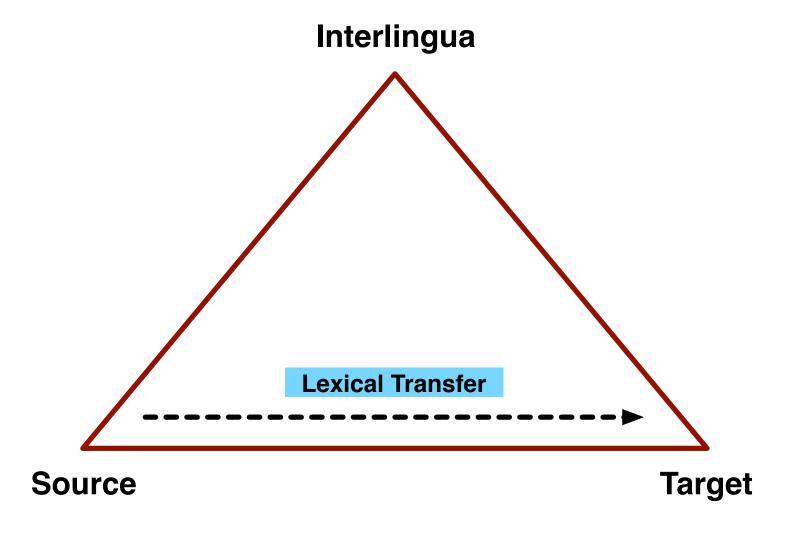
Lecture 20 Machine Translation

Nathan Schneider

(with slides by Philipp Koehn, Marine Carpuat, Chris Dyer)

ENLP | 10, 15 April 2019



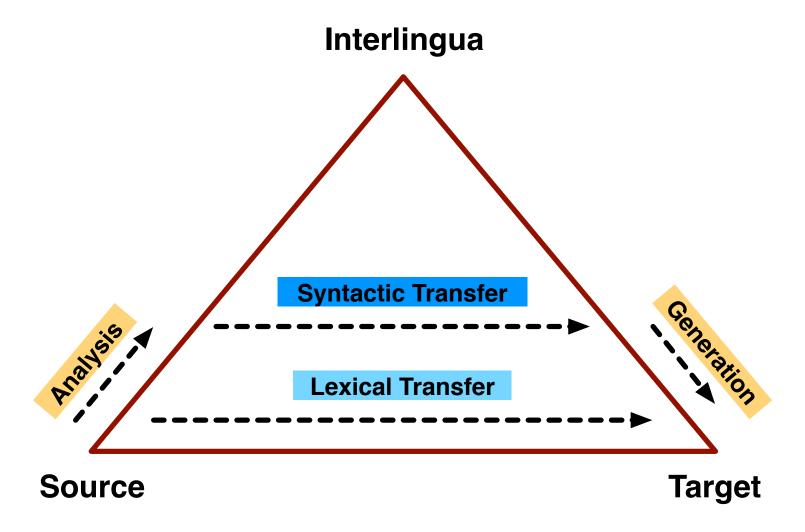
Word Order Variation

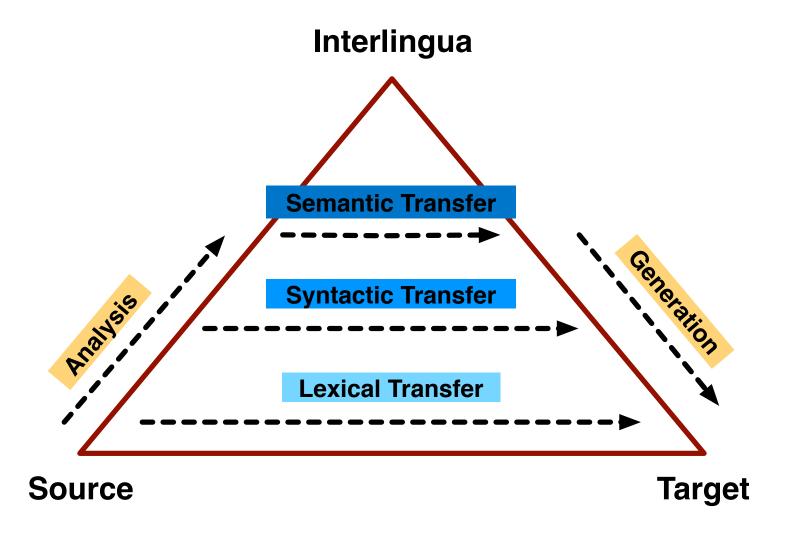
The golden line in Latin literature can be represented schematically as ABVAB where the A's and B's form NP constituents and V is a verb. Example from the *Aeneid*:

