ENLP Lecture 14 Deep Learning & Neural Networks

Austin Blodgett & Nathan Schneider

ENLP | March 18, 2021

a family of algorithms

NN Task	Example Input	Example Output
Binary classification		
Multiclass classification		
Sequence		
Sequence to Sequence		
Tree/Graph Parsing		

NN Task	Example Input	Example Output
Binary classification	features	+/-
Multiclass classification	features	decl, imper,
Sequence	sentence	POS tags
Sequence to Sequence	(English) sentence	(Spanish) sentence
Tree/Graph Parsing	sentence	dependency tree or AMR parsing

2. What's Deep Learning (DL)?

- **Deep learning** is a subfield of **machine learning**
- Most machine learning methods work well because of human-designed representations and input features
 - For example: features for finding named entities like locations or organization names (Finkel et al., 2010):
- Machine learning becomes just optimizing weights to best make a final prediction

Feature	NER
Current Word	\checkmark
Previous Word	\checkmark
Next Word	\checkmark
Current Word Character n-gram	all
Current POS Tag	\checkmark
Surrounding POS Tag Sequence	\checkmark
Current Word Shape	\checkmark
Surrounding Word Shape Sequence	\checkmark
Presence of Word in Left Window	size 4
Presence of Word in Right Window	size 4

Machine Learning vs. Deep Learning

What's Deep Learning (DL)?

 Representation learning attempts to automatically learn good features or representations

- Deep learning algorithms attempt to learn (multiple levels of) representation and an output
- From "raw" inputs x
 (e.g., sound, characters, or words)

On the history of and term "Deep Learning"

- We will focus on different kinds of **neural networks**
- The dominant model family inside deep learning

- We will not take a historical approach but instead focus on methods which work well on NLP problems now
- For a long (!) history of deep learning models (starting ~1960s), see: <u>Deep Learning in Neural Networks: An Overview</u> by Jürgen Schmidhuber

Reasons for Exploring Deep Learning

- In ~2010 deep learning techniques started outperforming other machine learning techniques. Why this decade?
- Large amounts of training data favor deep learning
- Faster machines and multicore CPU/GPUs favor Deep Learning
- New models, algorithms, ideas
 - Better, more flexible learning of intermediate representations
 - Effective end-to-end joint system learning
 - Effective learning methods for using contexts and transferring between tasks

→ Improved performance (first in speech and vision, then NLP)

Deep Learning for Speech

- The first breakthrough results of "deep learning" on large datasets happened in speech recognition
- Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition Dahl et al. (2010)

Acoustic model	Recog	RT03S	Hub5
	WER	FSH	SWB
Traditional features	1-pass –adapt	27.4	23.6
Deep Learning	1-pass	18.5	16.1
	–adapt	(-33%)	(-32%)

Deep Learning for Computer Vision

Most deep learning groups have focused on computer vision (at least till 2 years ago)

The breakthrough DL paper: ImageNet Classification with Deep Convolutional Neural Networks by Krizhevsky, Sutskever, & Hinton, 2012, U. Toronto. 37% error red.

Zeiler and Fergus (2013)

Perceptron

(as in the classifier, not the learning algorithm)

Perceptron

"Neuron"

- A biological neuron receives electric signals as input and uses them to compute an electrical signal as output
- The perceptron in an artificial neural network is loosely inspired by the biological neuron
 Dendrite
- The artificial neural networks we use for machine learning are NOT models of the brain!

FFNNs

- Feed Forward Neural Net Multiple layers of neurons
- Can solve non-linearly separable problems
- (All arrows face the same direction)
- Applications:
 - *Text classification* sentiment analysis, language detection, ...
 - Unsupervised learning dimension reduction, word2vec

- How do I interpret an NN?
 - An NN performs function approximation
 - Connections in an NN posit relatedness
 - Lack of connection posits independence

- What do the weights mean?
 - Functional perspective these weights optimize NN's task performance
 - Representation perspective weights represent unlabeled, distributed knowledge (useful but not generally interpretable)

Can an NN learn anything?

• No, but ...

Theorem: 'One hidden layer is enough to represent (*not learn*) an approximation of any function to an arbitrary degree of accuracy'

Given infinite training data, memory, etc.)

• What happens if I make an NN deeper?

Width controls overfitting/underfitting

Depth allows complex functions, can reduce overfitting

Exponential Representation Advantage of Depth

(Goodfellow 2017)

activation functions

- Activation function "squishes" neuron inputs into an output
 - Use in output layer Sigmoid (binary class), Softmax (Multiclass)
 - Use in hidden layers ReLU, Leaky ReLU

training

• To train an NN, you need:

- Training set ordered pairs each with an input and target output
- Loss function a function to be optimized, e.g. Cross Entropy
- Optimizer a method for adjusting the weights, e.g. Gradient Descent

Gradient Descent – use gradient to find lowest point in a function

backpropagation

Backpropagation = Chain Rule + Dynamic Programming

Loss function – measures NN's performance.

Adjust weights by gradient (using a *learning rate*) of the loss. Save repeated partial computations along the way.

$$\Delta w_i = \frac{\partial}{\partial w_i} Loss(f(\mathbf{W}, \mathbf{V}, \dots, \mathbf{x}), target)$$

loss functions

- Loss function measures NN's performance.
 - Probabilistic interpretation
 - Binary output Binary Cross Entropy and Sigmoid
 - Multiclass/Sequence output Categorical Cross Entropy and Softmax
 - either Generative or Discriminative
 - Geometric interpretation
 - Mean Squared Error or Hinge Loss (like in Structured Perceptron)

Embeddings

- Embeddings Dense vector representations of words, characters, documents, etc.
- Used as input features for most Neural NLP models
- Prepackaged word2vec, GloVe
- Use pre-trained word embeddings and train them yourself!
- Pretrained models that give contextualized word embeddings: ELMo, BERT, OpenAI GPT-2

Word meaning as a neural word vector – visualization

Some References

NN Packages – <u>TensorFlow</u>, <u>PyTorch</u>, <u>Keras</u>

Some Books

- Goldberg book (free from Georgetown)
- Goodfellow book (Chapters and Videos)

Other architectures

- The layout of a network is called the architecture.
- Vanilla architecture: Feed-forward, with every node in the 1st layer connected to every node in the 2nd layer, etc.,
- Other architectures: **convolutional**, **recurrent**, ...