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a family of algorithms



NN Task Example Input Example Output

Binary 
classification
Multiclass 
classification
Sequence
Sequence to 
Sequence 
Tree/Graph 
Parsing



NN Task Example Input Example Output

Binary 
classification

features +/-

Multiclass 
classification

features decl, imper, … 

Sequence sentence POS tags

Sequence to 
Sequence 

(English) sentence (Spanish) sentence

Tree/Graph 
Parsing

sentence dependency tree or 
AMR parsing



2.	What’s	Deep	Learning	(DL)?

• Deep	learning	is	a	subfield	of	machine	learning

• Most	machine	learning	methods	work	
well	because	of	human-designed	
representations	and	input	features
• For	example:	features	for	finding	
named	entities	like	locations	or	
organization	names	(Finkel et	al.,	2010):

• Machine	learning	becomes	just	optimizing
weights	to	best	make	a	final	prediction

3.3. APPROACH 35

Feature NER TF
Current Word ! !

Previous Word ! !

Next Word ! !

Current Word Character n-gram all length ≤ 6
Current POS Tag !

Surrounding POS Tag Sequence !

Current Word Shape ! !

Surrounding Word Shape Sequence ! !

Presence of Word in Left Window size 4 size 9
Presence of Word in Right Window size 4 size 9

Table 3.1: Features used by the CRF for the two tasks: named entity recognition (NER)
and template filling (TF).

can go beyond imposing just exact identity conditions). I illustrate this by modeling two
forms of non-local structure: label consistency in the named entity recognition task, and
template consistency in the template filling task. One could imagine many ways of defining
such models; for simplicity I use the form

PM(y|x)∝ ∏
λ∈Λ

θ#(λ ,y,x)
λ (3.1)

where the product is over a set of violation types Λ, and for each violation type λ we
specify a penalty parameter θλ . The exponent #(λ ,s,o) is the count of the number of times
that the violation λ occurs in the state sequence s with respect to the observation sequence
o. This has the effect of assigning sequences with more violations a lower probability.
The particular violation types are defined specifically for each task, and are described in
sections 3.4.1 and 3.5.2.

This model, as defined above, is not normalized, and clearly it would be expensive to do
so. As we will see in the discussion of Gibbs sampling, this will not actually be a problem
for us.

(Slide from Manning and Socher)

http://web.stanford.edu/class/cs224n/lectures/lecture1.pdf


Machine	Learning	vs.	Deep	Learning

Machine Learning in Practice

Describing your data with 
features a computer can 
understand

Learning 
algorithm

Domain	specific,	requires	Ph.D.	
level	talent

Optimizing	the	
weights	on	features

(Slide from Manning and Socher)

http://web.stanford.edu/class/cs224n/lectures/lecture1.pdf


What’s	Deep	Learning	(DL)?

• Representation	learning	attempts	
to	automatically	learn	good	
features	or	representations

• Deep	learning	algorithms	attempt	to	
learn	(multiple	levels	of)	
representation	and	an	output

• From	“raw”	inputs	x	
(e.g.,	sound,	characters,	or	words)

(Slide from Manning and Socher)

http://web.stanford.edu/class/cs224n/lectures/lecture1.pdf


On	the	history	of	and	term	“Deep	Learning”

• We	will	focus	on	different	kinds	of	neural	networks	
• The	dominant	model	family	inside	deep	learning

• Only	clever	terminology	for	stacked	logistic	regression	units?
• Maybe,	but	interesting	modeling	principles	(end-to-end)	and	
actual	connections	to	neuroscience	in	some	cases

• We	will	not	take	a	historical	approach	but	instead	focus	on	
methods	which	work	well	on	NLP	problems	now

• For	a	long	(!)	history	of	deep	learning	models	(starting	~1960s),	
see:	Deep	Learning	in	Neural	Networks:	An	Overview	
by	Jürgen	Schmidhuber

(Slide from Manning and Socher)

http://web.stanford.edu/class/cs224n/lectures/lecture1.pdf


Reasons	for	Exploring	Deep	Learning

• In	~2010	deep learning	techniques	started	outperforming	other	

machine	learning	techniques.	Why	this	decade?

