Discriminative Lexical Semantic Segmentation with Gaps:

Running the MWE Gamut
Opiliones

daddy longlegs

harvestman

Kevin Knight

Weberknechte

Schuster

Kanker

Opa Langbein

Zimmermann

Schneider
Opiliones
daddy longlegs
harvestman

Kevin Knight

Weberknechte
Schuster
Kanker
Opa Langbein
Zimmermann
Schneider
The aliens will destroy Earth unless we accept, agree to, accede to, yield to, give in to, comply with, cooperate with, or go along with their demands.
give in to
daddy_longlegs
Kevin Knight
Kevin Knight refused to give in to the vicious daddy longlegs.
Kevin Knight refused to give in to the vicious daddy longlegs.
Kevin Knight refused to give in to the vicious daddy longlegs.
Kevin Knight refused to give in to the vicious daddy longlegs.
Lexical segmentation

Kevin_Knight refused to give_in_to to the vicious daddy_longlegs.
Roadmap

• MWEs in NLP
 ‣ What are they?
 ‣ Why are they important?
 ‣ Why are they challenging?
 ‣ How are they handled?

• Corpus annotation

• Sequence tagging formulation & experiments
Definition

• **Multiword expression** (MWE): 2 or more orthographic words/lexemes that function together as an **idiomatic whole**

• *idiomatic* = not fully predictable in form, function, and/or frequency

 ‣ unusual morphosyntax: Me/*Him neither; by and large; plural of *daddy longlegs*?

 ‣ non- or semi-compositional: *ice cream, daddy longlegs, pay attention*

 ‣ statistically collocated: $p(\text{highly unlikely}) > p(\text{strongly unlikely})$
Definition

- **Multiword expression** (MWE): 2 or more orthographic words/lexemes that function together as an *idiomatic whole*

- *idiomatic* = not fully predictable in form, function, and/or frequency

 - unusual morphosyntax: Me/*Him neither; by and large; plural of *daddy longlegs*
 - *non-* or semi-compositional: *ice cream, daddy longlegs, pay attention*
 - statistically collocated: $p(\text{highly unlikely}) > p(\text{strongly unlikely})$
Applications

- **semantic analysis**: minimal meaning-bearing units (e.g., predicates)
 - named entity recognition, supersense tagging already target some kinds of MWEs
 - **sentiment analysis**: MW opinion expressions & opinion targets

- **IR**: keyphrase extraction, query segmentation

- **MT**: decomposing MWEs in translation often incorrect or more ambiguous

- **language acquisition**: many MWEs are difficult for learners
Challenges

• Not superficially apparent in text
• Number/frequency
 › Too many expressions to list all of them
 › Individually rare, but frequent in aggregate
• Diversity
 › Many different construction types
 › Semantically unrestricted
 › Can be gappy
Kevin Knight

daddy longlegs, hot dog
dry out the clothes
depend on
no attention was paid (to)
pay close attention (to)
put up with, give in (to)
der under the weather
cut and dry
in spite of
pick up where they left off
easy as pie
You’re welcome.
To each his own.
Current state of affairs

Resource-building

- lexicons (e.g., WordNet, WikiMwe), grammars
- corpora: treebanks (French Treebank, Prague Czech-English Dependency Treebank)

Explicit

- **Corpus → List:** collocation extraction by word association measures
- **List → Corpus:** matching, classification
- **Corpus (+ List):** sequence modeling, parsing

Implicit

- language modeling, phrase-based MT
Current state of affairs

Resource-building

- lexicons (e.g., WordNet, WikiMwe), grammars
- corpora: treebanks (French Treebank, Prague Czech-English Dependency Treebank)

Explicit

- **Corpus → List**: collocation extraction by word association measures
- **List → Corpus**: matching, classification
- **Corpus (+ List)**: sequence modeling, parsing

Implicit

- language modeling, phrase-based MT
Contributions

• **Our goal:** general-purpose, shallow, automatic identification of MWEs in context

• Existing **resources** are not satisfactory.
 ‣ New corpus—first freely annotated for MWEs, without a preexisting lexicon.

• Existing discriminative sequence modeling techniques do not handle **gaps**.
 ‣ New gappy tagging scheme + **model** trained and evaluated on our annotated corpus.
Roadmap

✓ MWEs in NLP
 ▸ What are they?
 ▸ Why are they important?
 ▸ Why are they challenging?
 ▸ How are they handled?

