Lexical Semantic Recognition

Nelson Liu, Daniel Hershcovich, Michael Kranzlein, Nathan Schneider

MWE 2021 — August 6th, 2021

Joint Lexical Semantic Segmentation and Disambiguation

- In lexical semantics, full-sentence segmentation and segment labeling are often treated separately.
 - e.g., multiword expression identification (segmentation) and classification / supersense tagging (segment labeling)
- This work: joint segmentation and disambiguation, unifying previously disparate layers of annotation.
 - By analogy to named entity recognition (NER), these are kexical semantic recognition (LSR) tasks.

This Talk

- An overview of the STREUSLE LSR task
- Instantiation as sequence tagging
- Model description: BERT-based neural CRF tagger
- Evaluating the model on STREUSLE LSR task
- Do STREUSLE-trained taggers generalize to PARSEME and DiMSUM?

The STREUSLE LSR Task

- We focus on the LSR task defined by the STREUSLE corpus
- STREUSLE contains comprehensive annotations of:
 - MWEs (+ syntactic status)
 - Noun, Verb, and Preposition / Possessive Supersense.
- Annotated on Reviews section of English Web Treebank (55K tokens)

STREUSLE	SS LexCat	PRON	v.Motion V.VPC.full	p.Possessor PRON.POSS	n.Artifact N		p.Purp	ose DET	n.Act N	•		n.Artifact
	MWE					in					air	conditioning

EUSLE	SS	SS v. Motion		p.Possessor	n.Artifact	p.Purpose		n.Act p.Theme		n.Artifact			
STREUS	LexCat	PRON	V.VPC.full	PRON.POSS	N		P	DET	Ν	φ	DET		N
	MWE	We	took	our	vehicle	in	for	а	repair	to	the	air	conditioning

SLE	SS		v.Motion	p.Possessor	n.Artifact		p.Purp	ose	n.Act	p.The	eme		n.Artifact
	LexCat	PRON	V.VPC.full	PRON.POSS	Ν		P	DET	N	P	DET		N
STR	MWE	We	took	our	vehicle	in	for	а	repair	to	the	air	conditioning

Related Frameworks

- STREUSLE annotations generalize those of two previous shared tasks:
 - English PARSEME 1.1 VMWEs (Ramisch et al., 2018): STREUSLE VMWE lexcats are identical to PARSEME.
 - DiMSUM (Schneider et al., 2016): MWEs, noun and verb supersenses.

Modeling Approach: Token-Level Sequence Tagging

- Serialize MWE, lexcat, and supersense information into token-level tags.
 - Format: {MWE BIO tag}-{Lexcat}-{Supersense Label}
- Joint sequence segmentation and segment-labeling is thus just token-level tagging.
 - 572 unique tags in training, 12 tags in dev. that aren't seen during training

Tag Serialization Example


```
We/O-PRON took/B-V.VPC.full-v.Motion our/o-PRON.POSS vehicle/o-N-n.ARTIFACT in/I_for/O-P-p.Purpose a/O-DET repair/O-N-n.ACT to/O-P-p.Theme the/O-DET air/B-N-n.ARTIFACT conditioning/I_
```

Sequence Tagger

- BERT-based neural CRF tagger.
 - Embed tokens with BERT / other model
 - Feed contextualized token embeddings through BiLSTM
 - Predicting output: affine transformation + linear-chain CRF

Sequence Tagger Output Constraints

- Constraints on CRF transitions used to enforce valid MWE BIO sequences.
- Lexcats are also constrained by a UPOS and lemma.
 - Tokens with AUX UPOS must take AUX lexcat
- Use off-the-shelf UPOS tagger and lemmatizer to predict UPOS and lemmas for use in constraints

STREUSLE Performance

• Experiment: train on STREUSLE, test on STREUSLE

STREUSLE Full-Tag Accuracy

BERT (Gold UPOS)	82.5
BERT (Predicted UPOS)	81.0
GloVe (Gold UPOS)	79.3
GloVe (Predicted UPOS)	77.5

STREUSLE Performance (only preposition / possessive supersenses)

Experiment: train on STREUSLE, test on STREUSLE

Schneider et al.
 (2018): previous
 best STREUSLE
 preposition /
 possessive tagger

BERT (Gold UPOS) 71.4

BERT (Predicted UPOS) 71.6

Schneider et al., (2018) 55.7

Can the model generalize to other corpora?

• Experiment: train on STREUSLE, evaluate on PARSEME

	MWE-based F1	Token-based F1
BERT (Gold UPOS)	40.3	45.4
BERT (Predicted UPOS)	39.2	43.4
Nerima et al. (2017) *Rule-based shared-task winner	33.3	34.4
Taslimipoor et al. (2019) *Uses ELMo / dependency parses	36.0	40.2
Rohanian et al. (2019) *Uses ELMo / dependency parses	41.9	

Can the model generalize to other corpora?

• Experiment: train on STREUSLE, evaluate on DiMSUM

MWEs F1 Supersenses F1 Combined F1

BERT (Gold UPOS)	50.0	54.2	53.4
BERT (Predicted UPOS)	49.7	51.4	51.1
Kirilin et al., (2016) DiMSUM shared task winner, uses Twitter + STREUSLE training data	58.4	58.0	58.1

Summary

- LSR on STREUSLE: joint MWE segmentation and lexical category / supersense disambiguation
- This task generalizes previous annotations of previous shared tasks (PARSEME VMWEs and DiMSUM)
- BERT-based tagger trained on STREUSLE is competitive with prior work on PARSEME and DiMSUM, despite only training on STREUSLE.
- Thanks! Questions?