Symmetric Encryption

Adam O’Neill
based on http://cseweb.ucsd.edu/~mihir/cse207/
Syntax

M → [E] → C → \[\square\] → M

\(k\rightarrow m\sim\rightarrow t\rightarrow c\rightarrow\)

\(\rightarrow\)

\(\rightarrow\)
Correctness

Pr \left[ \omega(k, E(k, m)) = m \right] = 1

\forall m \text{ in the message space}

where the probability is over \( k \in \mathcal{K} \) and the coins of \( \mathcal{E} \) if any.
Modes of Operation

\[ E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^\ell \] a family of functions

Usually a block cipher, in which case \( \ell = n \).

Notation: \( x[i] \) is the i-th block of a string \( x \), so that \( x = x[1] \ldots x[m] \). Length of blocks varies.

Always:

\[
\begin{align*}
\text{Alg } K \\
K & \leftarrow^s \{0, 1\}^k \\
\text{return } K
\end{align*}
\]
Modes of Operation

Block cipher provides parties sharing $K$ with

$$E_K$$

which enables them to encrypt a 1-block message.

How do we encrypt a long message using a primitive that only applies to n-bit blocks?
ECB

Electronic code book mode

Algorithm $E_{\text{ecb}}(K, x)$

let $x = [x[1], \ldots, x[m]]$

For $i = 1$ to $m$ do:

$c_i \leftarrow E_K(x_i)$

let $c = [c[1], \ldots, c[m]]$

return $c$

Algorithm $D_{\text{ecb}}(K, c)$

let $c = [c[1], \ldots, c[m]]$

For $i = 1$ to $m$ do:

$x_i \leftarrow E_K^{-1}(c_i)$

let $x = [x[1], \ldots, x[m]]$

return $x$
Security of ECB

leaks in put equality!
Security of ECB

Suppose we know that there are only two possible messages, $Y = 1^n$ and $N = 0^n$, for example representing:

- FIRE or DON’T FIRE a missile
- BUY or SELL a stock
- Vote YES or NO

Then ECB algorithm will be $E_K(M) = E_K(M)$. 

\[
\begin{array}{c}
M \\
\downarrow \\
E_K \\
\downarrow \\
C
\end{array}
\]
Voting with ECB

Voters

\[
\begin{align*}
\forall \ p_i \ K \ \ \ \ \ E_{ecb}(\text{Vote}_i) \\
\vdots \\
\forall \ p_n \ K \ \ \ \ \ E_{ecb}(\text{Vote}_n) 
\end{align*}
\]
Is this avoidable?

Let $\mathcal{E} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be ANY encryption scheme.

Suppose $M_1, M_2 \in \{Y, N\}$ and

- Sender sends ciphertexts $C_1 \leftarrow \mathcal{E}_K(M_1)$ and $C_2 \leftarrow \mathcal{E}_K(M_2)$
- Adversary $A$ knows that $M_1 = Y$

Adversary says: If $C_2 = C_1$ then $M_2$ must be $Y$ else it must be $N$.

Does this attack work?
Randomized Encryption

For encryption to be secure it must be randomized.

That is, algorithm $\mathcal{E}_K$ flips coins.

If the same message is encrypted twice, we are likely to get back different answers. That is, if $M_1 = M_2$ and we let

$$C_1 \overset{\$}{\leftarrow} \mathcal{E}_K(M_1) \text{ and } C_2 \overset{\$}{\leftarrow} \mathcal{E}_K(M_2)$$

then

$$Pr[C_1 = C_2]$$

will (should) be small, where the probability is over the coins of $\mathcal{E}$. 
Randomized Encryption

A fundamental departure from classical and conventional notions of encryption.

Clasically, encryption (e.g., substitution cipher) is a code, associating to each message a unique ciphertext.

