ElGamal KEM. Now we look at a KEM based on Diffie-Hellman key exchange (and the work of ElGamal, who proposed a public-key encryption scheme based on this key exchange protocol; here we adapt this public-key encryption scheme to the simpler case of a KEM).

Let $G = \langle g \rangle$ be a cyclic group of order m and let $H : \{0,1\}^* \to \{0,1\}^k$ be a hash function. Define EG-KEM = (K,E,D) as follows. Algorithm K computes $x \leftarrow \mathbb{Z}_m$, $X \leftarrow g^x$, and returns (X,x). Algorithm $E(X)$ computes $y \leftarrow \mathbb{Z}_m$, $C_a \leftarrow g^y$, $Z \leftarrow X^y$, $K \leftarrow H(C_a||Z)$, and returns (K,C_a). Algorithm $D(x,C_a)$ computes $Z \leftarrow (C_a)^x$, $K \leftarrow H(C_a||Z)$, and returns K.

Random oracle model. We analyze this protocol assuming the hash function is “perfect.” This means that H is modeled in the following way. Everyone (all algorithms, adversaries) have access to an oracle H that on input W computes: If $H[W] = \perp$ then $H[W] \leftarrow \{0,1\}^k$; return $H[W]$. Probabilities taken over games now include the coins for this oracle.

Main theorem. We have the following theorem.

Theorem 0.1 Let A be a ROR-adversary making 1 encryption query and q hash queries. Then there is a CDH-adversary B such that

$$\text{Adv}^{\text{ror}}_{\text{EG-KEM}}(A) \leq 2q \cdot \text{Adv}^{\text{cdh}}_{G,g}(B).$$

The running-time of B is that of A plus minor overhead.

Here is an overview of the proof. Assume A doesn’t repeat any hash queries. Define adversary B as follows: On inputs g^x, g^y, B chooses $K \leftarrow \{0,1\}^k$, $i^* \leftarrow \mathbb{Z}_q$ and runs A on input g^x. When A makes its single encryption query, B returns (K,g^y). When A makes a hash query W, B does: $Y||Z \leftarrow W$; If $Y = g^x$ then $i \leftarrow i + 1$, If $i^* = i$ then HALT with output Z; $H[W] \leftarrow \{0,1\}^k$ return $H[W]$.

Now we’ll create games G_0,G_1 such that we have the following inequalities:

$$1/2 + 1/2\text{Adv}^{\text{ror}}_{\text{EG-KEM}}(A) = \Pr \left[G_0 \text{ outputs 1} \right] \leq \Pr \left[G_1 \text{ outputs 1} \right] + \Pr \left[G_1 \text{ sets bad} \right] \leq 1/2 + 1/q \cdot \text{Adv}^{\text{cdh}}_{G,g}(B).$$

Here are the games:
Games \(G_0 \), \[G_1 \]

proc Initialize

\(x, y \leftarrow Z_m \)

\(K_0, K_1 \leftarrow \{0, 1\}^k \)

\(b \leftarrow \{0, 1\} \)

\(X \leftarrow g^x \)

Return \(X \)

proc ENC()

Return \((K_b, g^y) \)

proc H(W)

\(Y \parallel Z \leftarrow W \)

\(H[W] \leftarrow \{0, 1\}^k \)

If \(Z = g^{xy} \) and \(Y = g^y \) then

\(\text{bad} \leftarrow \text{true}; \quad H[W] \leftarrow K_1 \)

Return \(H[W] \)

proc Finalize(b')

Return \((b = b') \)

RSA. Let \(K_{rsa} \) be an *RSA parameters generation algorithm* that on input \(1^k \) outputs \((N, p, q, e, d)\) where \(N = pq \) is a product of \(k/2 \)-bit primes \(p, q \), and \(ed = 1 \mod \phi(N) \). Define the function \(RSA_{N,e}(x) = x^e \mod N \); this is a permutation on \(\mathbb{Z}_N^* \) with inverse \(RSA_{N,e}^{-1}(y) = y^d \mod N \). Informally we want that Given \(N, e, y \) where \(y = RSA_{N,e}(x) \) it’s hard to recover \(x \). Formally for \(K_{rsa} \) we consider the game

Game \(OW_{K_{rsa}} \)

proc Initialize

\((N, p, q, e, d) \leftarrow K_{rsa}(1^k) \)

\(x \leftarrow \mathbb{Z}_N^* ; \quad y \leftarrow RSA_{N,e}(x) \)

Return \((N, e, y) \)

proc Finalize(x')

Return \((x = x') \)

We define the OW-advantage of adversary \(A \) against \(K_{rsa} \) as

\[
\text{Adv}_{K_{rsa}}^{ow}(A) = \Pr \{ OW_{K_{rsa}}(A) \text{ outputs 1} \}
\]

There are several ways one can consider encrypting with RSA. One is plain RSA (bad). Others are the RSA-KEM and RSA-OAEP, which are IND-CPA secure in the RO model.