
Smartphones as Practical and Secure Location
Verification Tokens for Payments

Claudio Marforio, Nikolaos Karapanos, Claudio Soriente,
Kari Kostiainen and Srdjan Čapkun

Institute of Information Security
ETH Zurich

{firstname.lastname}@inf.ethz.ch

Abstract—We propose a novel location-based second-factor
authentication solution for modern smartphones. We demonstrate
our solution in the context of point of sale transactions and show
how it can be effectively used for the detection of fraudulent
transactions caused by card theft or counterfeiting. Our scheme
makes use of Trusted Execution Environments (TEEs), such as
ARM TrustZone, commonly available on modern smartphones,
and resists strong attackers, even those capable of compromising
the victim phone applications and OS. It does not require any
changes in the user behavior at the point of sale or to the deployed
terminals. In particular, we show that practical deployment of
smartphone-based second-factor authentication requires a secure
enrollment phase that binds the user to his smartphone TEE and
allows convenient device migration. We then propose two novel
enrollment schemes that resist targeted attacks and provide easy
migration. We implement our solution within available platforms
and show that it is indeed realizable, can be deployed with small
software changes, and does not hinder user experience.

I. INTRODUCTION

Fraudulent transactions at points of sale made with stolen
or duplicated payment cards are a major problem. In 2010
alone, these transactions constituted one third of the 1.26
billion EUR total fraud in the Single Euro Payments Area [1].
To improve the security of existing payment systems, compa-
nies and researchers have suggested usage of mobile devices
as a second-factor authentication mechanism [2], [3]. As
most users already have smartphones, deployment of such
second-factor authentication is practical. Many online service
providers already employ second-factor authentication using
smartphones. Examples of this approach are online banking
applications [4] and Google 2-Step Verification [5]. In a typical
implementation, the user reads a one-time passcode off the
smartphone screen and enters it on the service’s web page
during login. Login operations to services like online banking
are typically performed when the user has time to interact
with his smartphone to complete the authentication process.
In addition, web services are easily modifiable. Thus, in most
cases, an extra authentication step can be added to the login

procedure of a web service at little cost. This approach cannot
be, however, integrated in point of sale transactions, because
interactions, at a shop counter, with a smartphone are inconve-
nient and add undesirable transaction delay. Additionally, the
payment terminal infrastructure is hard to modify.

Recent proposals leverage location data from the user’s
phone as the second authentication factor for payments [2], [3].
During a transaction, either the card issuer [2] or the user [3]
can verify that the location of the user’s smartphone matches
the location of the point of sale terminal used for the trans-
action. Previous work, however, overlooks important usability
and security aspects, as it requires changes in both the point
of sale infrastructure and the user experience. Furthermore, it
assumes a trustworthy mobile OS, even though compromise of
mobile operating systems has become commonplace [6], [7].

To secure mobile services despite mobile OS compromise,
researchers have proposed using system-wide Trusted Execu-
tion Environments (TEEs), such as ARM TrustZone [8], which
provide isolated execution of applications and secure storage
of credentials [9], [10]. Integrating system-wide TEEs with
any second-factor authentication protocol, however, requires
the verifying party (e.g., the card issuer) to correctly bind a
user’s identity to the TEE running on his mobile device through
an enrollment scheme. How to establish this binding in the
presence of a compromised OS is an open problem [11].

In this paper we propose a smartphone-based second-factor
authentication solution for payments at points of sale that uses
location data to identify fraudulent transactions. In contrast
to previous work, our solution does not require changes to
established user interaction models and is compatible with the
existing point of sale infrastructure. We leverage system-wide
TEE architectures to provide a secure system, despite mobile
OS compromise. As part of our solution, we design two secure
enrollment schemes for smartphones to bootstrap second-factor
authentication for payments, which may also be used in other
application scenarios. To summarize, We make the following
contributions.

• We propose a smartphone-based second-factor authen-
tication solution for payments at points of sale, that
uses the phone’s location as the second authentication
factor. Our solution makes use of smartphone TEEs
to resist mobile OS compromise.

• As part of our solution, we construct two secure
enrollment schemes that allow a card issuer to bind

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/

http://dx.doi.org/10.14722/ndss.2014.23165

the identity of a user with the TEE running on his
device. The first enrollment scheme leverages the
unique identity of the user’s SIM card and resists
adversaries that can remotely compromise the vic-
tim’s mobile OS. The second enrollment scheme uses
specially crafted SMS messages that are processed
within the device baseband OS. This scheme provides
protection against more powerful adversaries that can
additionally perform hardware attacks on devices to
which they have physical access.

• Through prototype implementation using an open-
source baseband OS, Android devices, and an ARM
TrustZone development board, we show that our solu-
tion can be easily deployed. It requires small changes
to existing smartphones, and no changes to the point
of sale infrastructure and the user experience. Our
experiments show that, during a transaction, location
verification takes less than 4 seconds on average,
which is a tolerable delay for most payment scenarios.

• We survey known approaches for second-factor au-
thentication using mobile phones and argue why they
cannot be deployed in the considered application sce-
nario. We also analyze commonly suggested enroll-
ment schemes and show why they do not withstand
strong attackers that we consider in this work.

The rest of the paper is structured as follows. Section II
defines the problem we address is more detail. In Section III,
we give background information on mobile device architec-
tures, and Section IV defines the adversarial model. Our
second-factor authentication solution, including the enrollment
schemes, is explained in Section V. We analyze the security
properties of our solution in Section VI and Section VII
provides implementation details. We provide performance eval-
uation in Section VIII, and in Section IX we discuss payment
system integration, privacy considerations, and applicability of
our solution to other related use cases. Section X discusses
alternative second-factor authentication mechanisms and en-
rollment schemes. Section XI surveys related work, and we
end the paper with a brief summary.

II. PROBLEM STATEMENT

Our goal is to design a smartphone-based second-factor
authentication mechanism that prevents fraudulent transactions
at points of sale. In the following we detail the requirements
for any deployable and secure solution to this problem.

We first aim to design mechanisms that must not change
the user interaction model and the current point of sale
infrastructure. Previous work shows that introducing changes
to established user interaction models makes adoption of new
security mechanisms impractical [12]. Similarly, having to up-
date the deployed points of sale makes adoption of additional
security mechanisms hard [13].

Second, a solution must remain secure despite a targeted
adversary that may compromise the mobile OS on the vic-
tim’s device. Current systems [4], [5] and related research
proposals [14], [15], which use smartphones for second-factor
authentication, assume the mobile OS to be trustworthy. This

Normal world (NW)

Mobile'OS'
(e.g.,'Android)'

App1'

Secure world
(SW)

Trusted'OS'

TA1'

Mobile device

'Applica;on'processor''
(TrustZone)'

App2'

TA2'

'Baseband'
processor''

Baseband'OS'

Peripherals'
(GPS)'

SIM'

Fig. 1: Architecture overview of a TrustZone-enabled device.

assumption is too strong, as the complexity of smartphone plat-
forms has increased, mobile operating system vulnerabilities
have become commonplace [6], [7].

Third, any second-factor authentication mechanism that
replaces dedicated tokens with smartphones, must have an
enrollment scheme, where the verifying party binds the identity
of a user to his device. A dedicated security token is a user-
specific device, which the service provider binds to the user
identity before the token is shipped to the user. As smartphones
replace such tokens, the service provider can only bind the
user identity to his device after the user has already purchased
the smartphone. In addition to initial enrollment, a practical
solution must also support device migration. In applications
like payments at points of sale, it is realistic to assume a
one-time service registration performed, for example, when the
user visits a branch of his bank in person. Requiring a similar
operation every time the user starts using a new smartphone
becomes both expensive for the bank and inconvenient for the
user.

III. MOBILE DEVICE ARCHITECTURE

A standard mobile device architecture has two processors.
An application processor runs the mobile OS (e.g., Android)
and the applications on top of it. A baseband processor,
running the baseband OS, handles cellular communication and
mediates communication between the application processor
and the SIM card. Each SIM card has a unique identifier called
IMSI (International Mobile Subscriber Identity).

Most mobile devices support system-wide TEEs, like ARM
TrustZone [8]. In a TrustZone-enabled device, the applica-
tion processor supports two execution states, namely, secure
world and normal world (or non-secure world). The processor
switches between these states in a time-slicing manner, so that
only one state is active at a time. The normal world runs the
mobile OS and regular applications on top of it. The secure
world runs trusted applications (TAs), which are executed on
top of a small layer of software called the trusted OS. The
architecture of a TrustZone-enabled mobile device is shown in
Figure 1.

Applications in the secure world are isolated from the
mobile OS in the normal world. In contrast to dedicated
security elements like smart cards, system-wide TEEs like
TrustZone allow secure access to various device hardware

2

Normal
world

Mobile'
OS'

App'

Secure
world

TA'

Baseband'
OS'

Trusted
OS

Mobile device

Victim’s device

Normal
world

Mobile'
OS'

App'

Secure
world

TA'

Baseband'
OS'

Trusted
OS

Mobile device

Normal
world

Mobile'
OS'

App'

Secure
world

TA'

Baseband'
OS'

Trusted
OS

Mobile device

Adversary’s device

Software attacker Hardware attacker Software attacker and
hardware attacker

Fig. 2: Adversarial model. Grey boxes show trusted components for each type of adversary. The victim’s device (on the left) can
be only targeted with remote attacks and the TCB is the same in both attacker models. Trusted components on the adversary’s
device (on the right) depend on the considered attacker model: a software attacker cannot tamper with the TCB on his device;
an hardware attacker has complete access to any component of his device.

resources from the TEE, and to configuration of secure mobile
device event handling. Access to device peripherals and the
baseband processor environment is typically possible by both
the trusted OS in the secure world and the mobile OS in the
normal world. In addition, certain peripherals can be reserved
for secure world access only. Access to memory areas can be
configured in a similar manner, and in a mobile device a small
amount of memory is reserved for the secure world. Access
control to hardware resources is implemented through specific
control hardware and signals on the system communication
bus. Hardware interrupts can also be configured for secure
world processing if need be. For more details on TrustZone,
see [8].