Now, we are saying no such code is secure, and we look to encryption mechanisms which associate to each message a number of different possible ciphertexts.
CBC - CTR

\[ S_E = (\mathcal{K}, \mathcal{E}, \mathcal{D}) \] where:

\[
\text{Alg } E_K(M) \\
C[0] \leftarrow \{0, 1\}^n \quad \text{// called initialization vector (IV)} \\
\text{for } i = 1, \ldots, m \text{ do} \\
\quad C[i] \leftarrow E_K(M[i] \oplus C[i - 1]) \\
\text{return } C
\]

\[
\text{Alg } D_K(C) \\
\text{for } i = 1, \ldots, m \text{ do} \\
\quad M[i] \leftarrow E_K^{-1}(C[i]) \oplus C[i - 1] \\
\text{return } M
\]

Correct decryption relies on \( E \) being a block cipher.
Voting with CBC$
Towards a Definition

• We see CBC$ is better than ECB in some sense.
• But is it secure?
• What does secure mean here?
Security Requirements

Suppose sender computes

\[ C_1 \leftarrow^$ \mathcal{E}_K(M_1); \ldots; C_q \leftarrow^$ \mathcal{E}_K(M_q) \]

Adversary \( A \) has \( C_1, \ldots, C_q \)

<table>
<thead>
<tr>
<th>What if ( A )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieves ( K )</td>
</tr>
<tr>
<td>Retrieves ( M_1 )</td>
</tr>
</tbody>
</table>

But also we want to hide all partial information about the data stream, such as

- Does \( M_1 = M_2 \)?
- What is first bit of \( M_1 \)?
- What is XOR of first bits of \( M_1, M_2 \)?

Something we won’t hide: the length of the message
What we seek

- A “master” property that
What we seek

- A “master” property that
  - Can be easily specified
What we seek

• A “master” property that
  • Can be easily specified
  • Allows us to evaluate whether a scheme is secure
What we seek

• A “master” property that
  • Can be easily specified
  • Allows us to evaluate whether a scheme is secure
  • Implies a ciphertext reveals NO partial information about plaintext
What we seek

• A “master” property that
  • Can be easily specified
  • Allows us to evaluate whether a scheme is secure
  • Implies a ciphertext reveals NO partial information about plaintext

• In the case of a blockcipher the master property was PRF-security. Here it is different because encryption should be randomized
Intuition

The master property MP is called IND-CPA (indistinguishability under chosen plaintext attack).

Consider encrypting one of two possible message streams, either

\[ M_0^1, ..., M_0^q \]

or

\[ M_1^1, ..., M_1^q \]

Adversary, given ciphertexts and both data streams, has to figure out which of the two streams was encrypted.
IND-CPA Games

Let $\mathcal{E} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be an encryption scheme

**Game Left$_{\mathcal{E}}$**
- procedure Initialize
  - $K \leftarrow^{\$} \mathcal{K}$
- procedure LR($M_0, M_1$)
  - Return $C \leftarrow^{\$} \mathcal{E}_K(M_0)$

**Game Right$_{\mathcal{E}}$**
- procedure Initialize
  - $K \leftarrow^{\$} \mathcal{K}$
- procedure LR($M_0, M_1$)
  - Return $C \leftarrow^{\$} \mathcal{E}_K(M_1)$

Associated to $\mathcal{E}$, $A$ are the probabilities

$$\Pr \left[ \text{Left}_{\mathcal{E}}^A \Rightarrow 1 \right] \quad \mid \quad \Pr \left[ \text{Right}_{\mathcal{E}}^A \Rightarrow 1 \right]$$

that $A$ outputs 1 in each world. The (ind-cpa) advantage of $A$ is

$$\text{Adv}_{\mathcal{E}}^{\text{ind-cca}}(A) = \Pr \left[ \text{Right}_{\mathcal{E}}^A \Rightarrow 1 \right] - \Pr \left[ \text{Left}_{\mathcal{E}}^A \Rightarrow 1 \right]$$
Measure of Success

\( \text{Adv}_{SE}^{\text{ind-cpa}}(A) \approx 1 \) means \( A \) is doing well and \( SE \) is not ind-cpa-secure.

\( \text{Adv}_{SE}^{\text{ind-cpa}}(A) \approx 0 \) (or \( \leq 0 \)) means \( A \) is doing poorly and \( SE \) resists the attack \( A \) is mounting.

Adversary resources are its running time \( t \) and the number \( q \) of its oracle queries, the latter representing the number of messages encrypted.

**Security:** \( SE \) is IND-CPA-secure if \( \text{Adv}_{SE}^{\text{ind-cpa}}(A) \) is “small” for **ALL** \( A \) that use “practical” amounts of resources.

