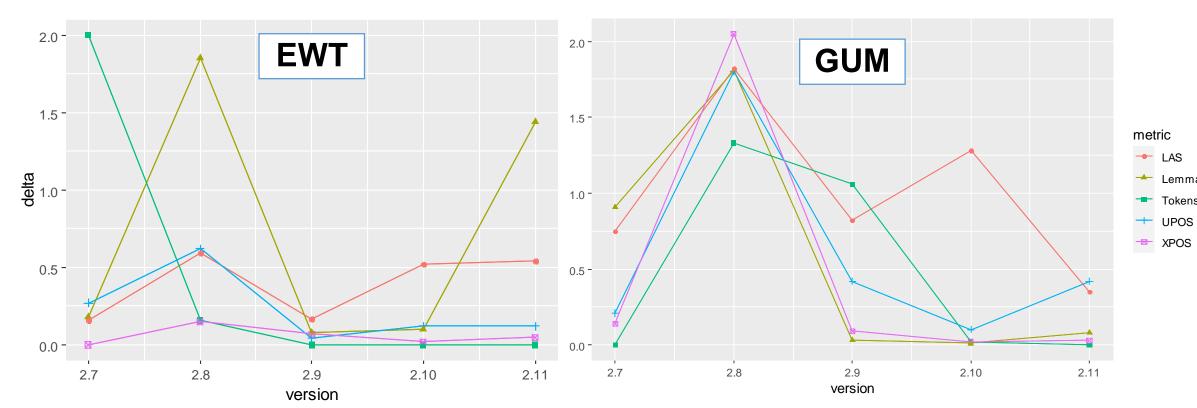


# Are UD Treebanks Getting More Consistent? A Report Card for English UD

AMIR ZELDES & NATHAN SCHNEIDER

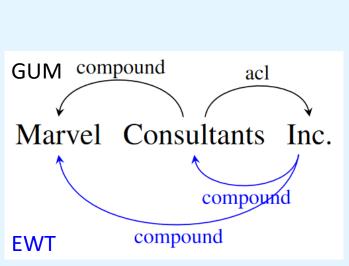
{amir.zeldes,nathan.schneider}@georgetown.edu

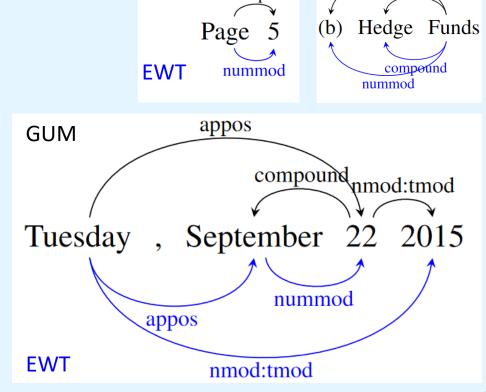



#### Overview

- Universal Dependencies (UD) provides 200+ treebanks in 138 languages with a unified scheme (de Marneffe et al. 2021)
- 40/138 languages have multiple treebanks, allowing joint models
- English default for popular tools uses EWT+GUM (Stanza, Qi et al. 2020)
- But treebanks are not necessarily consistent and constantly changing
  - > How consistent are English EWT and GUM? Where do they differ?
  - ➤ Is consistency **improving** across UD versions? (focus on v2.6-2.12)
  - > Is joint training for English a good idea? If so, since when?

## How has the data changed?


- Methodology: treat each successive version as gold and the previous as pred
- Use official CoNLL scorer to obtain delta to next version to quantify change




- Introduced MWTs in v2.7 & 2.8
- upos changes to proper names (ADJ, VERB in names) in 2.8
- lemma caps consistency in 2.8
- LAS due to: amod in names (2.8); parataxis for X so Y(2.10); nested subjects (nsubj:outer), relatives, clefts (2.11)
- Introduced MWTs in 2.8, split hyphenated tokens in 2.9
- xpos added **HYPH**, removed **-LSB-** to match EWT in 2.8-2.9
- **PRON & DET** revisions in 2.11
- named lemma consistency (2.8)
- LAS: changes to **flat** (2.10), less **dep**, addition of orphan cases (2.8, 2.10)

#### Where do GUM and EWT trees still differ?

- Proper name internal structure (incl. conversion errors)
- Some compounds
- Number modifiers
- List markers (LS)
- Dates
- Deprel *list* (almost unused in GUM)



