Pseudorandom Functions

Adam O’Neill
Based on http://cseweb.ucsd.edu/~mihir/cse207/
Defining “Good” blockcipher

- What is a good blockcipher?
Defining “Good” blockcipher

- What is a good blockcipher?
 - Key-recovery is hard
Defining “Good” blockcipher

- What is a good blockcipher?
 - Key-recovery is hard
 - Recovering M from $C = E(K,M)$ is hard
Defining “Good” blockcipher

- What is a good blockcipher?
 - Key-recovery is hard
 - Recovering M from $C = E(K,M)$ is hard
 - Recovering a bit of M from $C = E(K,M)$ is hard
Defining “Good” blockcipher

- What is a good blockcipher?
 - Key-recovery is hard
 - Recovering M from $C = E(K,M)$ is hard
 - Recovering a bit of M from $C = E(K,M)$ is hard
 - ...

Defining “Good” blockcipher

- What is a good blockcipher?
 - Key-recovery is hard
 - Recovering M from $C = E(K,M)$ is hard
 - Recovering a bit of M from $C = E(K,M)$ is hard
 - ...
- Clearly such a list cannot be exhaustive or correct
Defining “intelligent” computer

- What does it mean for a computer to be “intelligent” (in the sense of a human)?
Defining “intelligent” computer

• What does it mean for a computer to be “intelligent” (in the sense of a human)?

• It can be happy
Defining “intelligent” computer

- What does it mean for a computer to be “intelligent” (in the sense of a human)?
 - It can be happy
 - It can recognize pictures
Defining “intelligent” computer

• What does it mean for a computer to be “intelligent” (in the sense of a human)?
 • It can be happy
 • It can recognize pictures
 • It can multiply (small) numbers
Defining “intelligent” computer

• What does it mean for a computer to be “intelligent” (in the sense of a human)?

 • It can be happy

 • It can recognize pictures

 • It can multiply (small) numbers

 • …
Defining “intelligent” computer

- What does it mean for a computer to be “intelligent” (in the sense of a human)?
 - It can be happy
 - It can recognize pictures
 - It can multiply (small) numbers
 - ...
- Turing had a “functional” answer to this question
Q: What does it mean for a program to be “intelligent” in the sense of a human?

Turing’s answer: A program is intelligent if its input/output behavior is indistinguishable from that of a human.
Turing Test

Behind the wall:

- Room 1: The program \(P \)
- Room 0: A human
Turing Test

Game:

- Put tester in room 0 and let it interact with object behind wall
- Put tester in room 1 and let it interact with object behind wall
- Now ask tester: which room was which?

The measure of “intelligence” of P is the extent to which the tester fails.
Analogy

- In the case of human intelligence the “real object” is a computer and the “ideal object” is a human
Analogy

- In the case of human intelligence the “real object” is a computer and the “ideal object” is a human

- Turing’s idea is to ask whether computer and human can be distinguished
Analogy

• In the case of human intelligence the “real object” is a computer and the “ideal object” is a human

• Turing’s idea is to ask whether computer and human can be distinguished

• In the case of blockcipher goodness the “real object” is a blockcipher and the “ideal object” is a random function
Analogy

• In the case of human intelligence the “real object” is a computer and the “ideal object” is a human

• Turing’s idea is to ask whether computer and human can be distinguished

• In the case of blockcipher goodness the “real object” is a blockcipher and the “ideal object” is a random function

• Asking whether they can be distinguished leads to a famous notion of pseudorandom function due to Goldreich, Goldwasser, and Micali (1986).
Random Functions

Game Rand_R // here R is a set

procedure $\text{Fn}(x)$
 if $T[x] = \perp$ then $T[x] \leftarrow R$
 return $T[x]$

Adversary A

- Make queries to Fn
- Eventually halts with some output

We denote by

$$\Pr \left[\text{Rand}_R^A \Rightarrow d \right]$$

the probability that A outputs d
Example

Game $\text{Rand}_{\{0,1\}^3}$

procedure $\text{Fn}(x)$
if $T[x] = \bot$ then $T[x] \leftarrow \{0, 1\}^3$
return $T[x]$

adversary A

$y \leftarrow \text{Fn}(01)$
return $(y = 000)$

$$\Pr \left[\text{Rand}^A_{\{0,1\}^3} \Rightarrow \text{true} \right] = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$
Another Example

Game $\text{Rand}_{\{0,1\}^3}$

procedure $\text{Fn}(x)$
if $T[x] = \bot$ then $T[x] \leftarrow \{0, 1\}^3$
return $T[x]$

adversary A
$y_1 \leftarrow \text{Fn}(00)$
$y_2 \leftarrow \text{Fn}(11)$
return $(y_1 \oplus y_2 = 101)$

$$\Pr \left[\text{Rand}_A^{\{0,1\}^3} \Rightarrow \text{true} \right] = \frac{1}{8}$$
The Games