**Insecurity:** \( SE \) is not IND-CPA-secure if we can specify an explicit \( A \) that uses “few” resources yet achieves “high” ind-cpa-advantage.
IND-CPA security of ECB

Adversary $A$ in $ACRC(\cdot,\cdot)$

\[ M_0 \leftarrow \{0,1\} \]
\[ M_1 \leftarrow \{0,1\} \]
\[ c \leftarrow LR(M_0, M_1) \]
\[ c' \leftarrow LR(M_0, M_1) \]

In LEFT return $\epsilon_i(C(M_0))$

If $c = c'$ return 0
Else return 1

\[
\text{Adv}^{\text{ind-CPA}}_{\text{ECB}}(A) = \Pr[R(\text{right ECB} \Rightarrow \text{1})] - \Pr[R(\text{left ECB} \Rightarrow \text{1})]
\]
Right Game Analysis

Claim: \[ \Pr\left[ \text{Right}^A_{M_0} = 1 \right] = 1. \]

Proof: Since \( M_0 \neq M_1 \) and \( C \) is deterministic, we have \( C \neq C' \). \( \Rightarrow \) \( A \) returns 1.

Left Game Analysis

Claim. \( \Pr[ \text{LEFT}^A \text{ | } \text{EC} B] = 0 \)

Proof. Analogous.
Conclusion

\[ \text{Adv}_{E_{\text{ECB}}}^{\text{IND-CPA}} (A) = 1 - \alpha = 1 \]

\[ \Rightarrow \text{ECB is not IND-CPA secure!} \]
Any deterministic scheme is not IND-CPA

The theorem generalizes to show that the same adversary breaks any deterministic encryption scheme (meaning $E$ is deterministic & stateless).
Let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^\ell$ be a family of functions. If $X \in \{0,1\}^n$ and $i \in \mathbb{N}$ then $X + i$ denotes the $n$-bit string formed by converting $X$ to an integer, adding $i$ modulo $2^n$, and converting the result back to an $n$-bit string. Below the message is a sequence of $\ell$-bit blocks:

Let $X = X_1X_2 \ldots X_n$ be an $n$-bit string.

**Online**

\[ \text{Alg } E_K(M) \]

\[
\begin{align*}
C[0] &\leftarrow \{0,1\}^n \\
\text{for } i = 1, \ldots, m \text{ do} & \\
& \quad P[i] \leftarrow E_K(C[0] + i) \\
& \quad C[i] \leftarrow P[i] \oplus M[i] \\
\text{return } C
\end{align*}
\]

**Offline**

\[ \text{Alg } D_K(C) \]

\[
\begin{align*}
\text{for } i = 1, \ldots, m \text{ do} & \\
& \quad P[i] \leftarrow E_K(C[0] + i) \\
& \quad M[i] \leftarrow P[i] \oplus C[i] \\
\text{return } M
\end{align*}
\]
Birthday Attack on CTR

Let $E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^\ell$ be a family of functions and $SE = (K, E, D)$ the corresponding CTR symmetric encryption scheme. Suppose 1-block messages $M_0, M_1$ are encrypted:

Let us say we are lucky if $C_0[0] = C_1[0]$. If so:

$$C_0[1] = C_1[1] \text{ if and only if } M_0 = M_1$$

So if we are lucky we can detect message equality and violate IND-CPA.
The Adversary

Let $1 \leq q < 2^n$ be a parameter and let $\langle i \rangle$ be integer $i$ encoded as an $l$-bit string.

