The PARSEME Shared Task on Automatic Identification of Verbal Multiword Expressions (1.1)

¹Aix-Marseille University, France, ²University of Tours, France, ³University of Szeged, Hungary, ⁴Romanian Academy, Romania, ⁵Florida IHMC, USA, ⁶University of Stuttgart, Germany, ⁷Paris Diderot University, France, ⁸Faculty of Arts, Slovenia, ⁹Athena Research Center, Greece, ¹⁰Boğaziçi University, Turkey, ¹¹George Washington University, USA, ¹²University of the Basque Country, Spain, ¹³Vytautas Magnus University, Lithuania, ¹⁴Jožef Stefan Institute, Slovenia, ¹⁵University of Düsseldorf, Germany, ¹⁶Jerusalem College of Technology, Israel, ¹⁷“L’Orientale” University of Naples, Italy, ¹⁸Dublin City University, Ireland, ¹⁹Interinstitutional Center for Computational Linguistics, Brazil, ²⁰Georgetown University, USA, ²¹Bulgarian Academy of Sciences, Bulgaria, ²²IIT Delhi, India.
A multilingual shared task on MWE identification

What is MWE identification?
- INPUT: text
- OUTPUT: text annotated with MWEs
- PARSEME shared task – edition 1.0 in 2017
Why focus on verbal MWEs (VMWEs)?

- Discontinuity:

 English *turn the TV off*

- Variability: morphological, syntactic, lexical

 English *we made decisions* vs. *the decision was hard to make*

- Non-categorical nature:

 - Same surface, different syntax

 English *take on the task* (VPC.full) vs. *to sit on the chair*

 - Same syntax, different category

 English *to make a mistake* (LVC.full)

 English *to make a meal* of sth (VID)

- Ambiguity: idiomatic vs. literal readings

 English *to take the cake*
Why focus on verbal MWEs (VMWEs)? II

• Overlaps:
 • Factorization

 EN *take a walk and then a long shower* (coordination)
 • Nesting
 open slots: EN *take the fact that I gave up into account*
 lexicalized components: EN *let the cat out of the bag*
• Multiword tokens

 ES *abstener/se* (lit. *abstain self*) 'abstain'
 DE *auf/machen* (lit. *out/make*) 'open'
• Different languages ⇒ different behavior, linguistic traditions...
PARSEME shared task 1.0 at a glance

- Multilingual guidelines with examples
- Annotation methodology and teams (PARSEME)
- Corpora in 18 languages under free licenses
- Train/test corpora with 52724/9494 VMWEs
- New evaluation measures (MWE-/Token-based)
- 7 participating systems
Enhanced guidelines

- Discussion via Gitlab issues
- Main definitions remain:
 - Words and tokens
 - Lexicalized components and open slots
 - Canonical forms
- Generic decision tree based on structural tests
Decision tree

1. **Apply test S.1** - [1HEAD: Unique verb as functional syntactic head of the whole?]
 - **NO** ⇒ Apply the VID-specific tests ⇒ VID tests positive?
 - **YES** ⇒ Annotate as a VMWE of category VID
 - **NO** ⇒ It is not a VMWE, exit
 - **YES** ⇒ Apply test S.2 - [1DEP: Verb v has exactly one lexicalized dependent d?]
 - **NO** ⇒ Apply the VID-specific tests ⇒ VID tests positive?
 - **YES** ⇒ Annotate as a VMWE of category VID
 - **NO** ⇒ It is not a VMWE, exit
 - **YES** ⇒ Apply test S.3 - [LEX-SUBJ: Lexicalized subject?]
 - **YES** ⇒ Apply the VID-specific tests ⇒ VID tests positive?
 - **YES** ⇒ Annotate as a VMWE of category VID
 - **NO** ⇒ It is not a VMWE, exit
 - **NO** ⇒ Apply test S.4 - [CATEG: What is the morphosyntactic category of d?]
 - Reflexive clitic ⇒ Apply IRV-specific tests ⇒ IRV tests positive?
 - **YES** ⇒ Annotate as a VMWE of category IRV
 - **NO** ⇒ It is not a VMWE, exit
 - Particle ⇒ Apply VPC-specific tests ⇒ VPC tests positive?
 - **YES** ⇒ Annotate as a VMWE of category VPC.full or VPC.semi
 - **NO** ⇒ It is not a VMWE, exit
 - Verb with no lexicalized dependent ⇒ Apply MVC-specific tests ⇒ MVC tests positive?
 - **YES** ⇒ Annotate as a VMWE of category MVC
 - **NO** ⇒ Apply the VID-specific tests ⇒ VID tests positive?
 - **YES** ⇒ Annotate as a VMWE of category VID
 - **NO** ⇒ It is not a VMWE, exit
 - Extended NP ⇒ Apply LVC-specific decision tree ⇒ LVC tests positive?
 - **YES** ⇒ Annotate as a VMWE of category LVC
 - **NO** ⇒ Apply the VID-specific tests ⇒ VID tests positive?
 - **YES** ⇒ Annotate as a VMWE of category VID
 - **NO** ⇒ It is not a VMWE, exit
 - Another category ⇒ Apply the VID-specific tests ⇒ VID tests positive?
 - **YES** ⇒ Annotate as a VMWE of category VID
 - **NO** ⇒ It is not a VMWE, exit
VMWE typology I