Let \(F: \text{Keys} \times \text{Dom} \to \text{Rng} \) be a family of functions.

\[
\begin{array}{ll}
\text{Game Real}_F \\
\text{procedure Initialize} \\
K \leftarrow^\$ \text{Keys} \\
\text{procedure Fn}(x) \\
\text{Return } F_K(x)
\end{array}
\quad
\begin{array}{ll}
\text{Game Rand}_{\text{Rng}} \\
\text{procedure Fn}(x) \\
\text{if } T[x] = \bot \text{ then } T[x] \leftarrow^\$ \text{Rng} \\
\text{Return } T[x]
\end{array}
\]

Associated to \(F, A \) are the probabilities

\[
\Pr \left[\text{Real}_F^A \Rightarrow 1 \right] \quad \text{and} \quad \Pr \left[\text{Rand}_{\text{Rng}}^A \Rightarrow 1 \right]
\]

that \(A \) outputs 1 in each world. The \textit{advantage} of \(A \) is

\[
\text{Adv}_{F}^{\text{prf}}(A) = \Pr \left[\text{Real}_F^A \Rightarrow 1 \right] - \Pr \left[\text{Rand}_{\text{Rng}}^A \Rightarrow 1 \right]
\]
Advantage

<table>
<thead>
<tr>
<th>A's output (d)</th>
<th>Intended meaning: I think I am in game</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Real</td>
</tr>
<tr>
<td>0</td>
<td>Random</td>
</tr>
</tbody>
</table>

\(\text{Adv}^\text{prf}_F (A) \approx 1 \) means \(A \) is doing well and \(F \) is not prf-secure.

\(\text{Adv}^\text{prf}_F (A) \approx 0 \) (or \(\leq 0 \)) means \(A \) is doing poorly and \(F \) resists the attack \(A \) is mounting.
Security

Adversary advantage depends on its
- strategy
- resources: Running time t and number q of oracle queries

Security: F is a (secure) PRF if $\text{Adv}^\text{prf}_F(A)$ is “small” for ALL A that use “practical” amounts of resources.

Example: 80-bit security could mean that for all $n = 1, \ldots, 80$ we have

$$\text{Adv}^\text{prf}_F(A) \leq 2^{-n}$$

for any A with time and number of oracle queries at most 2^{80-n}.

Insecurity: F is insecure (not a PRF) if we can specify an A using “few” resources that achieves “high” advantage.
Example

Define $F: \{0, 1\}^\ell \times \{0, 1\}^\ell \to \{0, 1\}^\ell$ by $F_K(x) = K \oplus x$ for all $K, x \in \{0, 1\}^\ell$. Is F a secure PRF?

<table>
<thead>
<tr>
<th>Game Real$_F$</th>
<th>Game Rand$_{{0,1}^\ell}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>procedure Initialize</td>
<td>procedure Fn$_x$</td>
</tr>
<tr>
<td>$K \leftarrow^$ Keys</td>
<td>if $T[x] = \perp$ then $T[x] \leftarrow^$ ${0, 1}^\ell$</td>
</tr>
<tr>
<td>procedure Fn$_x$</td>
<td>Return $T[x]$</td>
</tr>
<tr>
<td>Return $K \oplus x$</td>
<td></td>
</tr>
</tbody>
</table>

So we are asking: Can we design a low-resource A so that

$$\text{Adv}^\text{prf}_F(A) = \Pr[\text{Real}_F^A \Rightarrow 1] - \Pr[\text{Rand}_{\{0,1\}^\ell}^A \Rightarrow 1]$$

is close to 1?
The Adversary

Adversary A

$y \leftarrow \text{Fn}(0^e)$

$y' \leftarrow \text{Fn}(1^e)$

If $y = y'$ then return 1
Else return 0

$\text{Adv Prof}_F(A) = \Pr[\text{REAL}_F \rightarrow 1]$

$- \Pr[\text{RAND}_{0,1}^e \rightarrow 1]$
Real Game Analysis

Claim.

\[
\Pr[\text{REAL}^+ F \Rightarrow 1] = 1
\]

Proof: by code of A and of F.
Claim

\[
\Pr[\text{RAND}_{\mathcal{E}}^A \Rightarrow 1] = \frac{1}{2^x}.
\]

Proof: \(y, y' \) are iid random.
Conclusion

By claims,

$$\text{Adv}^{prf}_f(\mathcal{A}) = 1 - 2^{-\ell} \approx 1.$$
Blockcipher Attacks

Let \(E : \{0, 1\}^k \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell \) be a block cipher.