**adversary $A_q^{\text{birthday}}$**

for $i = 1, \ldots, q$ do

$C^i[0] C^i[1] \leftarrow \text{LR}(\langle i \rangle, \langle 0 \rangle)$

$S \leftarrow \{(j, t): C^j[0] = C^t[0] \text{ and } j < t\}$

If $S \neq \emptyset$, then

$(j, t) \leftarrow S \quad$ \(\triangleright\)

If $C^j[1] = C^t[1]$ then return 1

return 0

Want to know $\text{Adv}_{\text{ctr}$^*$}^{\text{ind-cca}}(A_q^{\text{bday}}) \geq \frac{0.3 q^2}{2^l}$

$\triangleright \text{query}$

Birthday attack

Adversary

$q$-query

$\text{Birthday attack}$

adversary

$S \leftarrow \text{LR}(\langle i \rangle, \langle 0 \rangle)$

If $S \neq \emptyset$, then

$(j, t) \leftarrow S \quad$ \(\triangleright\)

If $C^j[1] = C^t[1]$ then return 1

return 0

Want to know $\text{Adv}_{\text{ctr}$^*$}^{\text{ind-cca}}(A_q^{\text{bday}}) \geq \frac{0.3 q^2}{2^l}$
Claim:
\[ \Pr[\text{LEFT} + \text{Abad} \Rightarrow 1] = 0. \]

Proof:

Two cases:

Case 1: \( S \neq \emptyset \). Then \( c^i[1] \oplus ji > c^i[1] \oplus te \)

since \( c^i[1] = c^t[1] \) and \( S \neq t \).

Case 2: \( S = \emptyset \). \( A \) always outputs 0.

So in either case \( A \) outputs 0.
Right Game Analysis

Claim. \( \Pr[\text{RIGHT}^{A_{\text{day}}}_{\text{ctrl}}] \geq 0.3 \frac{q^2}{2^l} \)

Proof. If \( S \neq \emptyset \) then we have

\[
C^l[1] = \langle c^l[0] + 1 \rangle \otimes 0^l = \langle c^l[0] + 1 \rangle \otimes 0^l
\]

since \( C^l[0] = c^l[20] \).
Conclusion

\[ A_{\text{vind-cpl}} (A_{\text{bdry}}^2) \geq 0.3 \frac{q^2}{2^l} \]
So far: A $q$-query adversary can break CTR$ with advantage $\approx \frac{q^2}{2^{n+1}}$

**Question:** Is there any better attack?

**Answer:** NO!

We can prove that the best $q$-query attack short of breaking the block cipher has advantage at most

$$\frac{2(q - 1)\sigma}{2^n}$$

where $\sigma$ is the total number of blocks across all messages encrypted.

**Example:** If $q$ 1-block messages are encrypted then $\sigma = q$ so the adversary advantage is not more than $2q^2/2^n$.

For $E = AES$ this means up to about $2^{64}$ blocks may be securely encrypted, which is good.
Theorem: [BDJR97] Let $E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^\ell$ be a family of functions and $SE = (K, E, D)$ the corresponding CTR$ symmetric encryption scheme. Let $A$ be an ind-cpa adversary against $SE$ that has running time $t$ and makes at most $q$ LR queries, the messages across them totaling at most $\sigma$ blocks. Then there is a prf-adversary $B$ against $E$ such that

$$\text{Adv}_{\text{ind\text{-}cpa}}^{SE}(A) \leq 2 \cdot \text{Adv}_{\text{prf}}^{E}(B) + \frac{2(q - 1)\sigma}{2^n}$$

Furthermore, $B$ makes at most $\sigma$ oracle queries and has running time $t + \Theta(\sigma \cdot (n + \ell))$. 
Intuition

Thought experiment:
replace $E$ with random function w/ same domain and range.

Now, if the adversary is lucky and makes LR queries such that $C'[0] = C'[\emptyset]$
then it can gain advantage.

Otherwise we are encrypting with a one-time pad.
Interval Intersection

\[ P(A \lor B) \leq P(A) + P(B) \]

Let \( N, q, m \geq 1 \) be integers and let \( Z_N = \{0, 1, \ldots, N - 1\} \). Let \( + \) be addition modulo \( N \). Consider the game

For \( i = 1, \ldots, q \) do
\[ c_i \leftarrow Z_N ; S_i \leftarrow \{c_i + 1, \ldots, c_i + m\} \]

For \( 1 \leq i < j \leq q \) define the events
\[ B_{i,j} : S_i \cap S_j \neq \emptyset \quad \text{and} \quad B : \bigvee_{1 \leq i < j \leq q} B_{i,j} . \]

Then let
\[ \text{IIP}(N, q, m) = \Pr[B] . \]

