to note that

the Iolus framework also provides certain other auxiliary

bene�ts (both technical and non-technical in nature):

� Enhanced Security. The lack of a global KGRP adds

security in Iolus. While the compromise of a given

KSGRP is equally bad in that the attacker is given

access to the group, it does not allow the attacker

to arbitrarily share the KSGRP with other principals.

The other principals may be assigned to di�erent GSAs

making the compromised KSGRP useless to them. In

e�ect, subgrouping helps to contain attacks in some

situations.

� Flexible Management. In a large multicast, it may

easily be the case that no single entity (not even the

GSC) will know each and every principal that should

be allowed access to the secure multicast group. Sub-

grouping in Iolus allows a natural delegation of this

responsibility.

For example, consider a university that is o�ering a

distance learning course which is multicast over the

Internet. Some companies may wish to have their em-

ployees take this course. To do this, companies (using

GSIs) apply to the university's GSC for admission to

the secure multicast group (at the top level subgroup).

Employees within a company then apply to their com-

pany's GSI for admission to the group through their

company's subgroup. But, the GSC does not need to

know exactly who is allowed in; it delegates that re-

sponsibility to the company's GSI which it trusts.

� Flexible Pricing. One of the primary reason for se-

curing multicast communications is the economic value

of the data being multicast. Flexible pricing is sim-

ilar and related to 
exible management. Consider,

again, the university o�ering distance learning courses

on the Internet. The university wishes to charge tu-

ition, but instead of charging each principal individ-

ually, it charges the companies' GSIs at the top level

subgroup. Having bought the multicast, the compa-

nies are then free to decide who should view it and

how they should (or even if they should) pay for it.

In summary, multicast security is inherently di�erent

from unicast security. Instead of providing key management

for a pair of principals, a multicast security protocol must

provide key management for a changing group of principals.

This creates a scalability problem because the keying mate-

rial needs to be changed for the entire group whenever the

group membership changes.
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To address the scalability problems of secure multicast

we have proposed Iolus: a scalable, general-purpose frame-

work that can be used for either secure multicasting or mul-

ticast key management. Iolus discards the idea of large 
at

secure multicast group and replaces it with the notion of a

secure distribution tree that is composed of multiple smaller

secure multicast subgroups arranged in a hierarchy. To-

gether these subgroups form a single virtual secure multicast

group. The glue that holds the subgroups together consists

of the group security agents that manage each subgroup.

The GSAs \conspire" to invisibly deliver all multicast data

securely to each of the subgroups, thereby creating a single

secure multicast group image for the senders and receivers.

Furthermore, to better understand Iolus we have imple-

mented a package of applications that use a protocol based

on the Iolus framework. We have used the package to pro-

vide both a secure multicasting service and an independent

key management service. Our preliminary experience sug-

gests that Iolus-based protocols could be readily used with

many applications and that the performance penalty im-

posed by the use of a secure distribution tree would not be

signi�cant for most applications.
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