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Background
What is calibration?

� A model is well calibrated when its probabilities correlate well with 
empirical accuracy

� 𝛼% of model outputs of probability 𝛼 should be correct

� A model can be very accurate but also be severely miscalibrated 
(Guo et al., 2017)

� Reducing calibration error is important
� Gives you more reliable and interpretable confidence scores
� Reliable confidence scores may improve results on other tasks or 

make certain tasks easier
� Preannotation
� Rare instance discovery
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Background
What is calibration?

� How do we measure calibration error?
� Ideally, take many sample outputs from the model where the 

probability is 𝛼 and see how many are correct
� Models output continuous scores 

� Suppose 𝛼 = 82.53046%
� We probably won’t be able to find multiple probabilities 𝛼

� Instead of looking for 𝛼 exactly, look for similar scores and put them 
in a bin; then calculate deviation from average score and label in the 
bin

� Error is an average of the deviations in each bin, weighted by the 
number of items in each bin
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� We can measure calibration error with uncalibrated scores and 
recalibrated scores and (hopefully) observe a reduction
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Background
What is calibration?

How do we re-calibrate a model’s probabilities?
1. Incorporate calibration error into objective function during training
2. Use post-processing techniques that shift scores in a way that 

minimizes calibration error on held-out data to learn a 
recalibration model

Kranzlein et al. – Findings of EMNLP 2021

5



Background
Why is it difficult to 
recalibrate models 
with sparse tagsets?

� Prior work primarily focuses on top-label calibration
� Recalibrates only the score for the tag the model predicts for each 

input

� Sparse tagsets (especially for NLP) are understudied
� Most existing work is on image classification tasks with balanced, 

smaller tagsets

� Marginal recalibration typically requires lots of data for each class
� Ideal approach is developing an independent recalibration model for 

each class (Kumar et al., 2019)
� When that’s not possible due to lack of data, Shared Classwise

Binning (Patel et al., 2021) creates a shared recalibration model 
among all classes
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Methodology
Tag Frequency 
Grouping (ours)

� We hypothesize that tags that are similarly frequent in the training 
data will be similarly miscalibrated

� The model may tend to be: 
� Overconfident on the tags it has seen the most
� Underconfident on rare tags

� Idea: calibrate similarly frequent tags together
� Sort tags by gold label frequency
� Divide tags into G groups of roughly equal size
� Calibrate each group together
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Experiments

� Compare Shared Classwise Binning (SCW) and Tag Frequency 
Grouping (TFG ) using three techniques on two tasks

� Techniques
1. Histogram binning (Zadrozny and Elkan, 2001)
2. Isotonic Regression (Zadrozny and Elkan, 2002)
3. Scaling Binning (Kumar et al., 2019)

� Tasks
1. Combinatory Categorial Grammar supertagging (Prange et al., 

2021)
2. Lexical Semantic Recognition (Liu et al., 2021)

� Both tasks have hundreds of tags
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Results
(overall)
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TFG and SCW 
both do a good 
job of reducing 

calibration error 
on each task!

Black circle: Initial 
calibration error

Green arrow: 
Calibration error 

after TFG (our 
method)

Blue square: 
Calibration error 

after SCW



Results
(by frequency group)
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Group 5: Rarest 
tags

Group 1: Most 
common tags

TFG does better
than SCW on the 

rarest tags.



Conclusions

We showed:
� SCW and TFG can be used for recalibration and evaluation (SCW 

previously only used for recalibration)
� TFG works well, especially for recalibrating scores for rare tags
� TFG in evaluation allows for more fine-grained analysis of calibration 

error than SCW

Future work:
� We evaluated on 5 frequency groups (G=5); what’s the optimal way 

to determine G?
� CCG and LSR tagsets have structure; can their subtags be used to 

determine tag groupings?
� Does TFG have benefits for more balanced datasets?
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