<table>
<thead>
<tr>
<th>Game Real(_E)</th>
<th>Game Rand(_{{0,1}^\ell})</th>
</tr>
</thead>
<tbody>
<tr>
<td>procedure (\text{Initialize}) (K \leftarrow {0, 1}^k)</td>
<td>procedure (\text{Fn}(x)) if (T[x] = \perp) then (T[x] \leftarrow {0, 1}^\ell)</td>
</tr>
<tr>
<td>procedure (\text{Fn}(x)) Return (E_K(x))</td>
<td>Return (T[x])</td>
</tr>
</tbody>
</table>

Can we design \(A\) so that

\[
\text{Adv}^{\text{prf}}_E (A) = \Pr \left[\text{Real}^A_E \rightarrow 1 \right] - \Pr \left[\text{Rand}^A_{\{0,1\}^\ell} \rightarrow 1 \right]
\]

is close to 1?
Idea

Defining property of a block cipher: E_K is a permutation for every K

So if x_1, \ldots, x_q are distinct then

- $F_n = E_K \Rightarrow F_n(x_1), \ldots, F_n(x_q)$ distinct
- F_n random $\Rightarrow F_n(x_1), \ldots, F_n(x_q)$ not necessarily distinct

This leads to the following attack:

adversary A

Let $x_1, \ldots, x_q \in \{0, 1\}^\ell$ be distinct
for $i = 1, \ldots, q$ do $y_i \leftarrow F_n(x_i)$
if y_1, \ldots, y_q are all distinct then return 1
else return 0

$\text{Adv}_{E}^{\text{prf}}(A) = \Pr \left[\text{REAL}_{e} \Rightarrow 1 \right]$
Real World Analysis

Let $E : \{0, 1\}^k \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$ be a block cipher.

<table>
<thead>
<tr>
<th>Game Real_E</th>
<th>adversary A</th>
</tr>
</thead>
</table>
| **procedure Initialize**
$K \leftarrow \{0, 1\}^k$
procedure $\text{Fn}(x)$
Return $E_K(x)$ | Let $x_1, \ldots, x_q \in \{0, 1\}^\ell$ be distinct
for $i = 1, \ldots, q$ do $y_i \leftarrow \text{Fn}(x_i)$
if y_1, \ldots, y_q are all distinct
then return 1 else return 0 |

Then

$$\Pr \left[\text{Real}_E^A \Rightarrow 1 \right] = 1$$

Proof: $\text{Fn} = E_K$ is a permutation \Rightarrow y_1, \ldots, y_q distinct.
Ideal World Analysis

Let $E: \{0, 1\}^K \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$ be a block cipher.

Game $\text{Rand}_{\{0,1\}^\ell}$

procedure $\text{Fn}(x)$
if $T[x] = \bot$ then $T[x] \leftarrow \{$0, 1$\}^\ell$
Return $T[x]$

adversary A
Let $x_1, \ldots, x_q \in \{0, 1\}^\ell$ be distinct
for $i = 1, \ldots, q$ do $y_i \leftarrow \text{Fn}(x_i)$
if y_1, \ldots, y_q are all distinct then return 1 else return 0

$\Pr[\text{RAND}^{\text{A}}_{\{0,1\}^\ell} = 1] \geq 1 - \frac{q^2}{2^\ell}$
Birthday Bound

Pick \(y_1, \ldots, y_q \leftarrow \{1, \ldots, N\} \) and let

\[
C(N, q) = \Pr [y_1, \ldots, y_q \text{ not all distinct}]
\]

Birthday setting: \(N = 365 \)

Fact: \(C(N, q) \approx \frac{q^2}{2N} \)

\[
\geq 0.3 \frac{q^2}{N}
\]
Ideal game analysis

Let \(E : \{0, 1\}^K \times \{0, 1\}^\ell \to \{0, 1\}^\ell \) be a block cipher

<table>
<thead>
<tr>
<th>Game Rand_{0,1}^\ell</th>
</tr>
</thead>
<tbody>
<tr>
<td>procedure (\text{Fn}(x))</td>
</tr>
<tr>
<td>if (T[x] = \perp) then (T[x] \leftarrow {0, 1}^\ell)</td>
</tr>
<tr>
<td>Return (T[x])</td>
</tr>
</tbody>
</table>

adversary \(A \)

Let \(x_1, \ldots, x_q \in \{0, 1\}^\ell \) be distinct for \(i = 1, \ldots, q \) do \(y_i \leftarrow \text{Fn}(x_i) \)
if \(y_1, \ldots, y_q \) are all distinct then return 1 else return 0

Then

\[
\Pr \left[\text{Rand}_{0,1}^A \Rightarrow 1 \right] = \Pr [y_1, \ldots, y_q \text{ all distinct}] = 1 - C(2^\ell, q)
\]

because \(y_1, \ldots, y_q \) are randomly chosen from \(\{0, 1\}^\ell \).
Key vs block length

Conclusion: If $E : \{0, 1\}^k \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$ is a block cipher, there is an attack on it as a PRF that succeeds in about $2^{\ell/2}$ queries.