A standard trusted OS only allows execution of code that
has been signed by a trusted authority, such as the device
manufacturer. Typically, the device manufacturer ships each
device with a device-specific key-pair (we refer to it as the
device key). The public part of the device key is certified by
the manufacturer, and the issued device certificate contains
an immutable device identifier, such as the IMEI number
(International Mobile Equipment Identity). The corresponding
private key is only accessible by software that runs in the
secure world [16].

To limit the size of the TCB, a typical trusted application
handles only security-critical processing, such as user creden-
tial processing or data encryption. A companion application,
running in the normal world, handles the communication, the
UI rendering and other complex tasks. The rationale is that
inclusion of complex libraries in the trusted OS, like network
stacks or video drivers, considerably increases the size of the
device TCB, and with that the attack surface of the secure
world.

Device manufacturers have shipped their mobile devices
with system-wide TEEs like ARM TrustZone for almost a
decade. The usage of these environments, thus far, has been
primarily limited to a few manufacturer-specific use cases,
like implementation of subsidy locks and secure boot [16].
Deployment of third-party applications in system-wide TEEs
has been limited, because the installation of new trusted appli-
cations is subject to the approval of the device manufacturer.

Nevertheless, recent research shows that system-wide TEEs
can be safely opened up for third-party trusted application
development [17], and on-going TEE API standardization ac-
tivities [18] are likely to make trusted application deployment
more accessible to third-parties.

IV. ADVERSARIAL MODEL

We consider a targeted adversary who possesses the vic-
tim’s payment card (or a clone) and knows its PIN code (if
any). His goal is to perform a fraudulent transaction at a point
of sale. The adversary does not have physical access to the
victim’s smartphone. He does, however, have access to other
similar devices. We regard the device hardware, the trusted OS
and the baseband OS as the TCB on the victim’s device, and
distinguish between two types of adversary.

A software attacker can remotely compromise the mobile
OS on the victim’s smartphone, but cannot compromise its
TrustZone secure world nor the baseband OS execution. Like-
wise, he cannot compromise the TrustZone secure world nor
the baseband OS on any other device. Software attacks against
the mobile OS are a real threat [6], [7], while software attacks
against the TCB (i.e., the baseband OS and the TrustZone
secure world) are significantly harder, due to its limited size
and attack surface.

A hardware attacker can additionally perform hardware
attacks against devices that he owns or has physical access
to. On such devices, he may compromise the baseband OS
execution, the TrustZone secure world and, ultimately, ex-
tract the TrustZone-protected secrets, such as the device key.
This adversarial model is justified by the fact that neither
a TrustZone-enabled processor nor the baseband processor
provide tamper resistance properties, commonly found in smart
cards or hardware security modules. Figure 2 illustrates trusted
software components (gray boxes) in these different scenarios.

Neither of the attackers controls the cellular network com-
munication. Furthermore, they cannot launch GPS spoofing
attacks on the victim’s device. Finally, we do not address
denial-of-service attacks.

3

User%
smartphone%

Payment%card%

Point%of%sale%
terminal%

1. payment
protocol

3. location
verification
request

4. location
statement

Card%issuer%

2. payment
protocol

5. transaction
authorization

Fig. 3: Overview of location-based second-factor authentica-
tion for payments at point of sale. During a payment trans-
action, the card issuer queries the user’s smartphone for its
location over an Internet connection.

V. OUR SOLUTION

We use the location of the user’s phone as the second
authentication factor during a transaction at a point of sale.
Our solution leverages system-wide TEEs available on mobile
devices to provide card issuers with trustworthy location
information despite a potentially compromised mobile OS on
the user’s smartphone. We focus on ARM TrustZone since it
is currently the most widely deployed system-wide TEE on
mobile devices. The schemes we propose can, nevertheless,
be used with other system-wide TEEs as well.

Figure 3 shows an overview of our scheme. Prior to
payments at point of sales, we assume that the user has already
installed two applications provided by the card issuer on his
device: a companion application running in the normal world
and a trusted application running in the secure world. Addi-
tionally, the user has also completed an enrollment scheme (see
below), and the card issuer has established a binding between
the user and the TEE on his device. During payment, the user
inserts or swipes his payment card in a point of sale terminal
and optionally enters its PIN code (step 1). The terminal sends
the transaction information to the card issuer (step 2). The
card issuer contacts the TEE on the user’s smartphone (step
3), which replies with a location statement (step 4). The card
issuer then checks whether the location statement was sent by
the correct device and compares it against the location of the
terminal. Finally, the card issuer sends the transaction decision
(authorize or deny) to the terminal (step 5).

We leverage location data due to two main reasons. First,
we want a solution that does not change the user interaction
model and the hardware infrastructure (see Section II). We
therefore resort to the sensing capabilities of modern smart-
phones. Second, among available smartphone sensors, GPS
units are almost ubiquitous, and previous work has shown that
GPS coordinates are a practical and useful means that card
issuers can leverage to identify fraudulent transactions [2], [3].
Our solution could, in principle, use any sensor available on
the device.

Card%
issuer%

1. user ID

Companion%
applica0on%

User smartphone

User%
Trusted%

applica0on%

2. trigger

Baseband%

3. query

4. IMSI and
network status

6. user ID, signed IMSI,
device certificate

7. service key encrypted
using public device key

seal%service%key%

translate%phone%
number%to%IMSI%

5. IMSI signed using
private device key

Fig. 4: Signed-IMSI enrollment scheme. Gray boxes are trusted
entities. The trusted application fetches the IMSI of the in-
stalled SIM card from the baseband processor. It signs the
IMSI with the private device key and forwards it to the card
issuer (through the companion application). The card issuer
can link the IMSI to a previously registered phone number.

A. User Enrollment

Before the card issuer can verify the location of the user’s
smartphone, it needs to bind the user identity to the TEE
running on his mobile device. To achieve this binding, we
present two enrollment schemes. The signed-IMSI enrollment
scheme is easier to deploy but can only withstand software
attackers; the baseband-assisted enrollment scheme is also
secure against hardware attackers. However, it requires minor
software changes to the baseband OS. Both schemes leverage
the implicit binding between the user and his SIM card. They
require a one-time registration in which the user provides his
phone number to the card issuer in a reliable manner, for
example, by visiting his bank’s branch in person. The goal of
both enrollment schemes is to establish a shared service key,
between the card issuer and the trusted application running in
the TEE on the user’s device.

Signed-IMSI enrollment

The card issuer uses the SIM identifier (i.e., the IMSI) and
the mobile network infrastructure to verify that the enrolling
device is indeed the one where the user’s SIM card is installed.
Figure 4 illustrates the steps of the enrollment scheme.

The user starts the companion application and provides
his user ID, e.g., the bank customer number (step 1). This
application triggers the execution of the trusted application
(step 2) that queries the baseband OS for the IMSI of the
SIM card (steps 3-4).1 The trusted application also verifies
from the baseband OS that the device is connected to the
mobile network, to discard the possibility of a fake SIM card
reporting a false IMSI.2 The trusted application signs the IMSI

1The IMSI is needed for cellular protocols and is available to the baseband
OS through standardized interfaces.

2A false SIM card lacks the correct keying material to connect to the cellular
network

4

5. authenticated IMEI,
device certificate

Card%
issuer%

1. user ID

Companion%
applica0on%

User smartphone

User%
Trusted%

applica0on% Baseband%

2. user ID

3. enrollment key

4. IMEI authenticated using
enrollment key

seal%service%key%

6. service key encrypted
using public device key

compare%IMEI%to%
device%cer0ficate%

Fig. 5: Baseband-assisted enrollment scheme. Gray boxes are
trusted entities. The card issuer sends an SMS message with
an enrollment key (dotted line); the baseband OS uses that
key to authenticate the device’s IMEI and deletes the key. The
card issuer can check the authenticated IMEI against the one
received in the device certificate.

using its device private key (step 5) and passes the signature
to the companion application. At this point the companion
application sends the signed IMSI, the user ID, and the device
certificate to the card issuer over the Internet (step 6). The
card issuer uses the received user ID to retrieve the user’s
phone number and queries the mobile infrastructure for the
corresponding IMSI (see Section VII for details). The card
issuer checks that the IMSI received from the user’s phone
matches the one reported by the mobile infrastructure. If the
two IMSIs match, the card issuer proceeds to verify (i) the
validity of the device public key using the device certificate and
the public key of the manufacturer, and (ii) the validity of the
signature over the IMSI. If all checks are successful, the card
issuer picks a fresh service key and encrypts it under the device
public key; the ciphertext is sent to the user’s smartphone (step
7). The companion application passes the encrypted service
key to the trusted application that decrypts it using the private
part of the device key and encrypts it using a symmetric storage
key available only in the secure world (sealing). The sealed
service key can be stored by the companion application in the
normal world.

Baseband-assisted Enrollment

In this scheme the card issuer sends an SMS message
carrying an enrollment key to the phone number provided by
the user during registration. We augment the baseband OS to
use this key and compute an authentication tag on the device’s
IMEI.3 The steps of this scheme are in Figure 5.