• Large	amounts	of	training	data	favor	deep	learning

• Faster	machines	and	multicore	CPU/GPUs	favor	Deep	Learning

• New	models,	algorithms,	ideas

• Better,	more	flexible	learning	of	intermediate	representations

• Effective	end-to-end	joint	system	learning

• Effective	learning	methods	for	using	contexts	and	transferring	

between	tasks

à Improved	performance	(first	in	speech	and	vision,	then	NLP)

(Slide from Manning and Socher)

http://web.stanford.edu/class/cs224n/lectures/lecture1.pdf


Deep	Learning	for	Speech

• The	first	breakthrough	results	of	
“deep	learning”	on	large	
datasets	happened	in	speech	
recognition

• Context-Dependent	Pre-trained	
Deep	Neural	Networks	for	Large	
Vocabulary	Speech	Recognition	
Dahl	et	al.	(2010)

Phonemes/Words

Acoustic	model Recog
WER

RT03S	
FSH

Hub5	
SWB

Traditional	
features

1-pass	
−adapt

27.4 23.6

Deep	Learning 1-pass	
−adapt

18.5
(−33%)

16.1
(−32%)

(Slide from Manning and Socher)

http://web.stanford.edu/class/cs224n/lectures/lecture1.pdf


Deep	Learning	for	Computer	Vision

Most	deep	learning	groups
have	focused	on	computer	vision	
(at	least	till	2	years	ago)	

The breakthrough	DL	paper:	
ImageNet	Classification	with	Deep	
Convolutional	Neural	Networks	by	
Krizhevsky,	Sutskever,	&	Hinton,	
2012,	U.	Toronto.	37%	error	red.

17
Zeiler and	Fergus	(2013)

8 Olga Russakovsky* et al.
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Fig. 2 The ILSVRC dataset contains many more fine-grained classes compared to the standard PASCAL VOC benchmark;
for example, instead of the PASCAL “dog” category there are 120 di↵erent breeds of dogs in ILSVRC2012-2014 classification
and single-object localization tasks.

are 1000 object classes and approximately 1.2 million
training images, 50 thousand validation images and 100
thousand test images. Table 2 (top) documents the size
of the dataset over the years of the challenge.

3.2 Single-object localization dataset construction

The single-object localization task evaluates the ability
of an algorithm to localize one instance of an object
category. It was introduced as a taster task in ILSVRC
2011, and became an o�cial part of ILSVRC in 2012.

The key challenge was developing a scalable crowd-
sourcing method for object bounding box annotation.
Our three-step self-verifying pipeline is described in Sec-
tion 3.2.1. Having the dataset collected, we perform
detailed analysis in Section 3.2.2 to ensure that the
dataset is su�ciently varied to be suitable for evalu-
ation of object localization algorithms.

Object classes and candidate images. The object classes
for single-object localization task are the same as the
object classes for image classification task described
above in Section 3.1. The training images for localiza-
tion task are a subset of the training images used for
image classification task, and the validation and test
images are the same between both tasks.

Bounding box annotation. Recall that for the image
classification task every image was annotated with one

object class label, corresponding to one object that is
present in an image. For the single-object localization
task, every validation and test image and a subset of the
training images are annotated with axis-aligned bound-
ing boxes around every instance of this object.

Every bounding box is required to be as small as
possible while including all visible parts of the object
instance. An alternate annotation procedure could be
to annotate the full (estimated) extent of the object:
e.g., if a person’s legs are occluded and only the torso
is visible, the bounding box could be drawn to include
the likely location of the legs. However, this alterna-
tive procedure is inherently ambiguous and ill-defined,
leading to disagreement among annotators and among
researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only
annotating visible object parts (Russell et al., 2007; Ev-
eringham et al., 2010).5

3.2.1 Bounding box object annotation system

We summarize the crowdsourced bounding box anno-
tation system described in detail in (Su et al., 2012).
The goal is to build a system that is fully automated,