Depends on block length, not key length!

<table>
<thead>
<tr>
<th></th>
<th>ℓ</th>
<th>$2^{\ell/2}$</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES, 2DES, 3DES3</td>
<td>64</td>
<td>2^{32}</td>
<td>Insecure</td>
</tr>
<tr>
<td>AES</td>
<td>128</td>
<td>2^{64}</td>
<td>Secure</td>
</tr>
</tbody>
</table>
KR-security vs PRF-security

We have seen two possible metrics of security for a block cipher E

- **KR-security:** It should be hard to find a key consistent with input-output examples of a hidden target key.
- **PRF-security:** It should be hard to distinguish the input-output behavior of E_K from that of a random function.

Fact: PRF-security of E implies

- KR-security of E
- Many other security attributes of E

This is a validation of the choice of PRF security as our main metric.
Proposition

Proposition: Let $E : \{0, 1\}^k \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$ be a blockcipher. Given a kr-adversary B making q (distinct!) oracle queries, we can construct a PRF adversary A making q oracle queries such that

$$\text{Adv}^\text{kr}_E(B) \leq \text{Adv}^\text{prf}_E(A) + 2^{k-q\ell}.$$

The running time of A is that of B plus $O(q\ell)$.

Interpretation:

- E is PRF secure \Rightarrow $\text{Adv}^\text{prf}_E(A)$ is small
 \Rightarrow $\text{Adv}^\text{kr}_E(B)$ is small
 \Rightarrow E is KR-secure.

Example: If $E = AES$ and $q = 2$ then $2^{k-q\ell} = 2^{-128}$.

Our first example of a reduction and a proof by reduction!
Adversary

Given KR-adversary B, define

$\text{Adversary } A \leftarrow \text{For REAL game } \text{Fn}(\cdot) \leftarrow \text{Fn}(x) = Fk_c(x_i) \text{ for } 1 \leq i \leq q$

Run B

- When B makes i-th Fn-query x_i do:
 $y_i \leftarrow \text{Fn}(x_i)$ for REAL game
 Return y_i. This is $F_k(x_i)$

When B halts with output 1

Return 1 if $\forall 1 \leq i \leq q \ y_i = F_k(x_i)$
Else return 0
Real game analysis

\[P \left[\text{REAL}_F^A \Rightarrow 1 \right] = P \left[\text{REAL}_F^B \Rightarrow 1 \right] = \text{Ad}_{\chi_F}^{\text{RR}} (B) \]
Ideal game analysis

Claim: \[\Pr[\text{RAND} \text{ is } 17] \geq 2^{k-92} \]
Our Assumptions

• We can assume DES and AES are “ideal” blockciphers in are “as PRF-secure as possible”
Our Assumptions

- We can assume DES and AES are “ideal” blockciphers in are “as PRF-secure as possible”

- Note exhaustive key search, birthday attacks
PRP-Security
2 The PRP/PRF Switching Lemma

The Lemma. The natural and conventional assumption to make about a blockcipher is that it behaves as a pseudorandom permutation (PRP). However, it usually turns out to be easier to analyze the security of a blockcipher-based construction assuming the blockcipher is secure as a pseudorandom function (PRF). The gap is then bridged (meaning, a result about the security of the construct assuming the blockcipher is a PRP is obtained) using the following lemma. In what follows, we denote by \(A^P \Rightarrow 1 \) the event that adversary \(A \), equipped with an oracle \(P \), outputs the bit 1. Let \(\text{Perm}(n) \) be the set of all permutations on \(\{0,1\}^n \) and let \(\text{Func}(n) \) be the set of all functions from \(\{0,1\}^n \) to \(\{0,1\}^n \). We assume below that \(\pi \) is randomly sampled from \(\text{Perm}(n) \) and \(\rho \) is randomly sampled from \(\text{Func}(n) \).

Lemma 1 [PRP/PRF Switching Lemma] Let \(n \geq 1 \) be an integer. Let \(A \) be an adversary that asks at most \(q \) oracle queries. Then

\[
| \Pr [A^\pi \Rightarrow 1] - \Pr [A^\rho \Rightarrow 1] | \leq \frac{q(q-1)}{2^{n+1}}. \]