The user starts the companion application and provides his
user ID (step 1), which is forwarded to the card issuer over
the Internet (step 2). The card issuer sends an enrollment SMS
message to the corresponding user’s phone number, containing

3The IMEI is bound to the device key by the device certificate.

Companion(
applica+on((

Trusted(
applica+on(Card(

issuer(

5. location and
nonce signed with
service key

1. nonce
2. nonce

User smartphone

6. signed location and
nonce

GPS(
peripheral(

3. read

4. location

Fig. 6: Location verification is a simple challenge-response
protocol using the service key established during enrollment.
Gray boxes are trusted entities. The card issuer sends a
nonce; the trusted application reads the GPS coordinates and
authenticates them together with the nonce.

a fresh enrollment key (step 3). The baseband OS on the user’s
device intercepts the SMS message and extracts the enrollment
key. The baseband OS uses the enrollment key to authenticate
the device’s IMEI,4 provides the authentication tag to the
companion application (step 4), and deletes the enrollment
key. The companion application forwards the authenticated
IMEI and the device certificate to the card issuer (step 5).
The card issuer checks (i) the validity of the device certificate,
(ii) the validity of the authentication tag, and (iii) that the
IMEI authenticated with the enrollment key matches the one
in the received certificate. If all checks are successful, the
card issuer picks a fresh service key and encrypts it under
the device public key extracted from the device certificate;
the ciphertext is sent to the user’s smartphone (step 6). The
companion application passes the encrypted service key to the
trusted application that seals it.

B. Location Verification

After successful enrollment, the user’s device shares a
service key with the card issuer that can be used to create an
authentic channel between the two parties. During a transaction
payment, therefore, the card issuer can query the device for an
authenticated location statement. As detailed in Figure 6, the
location verification is a simple challenge-response protocol.

The card issuer picks a fresh nonce (for replay protection)
and sends it to the trusted application through the companion
application (steps 1-2).5 The trusted application reads the
location coordinates from the device GPS unit (steps 3-4),
unseals the service key and uses it to authenticate the nonce
and the current coordinates. The authenticated message is sent

4The IMEI is read from a read-only memory on the device, written by
the device manufacturer. The baseband OS has access to the IMEI to handle
cellular communication.

5Alternatively, the card issuer could verify the freshness of location state-
ments checking the timestamp provided by the GPS unit. As one of our goals is
not to change the payment transaction user experience, the location verification
must be initiated by the card issuer. Thus, a location verification requires the
exchange of two messages between the card issuer and the user smartphone in
either cases (i.e., usage of the GPS timestamp does not allow a more efficient
implementation).

5

back to the card issuer through the companion application
(steps 5-6). The card issuer verifies the authenticity of the
location statement using the service key. At this point, the card
issuer matches the location of the user’s smartphone against the
one of the terminal used for the transaction, to decide whether
to authorize or deny the transaction.

We note that neither the companion application nor the
trusted application need to be continuously running in the
background. The execution of the trusted application is trig-
gered by the companion application which, in turn, is started
by the mobile OS when receiving a request for that application
(e.g., through a push notification).

C. Device Migration

Both enrollment schemes support device migration by re-
running the enrollment operation. When the user switches to
a new device and moves his SIM card to it, he can start the
enrollment process from the companion application of the new
device. As a result of either the signed-IMSI or the baseband-
assisted enrollment, the card issuer invalidates the previously
used service key, re-associates the user identity to the device
key of the new device, and sends a fresh service key to the TEE
on that device. Device migration does not require out-of-band
communication with the card issuer as long as the user keeps
his phone number (even if he gets a new SIM card associated
with his old phone number).

VI. SECURITY ANALYSIS

Recall that our adversary holds the victim’s payment card
(or a clone) and his goal is to make fraudulent transactions at
points of sale. The adversary does not have physical access to
the victim’s smartphone but he does have remote control over
that smartphone’s mobile OS.

With the deployment of our system, the adversary must
convince the card issuer that the enrolled user’s smartphone
is close to the terminal where the fraudulent transaction is
taking place. To do so, the adversary must either succeed in
an impersonation attack during enrollment or tamper with the
location verification protocol.6

In an impersonation attack, the adversary must halt the
enrollment scheme on the victim’s device (he can do so since
he controls that device’s mobile OS), and use the victim’s ID
to run the enrollment scheme on a device that he owns. In
particular, the adversary has two possible strategies: he must
induce the card issuer to encrypt the service key either

(a) under the public key of the adversary’s device (the
adversary will thus be able to make fraudulent trans-
actions if his phone is in proximity of the terminal
where the transaction takes place), or

(b) under a public key for which the adversary knows
the private key (so that the adversary will be able to
generate arbitrary location statements when the card
issuer requests them).

In the following we provide an informal analysis of the
enrollment schemes, with respect to the two strategies above.

6We acknowledge that the adversary may still succeed in his goal if the
fraudulent transaction takes place close to where the victim’s device is located.

Finally, we argue that the location verification mechanism is
secure after successful user enrollment.

A. Signed-IMSI enrollment

This enrollment scheme is secure against a software at-
tacker as defined in Section IV. This attacker can control the
mobile OS on any device (including the victim’s) but does not
have sufficient capabilities to control any baseband OS or the
TrustZone secure world execution environment.

Strategy (a) requires the adversary to start an enrollment
scheme on his device using the victim’s ID. Since the card
issuer knows the victim’s phone number and can retrieve
the corresponding IMSI, the adversary must force the trusted
application on his device to send the IMSI of the victim’s
SIM card. To do so, the adversary may use a custom SIM
card where he can manipulate the IMSI. However, such SIM
card misses the key that the victim’s SIM card uses for
authentication with the network operator and, thus, cannot
connect to the cellular network. When the trusted application
on the adversary’s device queries the baseband OS for cellular
network status, it detects that the phone is not connected and
will abort the enrollment scheme.

Strategy (b) requires the adversary to hold a private key
corresponding to a valid (i.e., certified by the device man-
ufacturer) public key. This is not possible since a software
adversary cannot compromise the ARM TrustZone architecture
of any device and leak the secrets stored therein.

B. Baseband-assisted Enrollment

This enrollment scheme is secure against an hardware
attacker, as defined in Section IV, that controls the mobile OS
on any device (including the victim’s), as well as the baseband
OS and the TrustZone secure world execution environment on
devices to which he has physical access.

Strategies (a) and (b) require the adversary to either inter-
cept the enrollment SMS message and extract the enrollment
key, or provide a crafted IMEI to the baseband OS on the
victim’s device. Since the adversary does not control the GSM
network, SMS messages cannot be intercepted. Furthermore,
the enrollment key is deleted by the baseband OS, so that the
normal world cannot read it. Finally, the IMEI is stored on
read-only memory during device manufacturing [16], thus the
adversary cannot feed an arbitrary IMEI to the baseband OS
on the victim’s device.

C. Location Verification

After a successful enrollment, the trusted application run-
ning in the secure world on the victim’s device shares a
service key with the card issuer. At this time, the adversary
can only try to force the victim’s device to report a location
statement with GPS coordinates matching the location where
the fraudulent transaction takes place. Since none of the
considered adversaries (i.e., software and hardware) control the
secure world on the victim’s device, the adversary can only try
to change the coordinates provided by the GPS unit on that
device. We note that GPS units on modern smartphones only
allow to reset the GPS sensor. That is, the adversary cannot
feed the trusted application on the user’s phone with arbitrary

6

coordinates. The trusted application can, nevertheless, detect a
reset and restart the GPS sensor.

VII. IMPLEMENTATION

We implement three prototypes to evaluate the feasibility
of the proposed second-factor authentication solution and
enrollment schemes. First, we modify an open-source baseband
OS to show that the changes required to existing baseband
operating systems are small. We test our baseband modi-
fications on an older mobile phone, because the baseband
environment on modern smartphones is not modifiable by
third-party developers.

Second, we implement the trusted application on a Trust-
Zone development board to show that its deployment on
TrustZone-enabled devices is straightforward, and that the
time overhead to generate location statements is negligible
compared to network delays. We use a TrustZone development
board because installation of trusted applications on current
smartphones requires approval by the device manufacturer.

Third, we implement a client-server prototype using an
Android smartphone to evaluate the end-to-end performance of
the location verification mechanism at the time of a payment
transaction.

A. Baseband Implementation

To accommodate the baseband-assisted enrollment scheme
of Section V-A, we augment osmocomBB [19], which is the
only available open-source baseband OS. It is implemented for
Motorola mobile phones like the C123 or C118, introduced in
2005. The GSM layer 1 (the physical layer) executes directly
on the mobile phone, while layers 2 and 3 (respectively the
data-link layer and the third layer, subdivided in the Radio
Resource management, the Mobility Management, and the
Connection Management) run as the mobile application on
a host PC connected with the device through a USB-to-serial
cable.

We leverage the widely used SMS Protocol Data Unit
mode, standardized in [20], to format the enrollment SMS
message sent by the card issuer to the user’s phone number.
In the standard, a User Data Header structure can contain
so called Information Element Identifier elements, that are
reserved for future use. We encode the enrollment key in
the Information Element Data field of one such identifier.
We add to the baseband OS the logic to identify and handle
enrollment SMS messages. Once the key is found in the SMS
message header, the baseband OS extracts it and computes an
authentication tag over the device’s IMEI. We use the HMAC-
SHA1 implementation provided by the PolarSSL [21] library
as the authentication algorithm.