• Corpus annotation

• Sequence tagging formulation & experiments
My wife had taken her '07 Ford Fusion in for a routine oil change.
Examples

My wife had taken her '07_Ford_Fusion_in for a routine oil_change.
The corpus

- The entire **Reviews** subsection of the English Web Treebank (Bies et al. 2012), fully annotated for MWEs
 - 723 reviews
 - 3,800 sentences
 - 55,000 words

- Every sentence: negotiated consensus between at least 2 annotators
 - IAA between pairs: ~77%
Examples

Among the animals that were available to touch were pony's, camels and EVEN AN OSTRICH !!!

No MWEs here. (This sentence is in the minority: 57% of all sentences/72% >10 words contain an MWE.)
Examples

They gave me the run around and missing paperwork only to call back to tell me someone else wanted her and I would need to come in and put down a deposit.
Examples

It put_hair_on_ my _chest and thanks_to the owner s advice I invested vanguard , got myself a woman like Jerry , and became a republican .
Examples

They *gave* me *the_run_around* and missing paperwork only to *call_back* to tell me someone else wanted her and I would need to *come_in* and *put_down* a deposit.

Simplified a bit for presentational purposes (we also made a strong/weak distinction)
Examples

I **highly~recommend** Debi, she **does~** an amazing **~job**, I "love" the way she **cuts_** my **_hair**, extremely thorough and **cross_checks** her work to **make_sure** my hair is perfect.

Weak expressions: highly~recommend, does~job
Examples

I recently threw~ a surprise ~birthday_party for my wife at Fraiser_'s .

Weak expressions can contain strong MWEs.

Overlap: Ideally we’d have threw~party, birthday_party, surprise_party
Annotation guidelines

https://github.com/nschneid/nanni/wiki/MWE-Annotation-Guidelines
Roadmap

✓ MWEs in NLP
 ▸ What are they?
 ▸ Why are they important?
 ▸ Why are they challenging?
 ▸ How are they handled?

✓ Corpus annotation
 • Sequence tagging formulation & experiments
Gappy sequence tagging

• Simplest tagger (our baseline):
 1. obtain MWE candidates from lexicons
 2. predict the segmentation with fewest total expressions

• We extract lexicons from 10 existing sources of MWEs
 ‣ WordNet, SemCor, Prague Czech-English Treebank, SAID, WikiMwe, Wiktionary, and other lists
Gappy sequence tagging

- *Contiguous* MWE identification resembles chunking, so we can use the familiar BIO scheme (Ramshaw & Marcus 1995):

 `a routine oil_change .`

- We add 3 new tags for *gaps*:

 `My wife had taken_ her '07_Ford_Fusion _in`

 » Assumption: no more than 1 level of nesting

- **Evaluation**: MWE precision/recall

 » MUC criterion: partial credit for partial overlap
Pathological examples

On August 3, two massive headlands reared out_of the mists -- great gateways never~before~ , so_far_as~ Hudson ~knew ~seen by Europeans .
Pathological examples

All you have to do to make it authentic Jamaican food, is add a__whole~_lot of pepper.
Gappy sequence tagging

- Standard supervised learning with the enriched tagging scheme
- We use the structured perceptron (Collins 2002)
 - Discriminative
 - 1st-order Markov assumption
 - Averaging
 - Fast to train
Gappy sequence tagging

• **Basic features**
 adapted from *Constant et al. (2012)*:
 - **word**: current & context, unigrams & bigrams
 - **gold POS**: current & context, unigrams & bigrams
 - capitalization; word shape
 - prefixes, suffixes up to 4 characters
 - has digit; non-alphanumeric characters
 - lemma + context lemma if one is a V and the other is \(\in \{N, V, Adj., Adv., Prep., Part.\} \)

• **Lexicon features**: WordNet & other lexicons
Gappy sequence tagging

• Experimental setup
 ‣ Regularization by early stopping
 ‣ 8-fold cross-validation; results are 8-way averages
 ‣ Jon Clark’s ducttape
Statistical vs. Matching, and # of lexicons used

- 0 lexicons
- 10 lexicons
- F = 62%

Precision vs. Recall

10 lexicons: F = 62%
2 lexicons: F = 34%
0 lexicons: P = R
(all use 10 lexicons)

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline: lexicon matching</td>
<td>0.279</td>
<td>0.446</td>
<td>0.342</td>
</tr>
<tr>
<td>Sequence model</td>
<td>0.790</td>
<td>0.511</td>
<td>0.618</td>
</tr>
</tbody>
</table>
Word clusters