**Problem:** Upper bound \( \text{IIP}(N, q, m) \) as a function of \( N, q, m \).
Interval Intersection

Claim: \( \text{IIP}(N, q, m) \leq \frac{q(q-1)(2m-1)}{2N} \)

Proof:
\[
\Pr[\{B\}] \leq \sum_{i \lt j} \Pr[B_{ij}] = \binom{q}{2} \Pr[B_{ij}]
\]
and
\[
\text{Pr}[B_{ij}] = \text{Pr}[c_{ij} \in \{c_i-m+1, \ldots, c_i+m-1\}]
\]
\[
= \frac{2m-1}{N}
\]
\[
\Rightarrow \text{Pr}[\{B\}] \leq \frac{q(q-1)(2m-1)}{2N}
\]
Advantage Revisited

Let $SE = (K, E, D)$ be a symmetric encryption scheme and $A$ an adversary.

<table>
<thead>
<tr>
<th>Game $Guess_{SE}$</th>
<th>Procedure $LR(M_0, M_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>procedure Initialize</strong></td>
<td>return $C \leftarrow E_K(M_b)$</td>
</tr>
<tr>
<td>$K \leftarrow K; b \leftarrow {0, 1}$</td>
<td><strong>procedure Finalize($b'$)</strong></td>
</tr>
<tr>
<td></td>
<td>return $(b = b')$</td>
</tr>
</tbody>
</table>

Proposition: $Adv_{SE}^{ind-cpa}(A) = 2 \cdot Pr\left[Guess_{SE}^A \Rightarrow true\right] - 1$. 

Mihir Bellare UCSD 53
Game Chain

Game $G_0$

procedure LR($M_0, M_1$)

$C[0] \leftarrow \{0, 1\}^n$

for $i = 1, \ldots, m$ do

$P \leftarrow C[0] + i$

if $P \notin S$ then $T[P] \leftarrow E_K(P)$

$C[i] \leftarrow T[P] \oplus M_b[i]$

$S \leftarrow S \cup \{P\}$

return $C$

Then

$$\text{Adv}_{SE}^{\text{ind-cpa}}(A) = 2 \cdot \Pr\left[G_0^A\right] - 1$$

Game $G_1$

procedure LR($M_0, M_1$)

$C[0] \leftarrow \{0, 1\}^n$

for $i = 1, \ldots, m$ do

$P \leftarrow C[0] + i$

if $P \notin S$ then $T[P] \leftarrow \{0, 1\}^\ell$

$C[i] \leftarrow T[P] \oplus M_b[i]$

$S \leftarrow S \cup \{P\}$

return $C$
Claims

Clearly \( \Pr[G_0^A] = \Pr[G_1^A] + (\Pr[G_0^A] - \Pr[G_1^A]) \).

**Claim 1:** We can design prf-adversary \( B \) so that

\[
\Pr[G_0^A] - \Pr[G_1^A] \leq \text{Adv}_{E}^{\text{prf}}(B)
\]

**Claim 2:** \( \Pr[G_1^A] \leq \frac{1}{2} + \frac{(q - 1)\sigma}{2^n} \)
Proof of Claim 1

Adversary $b \in \{0,1\}

b sen $\mathbf{B} \leftarrow \mathbf{F}_\mathbf{N}(\cdot, \cdot)$

Run $A$

When $A$ makes ER every $m_0/m$

Code $T[P] \leftarrow \mathbf{F}_\mathbf{N}(P)$

If $A$ outputs $b$ then set $1$
Proof of Claim 2
Games Con’t

Game $G_1$

**procedure** LR($M_0, M_1$)

$C[0] \leftarrow \{0, 1\}^n$

for $i = 1, \ldots, m$ do

$P \leftarrow C[0] + i$

If $P \notin S$ then

$T[P] \leftarrow \{0, 1\}^\ell$

$C[i] \leftarrow T[P] \oplus M_b[i]$

$S \leftarrow S \cup \{P\}$

return $C$

---

Game $G_2, G_3$

**procedure** LR($M_0, M_1$)

$C[0] \leftarrow \{0, 1\}^n$

for $i = 1, \ldots, m$ do

$P \leftarrow C[0] + i$

$C[i] \leftarrow \{0, 1\}^\ell$

If $P \notin S$ then

$bad \leftarrow \text{true}$; $C[i] \leftarrow T[P] \oplus M_b[i]$

$T[P] \leftarrow C[i] \oplus M_b[i]$

$S \leftarrow S \cup \{P\}$

return $C$

\[ \Pr[G_1^A] = \Pr[G_2^A] = \Pr[G_3^A] + \left( \Pr[G_2^A] - \Pr[G_3^A] \right) \]
Using fundamental lemma