We test the prototype baseband OS in a Motorola C118
connected through a USB-to-serial cable to a host PC running
Ubuntu 12.10. The original mobile application provided by
osmocomBB consists of 19,482 lines of C code; we add a
total of 523 lines of code, where polar_sha1.c accounts
for 451 lines of code. Our changes increase the code size
by 2.7%. In terms of binary size, a compiled version of the
original mobile application is 2029 kB; our modified version
accounts for 2077 kB in total (i.e., 2.3% larger). The layer1

firmware (layer1.compalram.bin) that is installed on
the mobile phone accounts for 63 kB and remains unmodified.

B. Trusted Application Implementation

We implement a trusted application that provides location
statements, on a TrustZone-enabled development board. We
use it to evaluate the implementation complexity and the
time required to produce location statements. The board is
an ARM Motherboard Express uATX [22] coupled with an
ARM CoreTile Express A9 [23]. The board features a Cortex-
A9 processor which is clocked at 400 MHz. The development
board contains no GPS unit or baseband processor. In the
normal world of the system, we run Android version 4.1.1 with
Linux kernel version 2.6.38.7, properly patched to support the
ARM board as well as Android. In the secure world, we run
Open Virtualization SierraTEE [24], release “02 June 2013”.
SierraTEE is an open-source framework that provides a basic
secure world kernel, compliant with the GlobalPlatform TEE
specifications [25].

The implementation of the trusted application accounts for
less than 150 lines of code. Thus, incorporating our trusted
application into an existing trusted OS, that already provides
the necessary cryptographic functions and system calls, would
hardly change the existing memory and storage requirements.

Location Verification

The application that generates location statements runs on
top of Open Virtualization, in the secure world, while the
companion application runs in the normal world, on top of
Android. When the card issuer initiates a location verification
protocol with the user’s smartphone, that device switches
from normal world to secure world and executes the trusted
application that generates the location statement.

We set up an experiment where the companion application,
running in the normal world, invokes the trusted application
and provides it with a 128-bit nonce. As the development board
has no GPS unit, we emulate it by creating a system call
in the secure kernel that just returns longitude, latitude and
accuracy values. The trusted application runs HMAC-SHA256
over the data fetched from the system call and the provided
nonce. The location statement is returned to the companion
application in the normal world. A shared memory buffer is
used for exchanging data between the two worlds.

We measure the total time required for the companion
application to receive a location statement from the trusted
application. This time includes (i) the performance delay
introduced by the context switching and required data copying
between the normal world and the secure world, and (ii)
the time it takes for the trusted application to generate a
location statement. The above experiment is repeated 1000
times. Average completion time is 3.0 milliseconds, with a
standard deviation of 0.04 milliseconds. The time spent in
context switching between the normal world and the secure
world is below one millisecond.

Enrollment

Since our board is not equipped with a baseband processor,
we do not implement the enrollment schemes of Section V-A.
Nevertheless, we now explain how they can be realized.

7

During the signed-IMSI enrollment scheme, the trusted
application must query the baseband OS for the IMSI of the
installed SIM card, and for the cellular network status. In
a mobile device, communication between the baseband OS
and the mobile OS (e.g., Android) is implemented through a
manufacturer-supplied binary (e.g., a driver). A stripped-down
version of this binary may be as well installed in the secure
world by the device manufacturer. Given that subsidy lock is
one of the most used services in TrustZone-enabled devices,
it is reasonable to assume that the secure world is able to
communicate with the SIM card in a modern smartphone [16].
For reference, the full binary in the Samsung Galaxy S3 phone
(i.e., libril.so) is 49 kB. The complete API offers roughly
200 function calls (extracted by looking at the strings of the
binary) to the baseband OS. In contrast, the stripped-down
version to support enrollment only requires the function calls
GET_SIM_STATUS and GET_IMSI.

In the baseband-assisted enrollment scheme, the trusted
application is only invoked at the end of the process to decrypt
and seal the service key sent by the card issuer. Hence, there is
no requirement for direct communication between the secure
world and the baseband OS.

C. Client-Server Implementation

To evaluate the performance of the location verification
protocol, the client prototype provides the functionalities of
both the companion application running in normal world, and
the trusted application running in secure world. This imple-
mentation does not account for the needed context switching
between the normal world and the secure world. As mentioned
before, this time is below one millisecond, and thus negligible
compared to networking delays of a full end-to-end implemen-
tation.

We develop against the API level 16 of the Android SDK
(version 4.1, “Jelly Bean”) [26]. Cryptographic operations are
based on the Bouncy Castle crypto library [27]. We use 2048-
bit RSA keys as device keys. Authentication of location state-
ments leverages HMAC-SHA256 with an 128-bit service key.
Communication between the server and the client uses the push
notification feature of Google Cloud Messaging (GCM) [28];
the reverse channel is a standard HTTP connection.

The client provides functionalities for the signed-IMSI
enrollment scheme (cf. Section V-A) and the location veri-
fication mechanism (cf. Section V-B). During enrollment, the
application queries the baseband OS through the Android Java
API provided by the TelephonyManager service, for the
IMSI of the SIM card and the network connection status.
During location verification, the application reads the GPS
location (latitude and longitude, accuracy and satellite fix time)
using the LocationManager system service.

The server-side processing is implemented in python, using
the CherryPy Web Framework [29] and SQLite [30]. This web
service is accessed through a RESTful web API that provides
enrollment and location verification operations. During the
signed-IMSI enrollment scheme, the server translates a phone
number to the corresponding IMSI using an HLR-lookup query
with an external service provider. An HLR-lookup query is
carried out by network operators using the Signaling System
#7 (SS7) protocols. In particular, the Home Location Register

Static tests Field study (3G)
WiFi 3G Edge Orange Sunrise

(n=101) (n=101) (n=101) (n=46) (n=34)
average (sec) 0.60 1.82 2.20 2.54 3.68
std dev (sec) 0.08 0.05 0.30 0.78 1.45

TABLE I: Completion time for location verification during
payment transactions. n denotes the number of samples in each
scenario.

(HLR) of a network operator holds information about its users
such as their phone numbers and to which network a device
is currently connected. Among other information, the HLR
holds the IMSI of the SIM card connected to the network.
Several HLR lookup services, such as [31], are available to
third-parties.

While our client prototype implementation is tailored to-
wards a device using Android OS, similar functionalities are
easily done on other smartphone platforms.

VIII. EXPERIMENTAL EVALUATION

The previous section shows that context switching be-
tween the two TrustZone execution states (i.e., normal and
secure world) and cryptographic operations to produce location
statements, require only a few milliseconds. Network delays,
therefore, account for the majority of the time required to
verify the location of the user’s device by the card issuer. In this
section we analyze the time to complete location verification
and present the experimental evaluation of our client-server
prototype.

We focus on the location verification protocol as the enroll-
ment procedure is a one-time operation and its performance is
less critical. The client prototype is installed on a Samsung
Galaxy S3 smartphone with the latest software updates (as of
the time of writing), after a factory reset. The server is running
on a standard laptop and shares a service key with the client.
We provide results for both static tests run with the phone
in a fixed location (office environment) and a field study run
in a scenario close to actual deployment. Table I provides an
overview of our results which we elaborate below.

A. Static Tests

During static tests, the client device is in a fixed position,
on a desk in our office environment. We run tests for Edge
(GSM only mode), 3G (WCDMA only), and WiFi (mobile
data turned off) connections. For each connection setting, we
measure the completion time, i.e., how long it takes from
the moment the server issues a request, until the moment it
receives the location statement and verifies its authenticity.
The experiment is repeated 100 times (the server issues one
request per second), and Figure 7a shows the completion time
for each location verification. Results show longer completion
times during the first runs, for Edge and 3G connections.
This behavior is presumably caused by the time it takes to
“activate” the radio on the phone. To validate our hypothesis,
we set the interval of two consecutive server requests to 30
seconds, allowing the radio of the phone to “deactivate” after
each request. Results are shown in Figure 7b. Confirming

8

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 0 20 40 60 80 100

Co
m

pl
et

io
n

Ti
m

e
(m

s)

Location Request Number

WiFi
3G
Edge

(a)

 0
 1000
 2000
 3000
 4000
 5000
 6000

 0 20 40 60 80 100

Co
m

pl
et

io
n

Ti
m

e
(m

s)

Location Request Number

WiFi
3G
Edge

(b)

Fig. 7: Completion time for 100 location verifications. In Figure (a) the server initiates one request per second. In Figure (b) the
server waits 30 seconds before issuing each request.

 0
 500

 1000
 1500
 2000
 2500
 3000

Edge 3G WiFi

Co
m

pl
et

io
n

Ti
m

e
(m

s)

Connection Type

Fig. 8: Average time and standard deviation required to com-
plete a location verification, for different connection types.

our hypothesis, completion time in this scenario has greater
variance, especially when using Edge or 3G networks.

Finally, Figure 8 shows the average and the standard
deviation for the measurements of Figure 7b. The completion
time for our solution is, on average, 2.2 seconds with an
Edge connection, 1.82 seconds with a 3G connection, and 0.6
seconds with a WiFi connection, respectively.

B. Field Study

To test our solution in a setting close to the actual payment
scenario, we use two client devices and carry out a two-day
field study with two subjects in Zürich. Each subject carries
a client device and a triggering device. The two clients have
SIM cards issued by different operators (Orange and Sunrise).

The triggering device initiates a server request. The server
runs on a standard laptop and listens for incoming triggers. We
use a separate trigger device to make sure that, at the time of a
location verification, the radio on the client device is not active.
In an actual deployment, if the radio happens to be active when
a location verification request is received, completion time is
expected to be smaller than the ones reported below.