Universal categories (all languages)

- verbal idioms (VID)
 - EN *to call it a day*

- light-verb constructions (LVCs)
 - EN *to give a lecture* (LVC.full)
 - EN *to grant rights* (LVC.cause)
Quasi-universal categories (many languages)

- inherently reflexive verbs (IRVs)
 - **EN** *to help oneself* ‘to take something freely’

- verb-particle constructions (VPCs)
 - **EN** *to do in* ‘to kill’ (VPC.full)
 - **EN** *to eat up* (VPC.semi)

- multi-verb constructions (MVCs)
 - **HI** *kar le-na* (lit. *do take.INF*) ‘to do something (for one’s own benefit)’
VMWE typology III

Optional/language-specific categories

- inherently clitic verbs (LS.ICV)
 - **IT** *prendere* (lit. *take it*) 'get beaten up'
- inherently adpositional verbs (IAV)
 - **EN** *to rely on*

Require more work to be generalized/stabilized
20 languages

Language groups

- **Balto-Slavic**: Bulgarian (BG), Croatian (HR), Lithuanian (LT), Polish (PL), Slovene (SL), Czech (CZ)
- **Germanic**: German (DE), English (EN), Swedish (SV)
- **Romance**: French (FR), Italian (IT), Romanian (RO), Spanish (ES), Brazilian Portuguese (PT)
- **Others**: Arabic (AR), Greek (EL), Basque (EU), Farsi (FA), Hebrew (HE), Hindi (HI), Hungarian (HU), Turkish (TR), Maltese (MT)
Corpora

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Sent.</th>
<th>Tokens</th>
<th>VMWE</th>
</tr>
</thead>
<tbody>
<tr>
<td>train</td>
<td>208,420</td>
<td>4,553,431</td>
<td>59,460</td>
</tr>
<tr>
<td>dev</td>
<td>31,947</td>
<td>672,102</td>
<td>9,250</td>
</tr>
<tr>
<td>test</td>
<td>40,471</td>
<td>846,798</td>
<td>10,616</td>
</tr>
<tr>
<td>total</td>
<td>280,838</td>
<td>6,072,331</td>
<td>79,326</td>
</tr>
</tbody>
</table>

- Varying corpus sizes per language
- No dev in EN, HI and LT
- New rules for train/dev/test split
- Morphological/syntactic information (mostly UD)

Availability
- 19 corpora released under **Creative Commons** licenses
<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>PUNCT</td>
<td>_</td>
<td>_</td>
<td>4</td>
<td>punct</td>
<td>_</td>
<td>_</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>si</td>
<td>si</td>
<td>SCONJ</td>
<td>_</td>
<td>_</td>
<td>4</td>
<td>mark</td>
<td>_</td>
<td>_</td>
<td>*</td>
</tr>
<tr>
<td>3</td>
<td>vous</td>
<td>il</td>
<td>PRON</td>
<td>_</td>
<td>_</td>
<td>4</td>
<td>nsubj</td>
<td>_</td>
<td>_</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td>présentez</td>
<td>présenter</td>
<td>VERB</td>
<td>_</td>
<td>_</td>
<td>0</td>
<td>root</td>
<td>_</td>
<td>_</td>
<td>1:LVC.full</td>
</tr>
<tr>
<td>5</td>
<td>ou</td>
<td>ou</td>
<td>CCONJ</td>
<td>_</td>
<td>_</td>
<td>8</td>
<td>cc</td>
<td>_</td>
<td>_</td>
<td>*</td>
</tr>
<tr>
<td>6</td>
<td>avez</td>
<td>avoir</td>
<td>AUX</td>
<td>_</td>
<td>_</td>
<td>8</td>
<td>aux</td>
<td>_</td>
<td>_</td>
<td>*</td>
</tr>
<tr>
<td>7</td>
<td>récemment</td>
<td>récemment</td>
<td>ADV</td>
<td>_</td>
<td>_</td>
<td>8</td>
<td>advmod</td>
<td>_</td>
<td>_</td>
<td>*</td>
</tr>
<tr>
<td>8</td>
<td>présenté</td>
<td>présenter</td>
<td>VERB</td>
<td>_</td>
<td>_</td>
<td>4</td>
<td>conj</td>
<td>_</td>
<td>_</td>
<td>2:LVC.full</td>
</tr>
<tr>
<td>9</td>
<td>un</td>
<td>un</td>
<td>DET</td>
<td>_</td>
<td>_</td>
<td>10</td>
<td>det</td>
<td>_</td>
<td>_</td>
<td>*</td>
</tr>
<tr>
<td>10</td>
<td>saignement</td>
<td>saignement</td>
<td>NOUN</td>
<td>_</td>
<td>_</td>
<td>4</td>
<td>obj</td>
<td>_</td>
<td>_</td>
<td>1;2</td>
</tr>
</tbody>
</table>