Game $G_2$, $G_3$

**procedure** LR($M_0, M_1$)

$C[0] \leftarrow \{0, 1\}^n$

for $i = 1, \ldots, m$ do

$P \leftarrow C[0] + i$; $C[i] \leftarrow \{0, 1\}$

If $P \in S$ then

bad $\leftarrow$ true; $C[i] \leftarrow T[P] \oplus M_b[i]$

$T[P] \leftarrow C[i] \oplus M_b[i]$; $S \leftarrow S \cup \{P\}$

return $C$

$G_2$ and $G_3$ are identical-until-bad, so Fundamental Lemma implies

$$\Pr \left[ G_2^A \right] - \Pr \left[ G_3^A \right] \leq \Pr \left[ G_3^A \text{ sets bad} \right].$$
Completing the Proof
Theorem: [BDJR97] Let $E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ be a block cipher and $SE = (K, E, D)$ the corresponding CBC$ symmetric encryption scheme. Let $A$ be an ind-cpa adversary against $SE$ that has running time $t$ and makes at most $q$ LR queries, the messages across them totaling at most $\sigma$ blocks. Then there is a prf-adversary $B$ against $E$ such that

$$\text{Adv}_{SE}^{\text{ind-cpa}}(A) \leq 2 \cdot \text{Adv}_{E}^{\text{prf}}(B) + \frac{\sigma^2}{2^n}$$

Furthermore, $B$ makes at most $\sigma$ oracle queries and has running time $t + \Theta(\sigma \cdot n)$. 
Padding

The TLS 1.0 protocol defines the following padding function for encrypting a $v$-byte message with AES in CBC mode: let $p := 16 - (v \mod 16)$, then append $p$ bytes to the message $m$ where the content of each byte is value $p - 1$. For example, consider the following two cases:

- if $m$ is 29 bytes long then $p = 3$ and the pad consists of the three bytes “222” so that the padded message is 32 bytes long which is exactly two AES blocks.

- if the length of $m$ is a multiple of the block size, say 32 bytes, then $p = 16$ and the pad consists of 16 bytes. The padded message is then 48 bytes long which is three AES blocks.
Figure 5.5: The tree of keys for $n = 8$ devices; shaded nodes are the keys embedded in device 3.
Definition 5.4. Let $T$ be a complete binary tree with $n$ leaves, where $n$ is a power of two. Let $S \subseteq \{1, \ldots, n\}$ be a set of leaves. We say that a set of nodes $W \subseteq \{1, \ldots, 2n-1\}$ covers the set $S$ if every leaf in $S$ is a descendant of some node in $W$, and leaves outside of $S$ are not. We use $\text{cover}(S)$ to denote the smallest set of nodes that covers $S$.

Theorem 5.8. Let $T$ be a complete binary tree with $n$ leaves, where $n$ is a power of two. For every $1 \leq r \leq n$, and every set $S$ of $n - r$ leaves, we have

$$|\text{cover}(S)| \leq r \cdot \log_2(n/r)$$
Broadcast Encryption

The studios are worried about piracy, and do not want to send copyrighted digital content in the clear to millions of users. A simple solution could work as follows. Every authorized manufacturer is given a **device key** $k_d \in \mathcal{K}$, and it embeds this key in every device that it sells. If there are a hundred authorized device manufacturers, then there are a hundred device keys $k_{d}^{(1)}, \ldots, k_{d}^{(100)}$. A movie $m$ is encrypted as:

$$c_m := \begin{cases} 
  k \leftarrow \mathcal{K} \\
  \text{for } i = 1, \ldots, 100 : \; c_i \leftarrow E(k_{d}^{(i)}, k) \\
  c \leftarrow E'(k, m) \\
  \text{output } (c_1, \ldots, c_{100}, c) 
\end{cases}$$