For two days, each subject uses the triggering device to
initiate a location verification each time he is close to a pay-

GPS accuracy (m) GPS fix delay (ms)
average max min average max min
17.40 48.0 4.0 256.83 3430.00 0.00

TABLE II: Location accuracy results during the field study.

ment terminal in, for example, shops, cafes, museums, parking
lots, etc. Completion time, for the device with the Orange
SIM card, is 2.54 seconds on average (standard deviation 0.78
seconds). The smartphone with the Sunrise SIM card shows
slightly worse performance as the completion time raises to
3.68 seconds on average (standard deviation 1.45 seconds).

Table II shows the accuracy of the location information and
the elapsed time between the server request and the actual GPS
fix on the client. The reported accuracy is within an acceptable
range to distinguish shops next to each other (17.40 meters on
average), and the location fix is available with a very short
delay (less than 257 milliseconds on average).

IX. DISCUSSION

This section further discusses the proposed mechanisms in
terms of integration with current payment systems, deployment
considerations, and privacy issues. Finally, we discuss the
applicability of our solution to other scenarios.

A. Integration with Payment Systems

Our protocols can increase the security of any payment card
transaction (either “chip and PIN” or “swipe and sign”) where
the card issuer is contacted by the terminal to authorize or deny
the payment. We now detail the integration of our solution with
deployed payment systems and, in particular, with the EMV
payment standards [32].

An EMV transaction involves the card, the terminal, the
card issuer and an acquirer. The acquirer is a banking in-
stitution that processes credit and debit card payments for
merchants. Third-party payment processors may be also in-
volved, or the issuer and the acquirer may be the same
banking institution. EMV specifications for transactions with

9

User%
smartphone%

Payment%card%

Point%of%sale%
terminal%

1. ARQC

3. location
verification
request

4. location
statement

Card%issuer%

2. ARQC 5. ARPC

Acquirer%

3. merchant ID 4. merchant
location

6. ARPC

Fig. 9: Integration of the location verification protocol within
the EMV payment standards. Dashed lines indicate the addi-
tional messages required for our solution.

online authorization dictate two cryptograms (authenticated
messages) exchanged between the card and its issuer. The
cryptogram sent by the card is denoted as the Application
Request Cryptogram (ARQC) and accounts for a number of
fields that are supplied either by the card or by the terminal.
Mandatory fields for ARQC include the transaction amount,
the transaction date, and a random nonce generated by the
terminal. EMV also defines optional fields that individual
payment systems (e.g., Mastercard M/Chip or Visa VSDC)
may require. The card issuer replies with an Application
Reply Cryptogram (ARPC) that notifies the card whether
the transaction has been approved. Figure 9 illustrates the
messages defined in the EMV standards; dashed arrows show
the additional messages required to implement our solution.

Our solution requires the card issuer to know the physical
location of the terminal used for a transaction. In the EMV
standards an acquirer ID globally identifies a banking insti-
tution, while a merchant ID identifies a merchant within a
banking institution. Either the card or the terminal can request
that these elements are included in the ARQC message. Once
the card issuer learns the acquirer and merchant identifiers
of a transaction, it can contact the acquirer with the purported
merchant ID in order to retrieve the merchant location. Popular
payment systems are already providing merchant information,
such as location, through standardized APIs [33], [34].

In current EMV payment systems, the acquirer ID and
the merchant ID fields are defined by the standard but are
not mandatory for ARQC messages. Through card software
updates it is possible to include these fields in ARQC messages
of every transaction. The EMV standards allow for remote
update of payment card software through issuer scripts that
may be included in the ARPC cryptogram.

A noteworthy benefit of our solution is that it enables
gradual and secure deployment for selected users. A card
issuer can enable location verification for a subset of its
customers, for example, by updating the payment cards of
customers that decide to opt-in. Once location verification

is enabled for these users, an adversary that has obtained a
payment card of any such user cannot circumvent the system.
In comparison, solutions that require gradual terminal updates
do not provide similar protection, as the adversary can always
bypass the added security mechanisms by utilizing not yet
updated terminals.

B. Deployment Considerations

Even though fraud reduction is a clear incentive for banks
or payment card issuers to adopt our solution, it is the user
adoption that will be the driving factor. The proposed schemes
do not change the user experience at point of sales, but they do
consume internet bandwidth and battery on the user’s device.
Since payment card issuers are currently covering the costs
of frauds, it is an open question whether users would pay the
additional costs in terms of bandwidth and battery on their
mobile devices, without any apparent benefit. To boost the user
adoption, the card issuer may offer lower fees to users who
opt-in, just like car insurance companies do for customers who
install anti-theft mechanisms on their cars.

Our solution assumes the user’s smartphone to have In-
ternet connectivity at the time of a transaction. This may
not hold for two reasons. First, high roaming charges induce
many users to turn Internet access off while traveling abroad.
International regulatory bodies have started to forbid excessive
roaming charges. For example, the EU has recently decided to
completely remove roaming charges within its member coun-
tries by 2015 [35]. A cost-effective alternative to avoid current
roaming charges is to use SMS messages for communication
between the user’s device and the card issuer. SMS-based
communication, can however experience high delays (SMS
message delivery is based on a best-effort basis and can take
up to 12 seconds in normal load conditions [36]). Second,
Internet connectivity might not be available in remote areas or
underground locations (although many underground shopping
centers or transport stations have cellular coverage).

Card issuers can handle lack of connectivity based on
transaction value, merchant location or user specific policies.
For example, high-value transactions in areas where Internet
connectivity is expected to be available may only be autho-
rized after a successful location verification with the user’s
smartphone. A possible solution to handle temporary lack of
connectivity for low-value transactions could be to keep, on
the device, an authenticated log of timestamped locations and
report the one that is closest to the transaction time, once
Internet connectivity is again available. While this solution
does not allow for real-time fraud prevention, it allows card
issuers to perform offline fraud detection.

C. Privacy Considerations

The card issuer can ask the user’s device for location state-
ments and track the user over time. However, if the protocol
is triggered at times of genuine transactions, our solution does
not leak extra information, since the card-terminal transaction
already reveals the user location to the card issuer. The card
issuer may also abuse the system and query the user’s device
for a location statement when the card is not involved in a
transaction. We argue that the system abuse can be prevented
through precise terms of agreement; card issuers that break

10

those terms will damage their reputation and lose customers.
Another solution is to let the card issuer send the location
of the point of sale terminal to the device and let the device
compare it against its current location, as done in [3].

With respect to third-parties (i.e., law-enforcement author-
ities), location statements issued by the user’s device can be
denied. Since the (symmetric) service key used to authenticate
location statements is shared with the card issuer, no third-
party can identify who produced a location statement (either
the user’s device or the card issuer). Finally, we remark that an
adversary in control of the mobile OS on the victim’s device
can query the GPS unit at will and track the user, independently
of the solution presented in this paper.

D. Other Application Scenarios

Our protocols can be applied to other application scenarios
beside payments at points of sale. In particular, they can
be used in any scenario where the verifying party (e.g., a
service provider) knows the user’s phone number and the
location of the infrastructure used to perform transactions.
Two prominent examples are public transportation ticketing
and building access.

In the public transportation scenario the user holds a
transport ticket (e.g., an NFC card) that is used at dedicated
machines to access the transportation network (e.g., at the
entrance of metro stations). Our solution can provide assurance
to the public transportation authority that a lost or stolen
transport ticket is not used by any party but the rightful owner.

Similarly, building access control systems require a user
to carry an access token with a short-range wireless interface.
Entry is granted if the token is presented to a dedicated reader
and the valid PIN is entered by the user. Location statements
can increase the security of such access control systems. Upon
presenting the access token to the reader, the user phone is
queried for its location; if the purported location matches the
one of the reader, the building access authority can grant
access.

As part of our field study (described in Section VIII), we
tested completion time and accuracy of our location verifi-
cation protocol in public transportation and building entrance
scenarios. Results are summarized in Table III and Table IV.

Completion time at public transport stations takes 3.03
seconds on average, using a 3G connection, for the device
using Orange, and 3.39 seconds on average for the smartphone
using Sunrise. We argue that three seconds to grant access
to the transportation network may be an undesirable delay.
Nevertheless, our solution could be used for offline ticket abuse
monitoring. The public transportation authority could disable a
ticket after witnessing a number of consecutive fraudulent uses.
In this scenario, the measured location accuracy (see Table IV)
is around 14 meters on average. In most public transportation
applications this accuracy is sufficient to distinguish entrances
to the transportation network from one another.

We also test the time it takes to run our protocol when
entering buildings in two campuses of ETH Zurich, one in
the city center and the other in the city suburbs. Completion
time takes 2.31 and 4.40 seconds on average, depending on
the network operator used as shown in Table III. The location

Building access Public transport
Orange Sunrise Orange Sunrise
(n=59) (n=40) (n=43) (n=63)

average (sec) 2.31 4.40 3.03 3.39
std dev (sec) 0.57 1.74 0.66 1.33

TABLE III: Completion time for location verification for
public transport and building access tests. n denotes the number
of samples in each scenario.

Scenario GPS accuracy (m) GPS fix delay (ms)
avg max min avg max min

Building access 14.04 48.0 4.0 139.31 3087.00 0.00
Public transport 15.47 48.0 6.0 210.52 4035 0.00

TABLE IV: Location accuracy for public transport and build-
ing access tests.

accuracy in this scenario is around 15 meters, which is enough
to differentiate building doors from each other in most cases.

X. ALTERNATIVE APPROACHES

In this section we discuss alternative ways in which
smartphones could provide a second authentication factor for
payments at points of sale, and conclude that location verifi-
cation provides a practical means for card issuers to identify
fraudulent transactions. We also analyze commonly suggested
enrollment schemes and show how they fail to provide secure
user-to-device binding, given our realistic attacker model.
Finally, we describe alternative TEEs available on current
smartphones and their shortcomings, compared to system-wide
TEEs such as ARM TrustZone.