CUPT: extension of the CoNLL-U format
Corpus quality

- Single-annotated for most languages
- Consistency checks for 19 languages
- Inter-annotator agreement on a sample
 - Around 150 to 2,500 sentences
 - Identification IAA: $0.227 \leq \kappa_{\text{span}} \leq 0.984$
 - Categorization IAA: $0.573 \leq \kappa_{\text{cat}} \leq 1.000$
 - Macro-average higher than edition 1.0
 - $\kappa_{\text{span}} = 0.58 \rightarrow \kappa_{\text{span}} = 0.691$
 - $\kappa_{\text{cat}} = 0.819 \rightarrow \kappa_{\text{cat}} = 0.836$
Shared task

Goal
Automatically identify all VMWE occurrences in running text.

Two tracks
- **Closed**: only use the provided training/dev data
- **Open**: use the provided data + any external resource
 - corpora, lexicons, grammars, language models, ...

Evaluation
- Based on **identification** only
- Categorization quality is reported on but not ranked
Evaluation measures (as in edition 1.0)

Per-language system evaluation
- Compare prediction and gold standard
- Precision, recall and F1-measure

MWE-based scores
Only predictions with the **perfect span** are considered to match

Token-based scores
- Allows **partial matches**
- We consider all partial bijections from gold to system VMWEs
- The partial bijection **maximizing the system score** is chosen
Evaluation measures (new in edition 1.1)

Cross-lingual macro-averages

- Token-based and MWE-based scores
- Phenomenon-specific scores
 - MWE-based P/R/F1 for a subset of prediction & gold standard
 - Only VMWEs that represent a given phenomenon
 - Continuous vs. discontinuous
 - Multi-token vs. single-token
 - Seen vs. unseen (wrt. training corpus)
 - Identical vs. variants (wrt. training corpus)
Submitted systems

- 12 teams (vs. 7 in edition 1.0)
 - From France (3), Germany (3), Ireland (1), Italy (1), Romania (1), Switzerland (1), Turkey (1), UK (1)

- 17 system submissions
 - 13 closed track + 4 open track
 - 16/17 submissions cover 3 or more languages
 - 11/17 submissions cover 19 languages
Techniques

<table>
<thead>
<tr>
<th>Neural networks</th>
<th>Parsing</th>
<th>CRF</th>
<th>Stat. measures</th>
<th>Naive Bayes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep-BGT</td>
<td>Milos</td>
<td>CRF-DepTreecateg</td>
<td>Polirem</td>
<td>varIDE</td>
</tr>
<tr>
<td>GBD-NER</td>
<td>MWETreeC</td>
<td>CRF-Seq-noncateg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mumpitz</td>
<td>TRAVERSAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHOMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAPACC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veyn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Some results (more online)

- Average MWE-based scores

<table>
<thead>
<tr>
<th>submission</th>
<th>track</th>
<th>P</th>
<th>R</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAVERSAL</td>
<td>closed</td>
<td>67.58</td>
<td>44.97</td>
<td>54.00</td>
</tr>
<tr>
<td>TRAPACC-S</td>
<td>closed</td>
<td>62.28</td>
<td>41.40</td>
<td>49.74</td>
</tr>
<tr>
<td>TRAPACC</td>
<td>closed</td>
<td>55.68</td>
<td>44.67</td>
<td>49.57</td>
</tr>
<tr>
<td>CRF-Seq-nocategs</td>
<td>closed</td>
<td>56.13</td>
<td>39.12</td>
<td>46.11</td>
</tr>
<tr>
<td>SHOMA</td>
<td>open</td>
<td>66.08</td>
<td>51.82</td>
<td>58.09</td>
</tr>
</tbody>
</table>

- System strengths:
 - TRAVERSAL: Slavic and Romance languages
 - TRAPACC: German and English
 - CRF-Seq-nocategs: Hindi
Some results (more online) II