• **Brown clusters** *(Brown et al. 1992)*
 ‣ latent word categories explaining observed sequences
 ‣ hard assignment: each word goes in 1 cluster
 ‣ agglomerative, greedy, scalable algorithm

• 1000 from reviews in the Yelp Academic Dataset *(20.7M words)*
 ‣ words occurring ≥25 times
 ‣ Percy Liang’s implementation
certainly
definitely
surely
definitely
definitely
definitely
definitely
definitely
definitely
spelling variation, synonymy
spelling variation, synonymy

syntactic & pragmatic similarity
spelling variation, synonymy

syntactic & pragmatic similarity

semantic category

idiosyncratic lexical context
<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline: lexicon matching</td>
<td>0.279</td>
<td>0.446</td>
<td>0.342</td>
</tr>
<tr>
<td>Sequence model</td>
<td>0.790</td>
<td>0.511</td>
<td>0.618</td>
</tr>
<tr>
<td>+ Brown clusters</td>
<td>0.790</td>
<td>0.515</td>
<td>0.624</td>
</tr>
</tbody>
</table>

(all use 10 lexicons)
Word association scores

• large literature on statistical measures of collocation
 ‣ *information theoretic*: mutual information, ...
 ‣ *frequentist*: t–statistic, χ^2, ...

• scores \rightarrow rankings \rightarrow rank threshold features
 1. POS tag the Yelp Academic Dataset with the Twitter tagger *(Owoputi et al. 2013)*
 3. Use mwetoolkit *(Ramisch et al. 2010)* to identify, score (t), and rank each group of candidates
<table>
<thead>
<tr>
<th>Model</th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline: lexicon matching</td>
<td>0.279</td>
<td>0.446</td>
<td>0.342</td>
</tr>
<tr>
<td>Sequence model</td>
<td>0.790</td>
<td>0.511</td>
<td>0.618</td>
</tr>
<tr>
<td>+ Brown clusters</td>
<td>0.790</td>
<td>0.515</td>
<td>0.624</td>
</tr>
<tr>
<td>+ mwetoolkit word associations</td>
<td>0.793</td>
<td>0.511</td>
<td>0.621</td>
</tr>
</tbody>
</table>

(all use 10 lexicons)
Recall-oriented learning

- Our supervised learner is actually optimizing for *tag accuracy*, not *expression precision/recall*
 - This tends to hurt recall, because (short of strong evidence) the safest tag is 0

- A **recall-oriented** cost function can compensate by biasing in favor of recall (Mohit et al. 2012), improving the F score
 - Tunable hyperparameter controls the strength of this preference
<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline: lexicon matching</td>
<td>0.279</td>
<td>0.446</td>
<td>0.342</td>
</tr>
<tr>
<td>Sequence model</td>
<td>0.790</td>
<td>0.511</td>
<td>0.618</td>
</tr>
<tr>
<td>+ Brown clusters</td>
<td>0.790</td>
<td>0.515</td>
<td>0.624</td>
</tr>
<tr>
<td>+ mwetoolkit word associations</td>
<td>0.793</td>
<td>0.511</td>
<td>0.621</td>
</tr>
<tr>
<td>+ recall-oriented learning</td>
<td>0.700</td>
<td>0.596</td>
<td>0.645</td>
</tr>
</tbody>
</table>

(all use 10 lexicons)
Error analysis

- Cross-gap recall: 155/466 = 33%

✓ unseen TPs:

- above all
- allenn tire
- amusement parks
- antipasto misto
- aortic stenosis
- associate with
- at peace
- behind the scene
- brand new
- carnegie mellon
- check - in
- cleaning lady
- come up
- cowboy boot
- cup of joe

✗ unseen FPs: a little girl, bad for, cigarette smoke, funeral director, get coupon, kitchen sink

✗ unseen FNs: an arm and a leg, bad for business, child predator, dfw metro area
Conclusions

• Multiword expressions are important and challenging
• We can shallowly mark them in free text
 ‣ new corpus resource!
• MWE identification can be modeled as sequence tagging
 ‣ even with gaps!
 ‣ statistical learning » lexicon-based segmentation
 ‣ but lexical resources are still useful (features!)
Many_thanks
(*Several thanks)

Thanks_a_million
(*Thanks a thousand)

Thanks_a_lot
(?Lots of thanks)