A. Second-factor Authentication Approaches

In a typical transaction at a point of sale, the user enters
or swipes his payment card into a terminal and optionally
types its PIN code. The card runs a protocol with the terminal
that contacts the card issuer for online transaction verification.
Figure 10 illustrates common second-factor authentication ap-
proaches: (1) Authentication token replacement (Figure 10a).
The smartphone acts as a dedicated authentication token and
displays one-time passcodes that the user must type into the
terminal. Google 2-Step Verification [5] is a prominent exam-
ple of this approach in the context of web login authentication.
A similar approach can be applied to payments at points of
sale. (2) User confirmation device (Figure 10b). The card issuer
contacts the user’s device which presents a confirmation dialog
to the user. The confirmation result is sent back to the card
issuer. Authentication solutions like this one have already been
deployed for online banking [37]. (3) Distance-verification
device (Figure 10c). The user places his smartphone next to the
payment terminal, which starts a distance-verification protocol
over a short-range wireless connection, such as NFC [38].

The given approaches require additional user interaction at
the time of the transaction. Changes to established user inter-
action models hinder the introduction of new security mecha-
nisms [12]. Additionally, the majority of point of sale terminals

11

Payment(card(

Point(of(sale(
terminal(

User(

Card(issuer(
User(

smartphone(

1. read
passcode

2. enter
passcode

payment
protocol

payment
protocol

(a) Smartphone as an authentication token
replacement: the user reads a passcode off
his smartphone and enters it into the payment
terminal.

Payment(card(

Point(of(sale(
terminal(User(

Card(issuer(
User(

smartphone(

2. confirm
transaction

1. confirmation
request

payment
protocol

payment
protocol

3. result

(b) Smartphone as a user confirmation de-
vice: the user confirms the transaction using
his smartphone; the devices delivers the user’s
decision to card issuer.

Payment(card(

Point(of(sale(
terminal(

User(

Card(issuer(
User(

smartphone(

1. place
device 2. verify

proximity

payment
protocol

payment
protocol

(c) Smartphone as a distance verification de-
vice: the user positions the phone next to the
terminal; the terminal verifies the proximity
of the phone over short-range wireless con-
nection (e.g, NFC).

Fig. 10: Common smartphone second-factor authentication approaches applied to payment systems. Solid arrows represent
standard transaction messages, while dashed arrows show additional messages for second-factor authentication.

do not have the required software components for passcode en-
try (Figure 10a) or hardware interfaces for distance-verification
(Figure 10c). The replacement of deployed terminals would be
gradual and optional, which allows the adversary to target the
terminals that have not been updated yet.

B. Common Enrollment Solutions

We now explain why commonly suggested enrollment
schemes are not secure or feasible to deploy, assuming an
adversary that controls the mobile OS on the victim’s device.

Device Identifier Enrollment

A simple way to bind a user identity to the device key of
his TEE, is to leverage the device’s IMEI, typically included
in the device certificate. The IMEI is available on the device’s
package or displayed on-screen. During enrollment, the user
provides the IMEI of his device to the card issuer using a
reliable out-of-band channel, for example, visiting a branch
of the card issuer in person. The card issuer then verifies the
device certificate with respect to the IMEI provided by the
user.

Communicating the IMEI to the card issuer in a trustworthy
way is more complicated than it seems. Device sales packages
are not always available. Also, if the mobile OS is compro-
mised, the adversary controls the IMEI shown on the device
screen. Additionally, IMEI-based enrollment does not provide
flexible device migration: every time the user changes devices,
he must provide the IMEI of the new device to the card issuer,
using an out-of-band channel.

Password Enrollment

The user-to-device binding can also be implemented by
asking the user to enter a password or a similar initialization
secret, known by the card issuer, in his device. A trusted
application can authenticate itself to the card issuer, using the
certified device key and the user-provided password.

The user should type in the password only when a trusted
application can securely receive it. The compromised mobile
OS can otherwise intercept and forward the password to the
adversary, who can then launch an impoersonation attack. A
reliable communication interface from the user to a trusted
application is called trusted path [39], [40]. The device hard-
ware and software resources used for user interaction (e.g.,
the display buffer or the touchscreen input events) can be
temporarily reserved for system-wide TEEs such as ARM
TrustZone. A security indicator, such as a colored bar on
the top of the screen [41] or a dedicated LED [42] can be
used to inform the user about the type of application he is
communicating with (trusted or untrusted). However, current
smartphones do not support this division of user interface
resources, nor do they provide dedicated security indicators.
Furthermore, several academic studies, and a few decades of
practical experience, have shown that users tend to ignore
security indicators [43], [44], [45].

Previous work assumes that password-based enrollment is
secure if the enrollment is done early in the device life cycle,
before the adversary has the opportunity to compromise the
mobile OS [14], [46]. This assumption is hard to justify since
not every service enrollment happens at the beginning of a
device life time.

SMS Enrollment

If the user provides his phone number during registration,
the card issuer can send an SMS message that will be received
by the device in which the user’s SIM card is installed.
Similarly to our solution, the SMS message could carry an
initialization secret to bootstrap security services. The problem
with this approach is that SMS messages provide a trustworthy
channel to the the baseband OS of the device where the SIM
card is installed, but not to the secure world on that device.
In current mobile device architectures, the baseband OS is
accessible by both the mobile OS in the normal word and by
the trusted applications running in the secure world. Therefore,

12

Normal world (NW)

Mobile'OS'

Secure world
(SW)

Trusted'OS'

Mobile device

'Applica4on'processor'' 'Baseband'
processor''

Touchscreen'
peripheral'

Service'
provider'

User'

SMS
message

password

password

Baseband'OS'

Fig. 11: Commonly suggested user enrollment schemes. Solid
arrows illustrate trustworthy communication channels. Dashed
arrows illustrate communication channels in which one of the
end points can be either the normal world or the secure world.

when the baseband OS receives an SMS message, it notifies the
mobile OS, which can read any initialization secret and leak
it to the attacker. Assuming a mobile device architecture in
which the baseband OS interacts only with the secure world
is not feasible, as the mobile OS needs to interact with the
baseband for, e.g., phone calls. To overcome this limitations,
the baseband-assisted enrollment scheme uses an enhanced
baseband OS to achieve secure enrollment.

Enrollment Using Initialization Secrets

Figure 11 illustrates the user enrollment problem when
using initialization secrets. Any channel to the secure world
can be intercepted by the mobile OS in the normal world, be it
the baseband OS, the user-interface, or any other interface such
as NFC or Bluetooth. For example, the baseband OS cannot
pass the initialization secret received over SMS messages to
the application processor because it does not know which
processor state (normal world or secure world) is active.

C. Alternative Trusted Execution Environments

In addition to ARM TrustZone, SIM cards are TEEs
widely available on smartphones. A SIM card can store secrets
and execute small pieces of code (often referred to as SIM
applications) in isolation from the mobile OS. Therefore,
one could argue that the location verification mechanism can
be implemented as a SIM application within the SIM card
processing environment. This approach has two drawbacks.
First, provisioning of SIM applications to a SIM card requires
the service provider to negotiate with the network operator that
issued that SIM card. Providers who target global applications
must negotiate with a large number of network operators
separately. Second, in current architectures, SIM cards cannot
directly access the device peripherals, such as the GPS unit.
When the SIM card needs location information, the application
processor must read the coordinates from the GPS unit and
provide them to the SIM card. The SIM application has
no means of knowing whether these coordinates have been

tampered with. Some recent device configurations support a
dedicated connection between the SIM card and the device
NFC unit [47]. Similar dedicated lines could be added for
secure access to the GPS unit. However, targeted hardware
changes to allow for specific security services based on SIM
applications are costly and hard to justify for widespread
adoption.

Some mobile devices are equipped with a slot for SD cards.
The latter may be used as a TEE to run code in isolation
from the mobile OS or to securely store credentials [48],
[49]. However, just like SIM cards, SD cards do not have
direct access to the device peripherals, such as the GPS unit,
and remote provisioning of applications by third-parties to SD
cards is not currently available.

XI. RELATED WORK

Secure payments with location data. Similar to our approach,
the authors of [3] propose to mitigate fraud in payments
at points of sale, using the phone location as an additional
evidence to distinguish between legitimate and fraudulent
transactions. In [3], the bank sends a message to the user phone
with the details of the transactions (including the location of
the merchant and the one of the phone, as provided by the
network operator) and asks the user to confirm the payment.
This solution requires changes to (i) the GSM infrastructure
to provide the user with the current location of his phone,
(ii) the points of sale to handle extra messages and additional
cryptographic operations, and ultimately (iii) the overall user
experience. Furthermore, the protocols in [3] do not account
for a compromised mobile OS, nor they address enrollment.
The authors do assume an adversary who can intercept any
communication channel and require that the bank shares pair-
wise keys with the phone, the mobile network operator, and
the point of sale.

Recently, MasterCard has proposed to use the location
of the card-holder’s smartphone to improve fraud detection
in payments at points of sale [2]. However, the proposal,
neither addresses mobile OS compromise, nor enrollment, nor
migration.

Secure payments with other approaches. Securing online pay-
ments with multi-factor authentication is the focus of a number
of work that leverage hardware and software tokens to generate
one-time passwords [4], [50], [51], biometric scanners [52],
[53], or simply user-remembered passwords [54]. Financial
institutions are deploying systems that leverage modern smart-
phones to replace traditional payment cards and using NFC-
enabled point of sale terminals [38], [55]. Such solutions can
only be used at selected stores or face large investments for
hardware upgrades at merchants. Other systems that enhance
the security of payment card transactions, require the user
to confirm the payment through SMS messages or phone
calls [37].