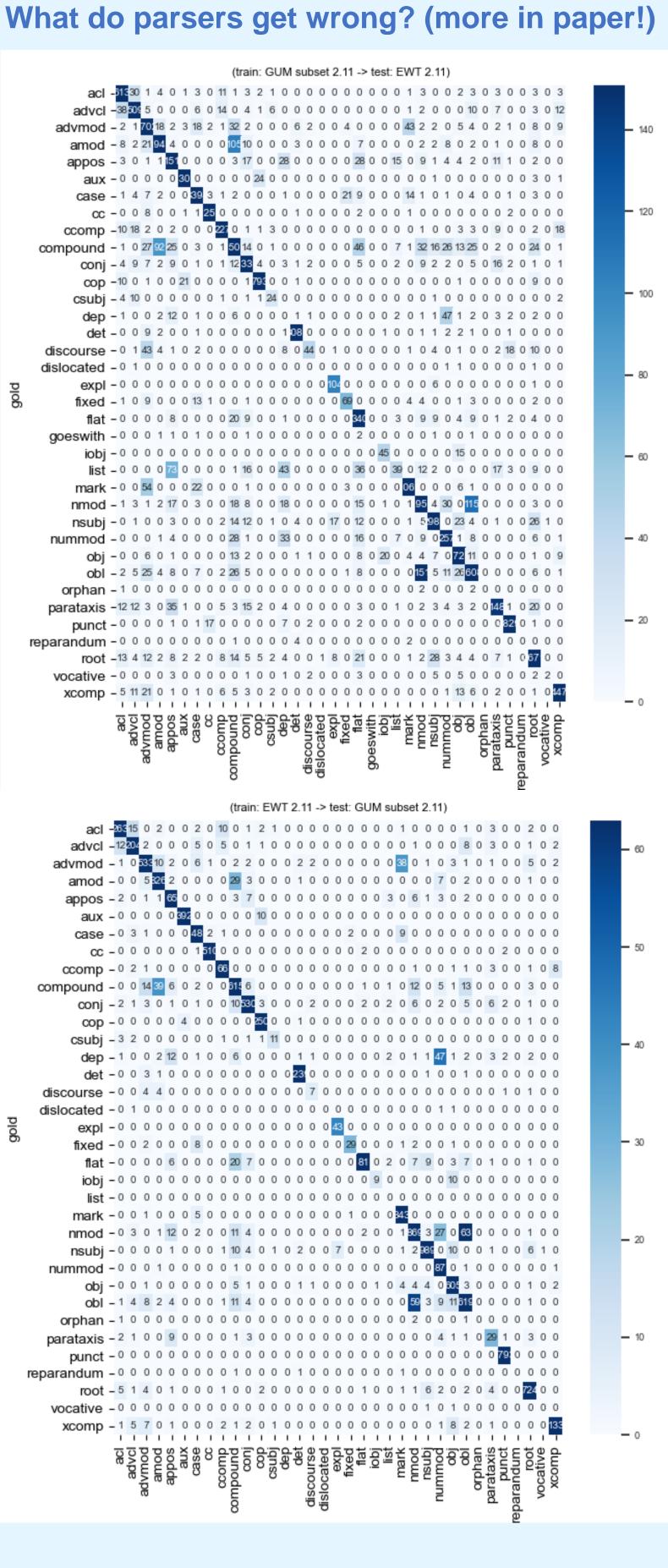


## **Parsing experiments**

- Is cross-corpus parsing getting better?
- Methodology: fix GUM train to 2.6 documents (GUM has grown since)
- Use Diaparser (Attardi et al. 2021) + Electra (Clark et al. 2020)

|       |         | EWI                | T test             | <b>GUM test</b>    |                    | Macro-Avg          |                    |
|-------|---------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| train | version | UAS (sd)           | LAS (sd)           | UAS (sd)           | LAS (sd)           | UAS (sd)           | LAS (sd)           |
| EWT   | v2.6    | 92.82 0.132        | 90.24 0.066        | 87.81 0.073        | 83.89 0.023        | 90.31 0.059        | 87.07 0.025        |
|       | v2.7    | 92.84 0.037        | 90.25 0.173        | 87.87 0.088        | 84.19 0.074        | 90.35 0.062        | 87.22 0.114        |
|       | v2.8    | 92.93 0.060        | 90.42 0.090        | 87.97 0.078        | 84.90 0.028        | 90.45 0.065        | 87.66 0.042        |
|       | v2.9    | 92.88 0.107        | 90.41 0.131        | 87.57 0.148        | 84.36 0.105        | 90.23 0.098        | 87.38 0.117        |
|       | v2.10   | 93.06 0.082        | 90.70 0.158        | 87.81 0.084        | 84.72 0.138        | 90.44 0.082        | 87.71 0.088        |
|       | v2.11   | <b>93.18</b> 0.142 | <b>90.90</b> 0.139 | <b>88.05</b> 0.260 | <b>84.74</b> 0.289 | <b>90.62</b> 0.196 | <b>87.82</b> 0.207 |
| GUM   | v2.6    | 86.53 0.357        | 81.78 0.397        | 91.37 0.201        | 87.90 0.141        | 88.95 0.187        | 84.84 0.209        |
|       | v2.7    | 86.69 0.336        | 82.28 0.322        | 91.66 0.156        | 88.24 0.284        | 89.18 0.242        | 85.26 0.299        |
|       | v2.8    | 87.02 0.133        | 82.90 0.214        | 91.88 0.132        | 88.86 0.159        | 89.45 0.002        | 85.88 0.041        |
|       | v2.9    | 87.42 0.143        | 83.43 0.025        | 91.88 0.300        | 88.78 0.281        | 89.65 0.219        | 86.11 0.140        |
|       | v2.10   | 87.53 0.190        | 83.79 0.191        | 92.16 0.216        | 89.24 0.191        | 89.85 0.203        | 86.51 0.191        |
|       | v2.11   | <b>88.23</b> 0.198 | <b>84.27</b> 0.095 | <b>92.28</b> 0.137 | <b>89.48</b> 0.224 | <b>90.26</b> 0.121 | <b>86.88</b> 0.132 |