Languages

- “Easiest” languages: Hungarian (F1=90.31) and Romanian (F1=85.28) ⇒ largest training corpora
- “Hardest” languages: Hebrew (F1=23.28), English (F1=32.88) and Lithuanian (F1=32.17) ⇒ smallest training corpora
- Outlier: Hindi (F1=72.98) ⇒ MVCs are “easy”

Phenomenon-specific scores

- Discontinuous, variant and unseen VMWEs are much harder
- Variants: average recall, high precision (R_{max}=.56, P_{max}=.86)
- Unseen: low recall and precision (R_{max}=.38, P_{max}=.32)
Conclusions

- Benchmark results
- Outcomes: freely available guidelines, corpora
- 12 teams, 17 submissions, all are multilingual
- There is room for improvement
- Findings:
 - Inherently lexical nature of the phenomenon
 - Unseen VMWEs are harder to generalize over than other unseen entities (e.g. NEs)
 - VMWE identification and discovery should go hand-in-hand
Future work

- Continuous enhancement of guidelines and corpora (quality, size)
 - IAV feedback and status
 - New languages and language families
- Future shared task editions
 - New MWE categories (e.g. nominal)
 - Joint MWE identification and parsing or NER
- Synergies with other multilingual initiatives (e.g. UD)
Acknowledgements

- **Funding agencies and projects:**
 - COST action PARSEME (IC1207)
 - Czech Republic LD-PARSEME (LD14117)
 - ANR PARSEME-FR (ANR-14-CERA-0001)
 - Marie Skłodowska-Curie (Grant 713567)
 - Science Foundation Ireland (Grant 13/RC/2106)
 - Deutsche Forschungsgemeinschaft (CRC 991)
 - Ministry of Human Capacities, Hungary (UNKP-17-4 New National Excellence Program)
 - Slovenian Research Agency (J6-8256 project)
 - DST-CSRI, Govt. of India
 - Boğaziçi University Research Fund (Grant 14420)

- **FLAT development**
 - **Maarten van Gompel**, Radboud University, The Netherlands
Annotation teams

Balto-Slavic languages: (BG) Ivelina Stoyanova (LL), Tsvetana Dimitrova, Svetlozara Leseva, Valentina Stefanova, Maria Todorova; (HR) Maja Buljan (LL), Goranka Blagus, Ivo-Pavao Jazbec, Kristina Kocijan, Nikola Ljubešić, Ivana Matas, Jan Šnajder; (LT) Jolanta Kovalevskaitė (LL), Agnė Bielinskienė, Loic Boizou; (PL) Agata Savary (LL), Emilia Palka-Binkiewicz; (SL) Polona Gantar (LL), Simon Krek (LL), Špela Arhar Holdt, Jaka Čibej, Teja Kavčič, Taja Kuzman.

Germanic languages: (DE) Timm Lichte (LL), Rafael Ehren; (EN) Abigail Walsh (LL), Claire Bonial, Paul Cook, Kristina Geeraert, John McCrae, Nathan Schneider, Clarissa Somers.

Romance languages: (ES) Carla Parra Escartín (LL), Cristina Aceta, Héctor Martínez Alonso; (FR) Marie Candito (LL), Matthieu Constant, Carlos Ramisch, Caroline Pasquer, Yannick Parmentier, Jean-Yves Antoine, Agata Savary; (IT) Johanna Monti (LL), Valeria Caruso, Maria Pia di Buono, Antonio Pascucci, Annalisa Raffone, Anna Riccio; (RO) Verginica Barbu Mititelu (LL), Mihaela Onofrei, Mihaela Ionescu; (PT) Renata Ramisch (LL), Aline Villavicencio, Carlos Ramisch, Helena de Medeiros Caseli, Leonardo Zilio, Silvio Ricardo Cordeiro.

Other languages: (AR) Abdelati Hawwari (LL), Mona Diab, Mohamed Elbadrashiny, Rehab Ibrahim; (EU) Uxoa Inurrieta (LL), Itziar Aduriz, Aïnara Estarrona, Itziar Gonzalez, Antton Gurrutxaga, Ruben Urizar; (EL) Voula Giouli (LL), Vassiliki Foufi, Aggeliki Fotopoulou, Stella Markantonatou, Stella Papadelli; (FA) Behrang QasemiZadeh (LL), Shiva Taslimipoor; (HE) Chaya Liebeskind (LL), Yaakov Ha-Cohen Kerner (LL), Hevi Elyovich, Ruth Malka; (HI) Archna Bhatia (LL), Ashwini Vaidya (LL), Kanishka Jain, Vandana Puri, Shraddha Ratori, Vishakha Shukla, Shubham Srivastava; (HU) Veronika Vincze (LL), Katalin Simkó, Viktória Kovács; (TR) Tunga Güngör (LL), Gözde Berk, Berna Erden.