Secure Enrollment. Secure enrollment for trusted plat-
forms [56] and TEEs on mobile devices [11] is a challenging
research problem. Both deployed systems [4], [5] and aca-
demic work [3], [10], [57] have overlooked it or assume a
non-compromised OS at enrollment time [14], [46].

Trusted Sensors. Saroiu and Wolman [9] put forward the
problem of trustworthy sensor readings on mobile phones.

13

They propose to leverage virtualization to handle sensors
readings and provide signed measurements to applications that
run in guest VMs. A similar approach is considered in [58]
where the authors consider participatory sensing scenarios and
study how to protect user privacy and how to allow for local
data processing while providing (TPM) signed sensor read-
ings. Trustworthy participatory sensing applications are also
considered in [59], where the authors design and implement a
trusted sensing platform. The latter is a board equipped with
sensors and a TPM that communicates with the mobile device
over Bluetooth and provides signed sensor measurements.

Liu et al. [10] build on top of Credo [60] and TrustZone
to propose software abstractions that expose trusted sensor
services to mobile applications. In particular, [10] focuses on
scenarios where trustworthy reading must be processed locally
by applications (e.g., blurring people’s faces from a photo
taken by the phone’s camera) before being sent. Therefore
the framework in [10] aims at protecting the integrity of a
sensor reading as well as the local code that must process
it. The authors provide a sample application scenario where
sensor readings account for GPS traces, while data processing
applies noise to the aggregated outcome in order to achieve
differential privacy [61].

Plug-n-Trust [62] focuses on mHealth scenarios and pro-
vides a system to protect integrity and confidentiality of data
collected by body-area network of sensors. Their approach
leverages a smart card that plugs into a phone’s microSD slot
and creates a trusted computing environment for collecting and
processing data provided by surrounding sensors. Security rests
upon tamper resistance of both the smart card and the sensor
nodes where encryption/authentication keys are stored.

YouProve [57] addresses scenarios where sensor readings
must be modified by local applications for, e.g., privacy issues.
The authors of [57] propose a framework to verify that a
modified data item preserves the meaning of the original
sensor reading. YouProve uses TaintDroid [63] to track the
measurement from the moment it is produced by the sensor,
until the moment it is uploaded to a service provider. Each
modification is tracked, and a summary of all changes is signed
using the secret key of the phone’s TPM.

To the best of our knowledge, all previous work on
trusted sensors focuses on designing or developing a trusted
computing environment on a mobile device, to sign sensor
readings. However, it does not address secure deployment
aspects, including secure enrollment and device migration.
To the best of our knowledge, we are the first to propose
a complete and deployable solution that allows a number of
application scenarios to leverage on-smartphone trusted sensor
measurements.

XII. CONCLUSION

In this paper we proposed a practical solution that adds the
required security to recently proposed location-based second-
factor authentication mechanisms for payments at points of
sale. We have identified the necessary requirements for a de-
ployable solution, including no changes to the user experience
and to the deployed infrastructure. We have further proposed
two novel enrollment schemes that enable secure enrollment
and convenient device migration despite a compromised OS.

Through prototype implementations we have shown deploy-
ment feasibility of our solution; a location verification opera-
tion causes an acceptable delay during a payment transaction
and requires only minimal software changes to mobile devices.
As future work we plan to integrate the changes we proposed
to TrustZone and the baseband OS in a smartphone device, in
order to better assess the performance of our solution.

ACKNOWLEDGMENTS

The authors would like to thank Ramya Jayaram Masti
and Mario Strasser for the useful discussions while writing
this paper. This work was partially supported by the Zurich
Information Security Center (ZISC). It represents the views of
the authors.

REFERENCES

[1] European Central Bank, “Report on card fraud,” July 2012, http://www.
ecb.int/pub/pdf/other/cardfraudreport201207en.pdf.

[2] P. Fourez and Mastercard International Inc., “Location controls
on payment card transactions,” http://patentscope.wipo.int/search/en/
WO2011022062, 2011, Patent No. WO/2011/022062.

[3] F. S. Park, C. Gangakhedkar, and P. Traynor, “Leveraging cellular
infrastructure to improve fraud prevention,” in Proceedings of the 25th
Annual Computer Security Applications Conference, ser. ACSAC ’09,
2009, pp. 350–359.

[4] Barclays, “Mobile PINsentry,” http://goo.gl/pcuGo, last access 2013.
[5] Google Inc., “Google 2-Step Verification,” http://www.google.com/

landing/2step/, last access 2013.
[6] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey

of mobile malware in the wild,” in ACM workshop on Security and
privacy in smartphones and mobile devices, ser. SPSM’11, 2011.

[7] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in IEEE Symposium on Security and Privacy, ser. SP’12,
2012.

[8] ARM, “Building a Secure System using TrustZone Technology,” http:
//www.arm.com, 2009.

[9] S. Saroiu and A. Wolman, “I am a sensor, and i approve this message,”
in Proceedings of ACM International Workshop on Mobile Computing
Systems and Applications (HotMobile), 2010.

[10] H. Liu, S. Saroiu, A. Wolman, and H. Raj, “Software abstractions
for trusted sensors,” in The 10th International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2012.

[11] C. Marforio, N. Karapanos, C. Soriente, K. Kostiainen, and S. Capkun,
“Secure enrollment and practical migration for mobile trusted execution
environments,” in Proceedings of the third ACM workshop on Security
and privacy in smartphones and mobile devices, ser. SPSM’13, 2013.

[12] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano, “The Quest
to Replace Passwords: A Framework for Comparative Evaluation of
Web Authentication Schemes,” in 2012 IEEE Symposium on Security
and Privacy, May 2012. [Online]. Available: http://www.cl.cam.ac.uk/
⇠jcb82/doc/BHOS12-IEEESP-quest to replace passwords.pdf

[13] R. Guida, R. Stahl, T. Bunt, G. Secrest, and J. Moorcones, “Deploying
and using public key technology: lessons learned in real life,” IEEE
Security Privacy, vol. 2, no. 4, 2004.

[14] A. Czeskis, M. Dietz, T. Kohno, D. S. Wallach, and D. Balfanz,
“Strengthening user authentication through opportunistic cryptographic
identity assertions,” in Proceedings of the 19th ACM Conference on
Computer and Communications Security, ser. CCS’12, 2012, pp. 404–
414.

[15] M. Mannan, B. H. Kim, A. Ganjali, and D. Lie, “Unicorn: two-factor
attestation for data security,” in Proceedings of the 18th ACM conference
on Computer and communications security, ser. CCS ’11, 2011, pp. 17–
28.

[16] K. Kostiainen, E. Reshetova, J.-E. Ekberg, and N. Asokan, “Old, new,
borrowed, blue – a perspective on the evolution of mobile platform
security architectures,” in ACM conference on Data and application
security and privacy, ser. CODASPY’11, 2011.

14

http://www.ecb.int/pub/pdf/other/cardfraudreport201207en.pdf
http://www.ecb.int/pub/pdf/other/cardfraudreport201207en.pdf
http://patentscope.wipo.int/search/en/WO2011022062
http://patentscope.wipo.int/search/en/WO2011022062
http://goo.gl/pcuGo
http://www.google.com/landing/2step/
http://www.google.com/landing/2step/
http://www.arm.com
http://www.arm.com
http://www.cl.cam.ac.uk/~jcb82/doc/BHOS12-IEEESP-quest_to_replace_passwords.pdf
http://www.cl.cam.ac.uk/~jcb82/doc/BHOS12-IEEESP-quest_to_replace_passwords.pdf

[17] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala, “On-board
credentials with open provisioning,” in International Symposium on In-
formation, Computer, and Communications Security, ser. ASIACCS’09,
2009.

[18] GlobalPlatform, “Device specifications,” available at: http://www.
globalplatform.org/specificationsdevice.asp.

[19] osmocomBB, http://bb.osmocom.org, last access 2013.
[20] 3GPP, “3GPP TS 23.040 - Technical realization of the Short Mes-

sage Service (SMS),” http://www.3gpp.org/ftp/Specs/html-info/23040.
htm, last access 2013.

[21] Offspark B.V., “PolarSSL,” https://polarssl.org/, last access 2013.
[22] ARM, “ARM Motherboard Express,” http://www.arm.com/products/

tools/development-boards/versatile-express/motherboard-express.php.
[23] ——, “ARM Coretile Express,” http://www.arm.com/products/tools/

development-boards/versatile-express/coretile-express.php.
[24] Sierraware, “Open Virtualization - ARM TrustZone and ARM Hyper-

visor Open Source Software,” http://www.openvirtualization.org/.
[25] GlobalPlatform, “GlobalPlatform Device Specifications,” http://www.

globalplatform.org/specificationsdevice.asp, last access 2013.
[26] Android Development Team, “Android 4.1 APIs - Jelly Bean,” http:

//developer.android.com/about/versions/jelly-bean.html, 2013.
[27] Bouncy Castle Crypto APIs, http://www.bouncycastle.org, last access

2013.
[28] G. Inc., “Google Cloud Messaging for Android,” http://developer.

android.com/google/gcm/index.html, last access 2013.
[29] CherryPy Team, “CherryPy - A Minimalistic Python Web Framework,”

http://www.cherrypy.org/, 2013.
[30] SQLite Development Team, “SQLite,” http://www.sqlite.org, last access

2013.
[31] Comcetera Ltd., “Number Portability Lookup,” http://www.

numberportabilitylookup.com/, 2013.
[32] EMV, “Integrated Circuit Card Specifications for Payment Systems,

Book 1-4, Version 4.3,” 2011. [Online]. Available: http://www.emvco.
com/

[33] Mastercard, “Mastercard Developer Zone,” 2013. [Online]. Available:
https://developer.mastercard.com/

[34] VISA, “Visa Developer Program,” 2013. [Online]. Available: https:
//developer.visa.com/

[35] Telegraph, “EU to end mobile roaming charges next
year,” June 2013, http://www.telegraph.co.uk/finance/
newsbysector/mediatechnologyandtelecoms/telecoms/10119159/
EU-to-end-mobile-roaming-charges-next-year.html.