**Table 1:** Cross-corpus parsing scores (three run averages with standard deviations)


- Cross-corpus results are getting better but are worse than within-corpus
- GUM is harder (-1.4 LAS at best); 12 genres incl. spoken, less data
- Are joint models a good idea?
- Two settings: GUM 2.6 documents (for fairness) or all GUM in each version (=realistic, what you get e.g. in Stanza)

|                         |         | EWI                | T test             | GUM test           |                    | Macro-Avg          |                    |
|-------------------------|---------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| train                   | version | UAS (sd)           | LAS (sd)           | UAS (sd)           | LAS (sd)           | UAS (sd)           | LAS (sd)           |
| JOINT <sub>subset</sub> | v2.6    | 92.38 0.044        | 89.59 0.108        | 90.08 0.366        | 86.80 0.326        | 91.23 0.177        | 88.20 0.146        |
|                         | v2.7    | 92.31 0.078        | 89.61 0.072        | 90.15 0.311        | 86.96 0.360        | 91.23 0.122        | 88.29 0.148        |
|                         | v2.8    | 92.49 0.159        | 89.99 0.128        | 90.51 0.351        | 87.86 0.449        | 91.50 0.154        | 88.92 0.195        |
|                         | v2.9    | 92.39 0.324        | 89.80 0.278        | 90.63 0.392        | 87.91 0.415        | 91.51 0.086        | 88.85 0.114        |
|                         | v2.10   | 92.62 0.034        | 90.24 0.058        | 90.51 0.418        | 87.86 0.381        | 91.56 0.192        | 89.05 0.163        |
|                         | v2.11   | <b>92.92</b> 0.072 | <b>90.58</b> 0.052 | <b>90.75</b> 0.073 | <b>87.94</b> 0.059 | <b>91.83</b> 0.064 | <b>89.26</b> 0.045 |
| JOINT <sub>all</sub>    | v2.6    | 92.38 0.044        | 89.59 0.108        | 90.08 0.366        | 86.80 0.326        | 91.23 0.177        | 88.20 0.146        |
|                         | v2.7    | 92.31 0.078        | 89.61 0.072        | 90.15 0.311        | 86.96 0.360        | 91.23 0.122        | 88.29 0.148        |
|                         | v2.8    | 92.07 0.277        | 89.55 0.312        | 91.26 0.267        | 88.72 0.247        | 91.66 0.077        | 89.14 0.066        |
|                         | v2.9    | 92.27 0.154        | 89.77 0.287        | 90.81 0.084        | 88.12 0.123        | 91.54 0.110        | 88.95 0.176        |
|                         | v2.10   | 92.18 0.018        | 89.86 0.010        | 91.54 0.170        | 88.99 0.211        | 91.86 0.092        | 89.43 0.110        |
|                         | v2.11   | <b>92.54</b> 0.259 | <b>90.11</b> 0.240 | <b>91.71</b> 0.426 | <b>89.11</b> 0.534 | <b>92.13</b> 0.147 | <b>89.61</b> 0.181 |

**Table 2:** Joint training parsing scores (three run averages with standard deviations)

- Scores for joint model have gotten steadily better
- Still can't beat train/test on single same corpus!
- But macro-average on both corpora is much better
- And the gap is now very small even within-corpus (best joint model less than -0.5 LAS away from best within-corpus model for both corpora)

Bottom line: in realistic usage on new data use joint models!!