5 Some datasets such as PASCAL VOC (Everingham et al.,
2010) and LabelMe (Russell et al., 2007) are able to provide
more detailed annotations: for example, marking individual
object instances as being truncated. We chose not to provide
this level of detail in favor of annotating more images and
more object instances.
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Perceptron
(as in the classifier, not the learning algorithm)



Sigmoid Activation Function



Perceptron



“Neuron”
§A biological neuron receives electric signals as input and uses them 

to compute an electrical signal as output
§The perceptron in an artificial neural network is loosely inspired by 

the biological neuron
§The artificial neural networks we use 

for machine learning are NOT models of 
the brain!



FFNNs
§Feed Forward Neural Net – Multiple layers of neurons
§Can solve non-linearly separable problems
§(All arrows face the same direction)
§Applications:

§Text classification – sentiment analysis, language detection, …
§Unsupervised learning – dimension reduction, word2vec











=

Compact diagram



FAQ
§How do I interpret an NN?

§An NN performs function approximation
§Connections in an NN posit relatedness
§ Lack of connection posits independence



FAQ
§What do the weights mean?

§ Functional perspective – these weights optimize NN’s task performance 
§Representation perspective – weights represent unlabeled, distributed 

knowledge (useful but not generally interpretable)



FAQ
§Can an NN learn anything?

§No, but … 

§ (Given infinite training data, memory, etc.)

Theorem: ‘One hidden layer is enough to represent (not learn) an 
approximation of any function to an arbitrary degree of accuracy’



FAQ
§What happens if I make an NN deeper?

W
idth

Depth

Width controls 
overfitting/underfitting

Depth allows complex 
functions, can reduce 
overfitting



(Goodfellow 2017)



activation functions
§Activation function – “squishes” neuron inputs into an output

§Use in output layer – Sigmoid (binary class), Softmax (Multiclass)
§Use in hidden layers – ReLU, Leaky ReLU

Sigmoid ReLU (Rectified Linear Unit)



training
§To train an NN, you need:

§Training set - ordered pairs each with an input and target output
§ Loss function - a function to be optimized, e.g. Cross Entropy
§Optimizer - a method for adjusting the weights, e.g. Gradient Descent

Gradient Descent – use gradient 
to find lowest point in a function



backpropagation
§Backpropagation = Chain Rule + Dynamic Programming

Loss function – measures NN’s 
performance. 

Adjust weights by gradient (using a learning 
rate) of the loss. Save repeated partial 
computations along the way.



loss functions
§ Loss function – measures NN’s performance. 

§Probabilistic interpretation
§ Binary output - Binary Cross Entropy and Sigmoid
§ Multiclass/Sequence output - Categorical Cross Entropy and Softmax
§ either Generative or Discriminative

§Geometric interpretation
§ Mean Squared Error or Hinge Loss (like in Structured Perceptron)





Embeddings
§Embeddings - Dense vector representations of words, characters, 

documents, etc.
§Used as input features for most Neural NLP models
§Prepackaged – word2vec, GloVe
§Use pre-trained word embeddings and train them yourself!
§Pretrained models that give contextualized word embeddings: 

ELMo, BERT, OpenAI GPT-2



Word	meaning	as	a	neural	word	vector	– visualization

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271
0.487

expect		=

(Slide from Manning and Socher)

http://web.stanford.edu/class/cs224n/lectures/lecture1.pdf


Some References
§NN Packages – TensorFlow, PyTorch, Keras
§Some Books

§Goldberg book (free from Georgetown)
§Goodfellow book (Chapters and Videos)

https://www.tensorflow.org/tutorials/
http://pytorch.org/tutorials/
https://keras.io/
https://www.morganclaypool.com/doi/abs/10.2200/S00762ED1V01Y201703HLT037?journalCode=hlt
http://www.deeplearningbook.org/lecture_slides.html


Other architectures
§The layout of a network is called the architecture.
§Vanilla architecture: Feed-forward, with every node in the 1st layer 

connected to every node in the 2nd layer, etc., 
§Other architectures: convolutional, recurrent, …