[36] R. Pries, T. Hobfeld, and P. Tran-Gia, “On the suitability of the short
message service for emergency warning systems,” in Proceedings of the
63rd Vehicular Technology Conference, ser. VTC 2006-Spring, vol. 2,
2006, pp. 991–995.

[37] ValidSoft, “ValidPOS,” 2013. [Online]. Available: http://www.validsoft.
com/

[38] Google Inc., “Google wallet,” http://www.google.com/wallet/, last ac-
cess 2013.

[39] K.-P. Yee, “User interaction design for secure systems,” in International
Conference on Information and Communications Security, ser. ICICS
’02, 2002.

[40] Z. Ye, S. W. Smith, and D. Anthony, “Trusted paths for browsers,” ACM
Trans. Inf. Syst. Secur., vol. 8, no. 2, pp. 153–186, 2005.

[41] M. Selhorst, C. Stüble, F. Feldmann, and U. Gnaida, “Towards a trusted
mobile desktop,” in International conference on Trust and trustworthy
computing, ser. TRUST’10, 2010.

[42] ARM, “Securing the system with trustzone ready program,” http://
www.arm.com/files/pdf/Tech seminar TrustZone v7 PUBLIC.pdf, last
access 2013.

[43] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer, “The emperor’s
new security indicators,” in IEEE Symposium on Security and Privacy,
ser. SP’07, 2007.

[44] S. Egelman, L. F. Cranor, and J. Hong, “You’ve been warned: an
empirical study of the effectiveness of web browser phishing warnings,”
in SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI’08, 2008, pp. 1065–1074.

[45] C. Jackson, D. R. Simon, D. S. Tan, and A. Barth, “An evaluation
of extended validation and picture-in-picture phishing attacks,” in
International Conference on Financial cryptography and International
conference on Usable Security, ser. FC’07/USEC’07, 2007, pp. 281–
293.

[46] K. Kostiainen and N. Asokan, “Credential life cycle management in
open credential platforms (short paper),” in ACM workshop on Scalable
trusted computing, ser. STC’11, 2011, pp. 65–70.

[47] GSM Association, “Requirements for Single Wire Protocol NFC Hand-
sets,” http://www.gsma.com/mobilenfc/, 2011.

[48] Giesecke & Devrient GmbH, “G&D Makes Mobile Terminal Devices
Even More Secure with New Version of Smart Card in MicroSD
Format,” http://www.gi-de.com/en/about g d/press/press releases/G%
26D-Makes-Mobile-Terminal-Devices-Secure-with-New-MicroSD%
E2%84%A2-Card-g3592.jsp, last access 2013.

[49] SD Association, “smartSD Memory Cards,” hhttps://www.sdcard.org/
developers/overview/ASSD/smartsd/, last access 2013.

[50] PayPal, “PayPal Security Key,” https://www.paypal.com/securitykey/.
[51] RSA, “RSA SecurID,” http://www.emc.com/security/rsa-securid.htm/.
[52] “United Bankers’ Bank Authenticates Customers Online,” Biometric

Technology Today, vol. 12, no. 6, p. 4, 2004.
[53] “Bank of Utah Adopts Keystroke Dynamics,” Biometric Technology

Today, vol. 15, no. 5, p. 5, 2007.
[54] VISA, “Verified by VISA,” http://www.visaeurope.com/en/cardholders/

verified by visa.aspx.
[55] JVL Ventures, LLC, “ISIS,” https://www.paywithisis.com/.
[56] B. Parno, “Bootstrapping trust in a “trusted” platform,” in Proceedings

of the third Conference on Hot Topics in Security, ser. HOTSEC’08,
2008, pp. 9:1–9:6.

[57] P. Gilbert, J. Jung, K. Lee, H. Qin, D. Sharkey, A. Sheth, and L. P.
Cox, “Youprove: authenticity and fidelity in mobile sensing,” in SenSys,
J. Liu, P. Levis, and K. Römer, Eds. ACM, 2011, pp. 176–189.

[58] P. Gilbert, L. P. Cox, J. Jung, and D. Wetherall, “Toward trustworthy
mobile sensing,” in Proceedings of ACM International Workshop on
Mobile Computing Systems and Applications (HotMobile), 2010.

[59] A. Dua, N. Bulusu, and W. chang Feng, “Towards trustworthy partic-
ipatory sensing,” in 4th USENIX Workshop on Hot Topics in Security
(HotSec), 2009, pp. 1–6.

[60] H. Raj, D. Robinson, T. Tariq, P. England, S. Saroiu, and A. Wolman,
“Credo: Trusted computing for guest vms with a commodity hypervi-
sor,” Microsoft Research, Tech. Rep. MSR-TR-2011-130, 2011.

[61] C. Dwork, “Differential privacy,” in ICALP (2), ser. Lecture Notes in
Computer Science, M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener,
Eds., vol. 4052. Springer, 2006, pp. 1–12.

[62] J. Sorber, M. Shin, R. A. Peterson, and D. Kotz, “Plug-n-trust: practical
trusted sensing for mhealth,” in International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys’12, 2012.

[63] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. Sheth, “Taintdroid: An information-flow tracking system for realtime
privacy monitoring on smartphones,” in OSDI, 2010, pp. 393–407.

15

http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
http://bb.osmocom.org
http://www.3gpp.org/ftp/Specs/html-info/23040.htm
http://www.3gpp.org/ftp/Specs/html-info/23040.htm
https://polarssl.org/
http://www.arm.com/products/tools/development-boards/versatile-express/motherboard-express.php
http://www.arm.com/products/tools/development-boards/versatile-express/motherboard-express.php
http://www.arm.com/products/tools/development-boards/versatile-express/coretile-express.php
http://www.arm.com/products/tools/development-boards/versatile-express/coretile-express.php
http://www.openvirtualization.org/
http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
http://developer.android.com/about/versions/jelly-bean.html
http://developer.android.com/about/versions/jelly-bean.html
http://www.bouncycastle.org
http://developer.android.com/google/gcm/index.html
http://developer.android.com/google/gcm/index.html
http://www.cherrypy.org/
http://www.sqlite.org
http://www.numberportabilitylookup.com/
http://www.numberportabilitylookup.com/
http://www.emvco.com/
http://www.emvco.com/
https://developer.mastercard.com/
https://developer.visa.com/
https://developer.visa.com/
http://www.telegraph.co.uk/finance/newsbysector/mediatechnologyandtelecoms/telecoms/10119159/EU-to-end-mobile-roaming-charges-next-year.html
http://www.telegraph.co.uk/finance/newsbysector/mediatechnologyandtelecoms/telecoms/10119159/EU-to-end-mobile-roaming-charges-next-year.html
http://www.telegraph.co.uk/finance/newsbysector/mediatechnologyandtelecoms/telecoms/10119159/EU-to-end-mobile-roaming-charges-next-year.html
http://www.validsoft.com/
http://www.validsoft.com/
http://www.google.com/wallet/
http://www.arm.com/files/pdf/Tech_seminar_TrustZone_v7_PUBLIC.pdf
http://www.arm.com/files/pdf/Tech_seminar_TrustZone_v7_PUBLIC.pdf
http://www.gsma.com/mobilenfc/
http://www.gi-de.com/en/about_g_d/press/press_releases/G%26D-Makes-Mobile-Terminal-Devices-Secure-with-New-MicroSD%E2%84%A2-Card-g3592.jsp
http://www.gi-de.com/en/about_g_d/press/press_releases/G%26D-Makes-Mobile-Terminal-Devices-Secure-with-New-MicroSD%E2%84%A2-Card-g3592.jsp
http://www.gi-de.com/en/about_g_d/press/press_releases/G%26D-Makes-Mobile-Terminal-Devices-Secure-with-New-MicroSD%E2%84%A2-Card-g3592.jsp
hhttps://www.sdcard.org/developers/overview/ASSD/smartsd/
hhttps://www.sdcard.org/developers/overview/ASSD/smartsd/
http://www.emc.com/security/rsa-securid.htm/
http://www.visaeurope.com/en/cardholders/verified_by_visa.aspx
http://www.visaeurope.com/en/cardholders/verified_by_visa.aspx
https://www.paywithisis.com/

	Introduction
	Problem Statement
	Mobile Device Architecture
	Adversarial Model
	Our Solution
	User Enrollment
	Location Verification
	Device Migration

	Security Analysis
	Signed-IMSI enrollment
	Baseband-assisted Enrollment
	Location Verification

	Implementation
	Baseband Implementation
	Trusted Application Implementation
	Client-Server Implementation

	Experimental Evaluation
	Static Tests
	Field Study

	Discussion
	Integration with Payment Systems
	Deployment Considerations
	Privacy Considerations
	Other Application Scenarios

	Alternative Approaches
	Second-factor Authentication Approaches
	Common Enrollment Solutions
	Alternative Trusted Execution Environments

	Related Work
	Conclusion
	References