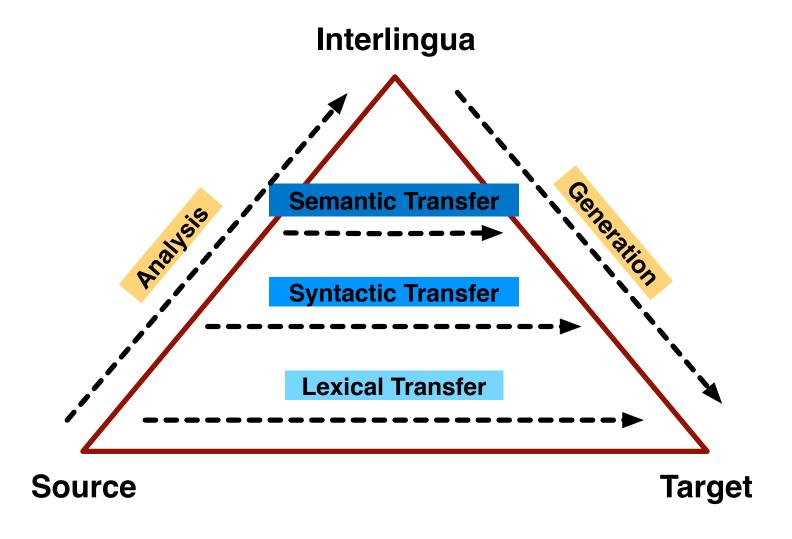
```
aurea purpuream subnectit fibula vestem golden.NOM purple.ACC fastens clasp.NOM cloak.ACC 'golden clasp fastens purple cloak'
```

Would the dependency parse be **projective** or **nonprojective**?

(courtesy Luke Gessler)







Evaluation

Problem: No Single Right Answer

这个 机场 的 安全 工作 由 以色列 方面 负责.

Israeli officials are responsible for airport security.

Israel is in charge of the security at this airport.

The security work for this airport is the responsibility of the Israel government.

Israeli side was in charge of the security of this airport.

Israel is responsible for the airport's security.

Israel is responsible for safety work at this airport.

Israel presides over the security of the airport.

Israel took charge of the airport security.

The safety of this airport is taken charge of by Israel.

This airport's security is the responsibility of the Israeli security officials.

Human Evaluation

- Manually score or rank candidate translations
 - e.g., for fluency (target language grammaticality/ naturalness) and adequacy (respecting the meaning of the source sentence)

Human Evaluation

- Manually score or rank candidate translations
 - e.g., for fluency (target language grammaticality/ naturalness) and adequacy (respecting the meaning of the source sentence)
- Manually edit the system output until it is an acceptable reference translation (HTER = Human Translation Edit Rate)
 - insertions, substitutions, deletions, shifts (moving a word or phrase)
 - ▶ then measure # edits / # words in reference (i.e., 1 recall)

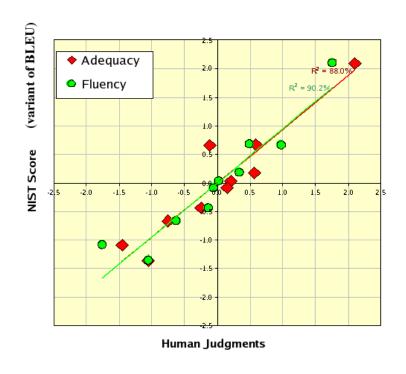
Automatic evaluation

- Why automatic evaluation metrics?
 - Manual evaluation is too slow
 - Evaluation on large test sets reveals minor improvements
 - Automatic tuning to improve machine translation performance
- History
 - Word Error Rate
 - BLEU since 2002
- BLEU in short: Overlap with reference translations

Automatic evaluation

- Reference Translation
 - the gunman was shot to death by the police .
- System Translations
 - the gunman was police kill.
 - wounded police jaya of
 - the gunman was shot dead by the police .
 - the gunman arrested by police kill.
 - the gunmen were killed.
 - the gunman was shot to death by the police .
 - gunmen were killed by police ?SUB>0 ?SUB>0
 - al by the police .
 - the ringer is killed by the police .
 - police killed the gunman .
- Matches
 - green = 4 gram match (good!)
 - red = word not matched (bad!)

Automatic evaluation



[from George Doddington, NIST]

- BLEU correlates with human judgement
 - multiple reference translations may be used

what is it good for?

what is it good enough for?

Quality

HTER	assessment
0%	
10%	publishable editable
20%	
30%	gistable
40%	triagable
50%	

(scale developed in preparation of DARPA GALE programme)

Applications

HTER	assessment	application examples
0%		Seamless bridging of language divide
4.00/	publishable	Automatic publication of official announcements
10%	editable	Increased productivity of human translators
20%		Access to official publications
30%	gistable	Multi-lingual communication (chat, social networks) Information gathering
30 70	Sistable	Trend spotting
40%	triagable	Identifying relevant documents
50%		

Current State of the Art

HTER	assessment	language pairs and domains
0%		
10%	publishable	French-English restricted domain French-English technical document localization
20%	editable	French-English news stories
30%	gistable	English-German news stories English-Czech open domain
40%	triagable	
50%		
		(informal rough estimates by presenter)

Machine Translation

CMSC 723 / LING 723 / INST 725

MARINE CARPUAT

marine@cs.umd.edu

Today: an introduction to machine translation

- The noisy channel model decomposes machine translation into
 - Word alignment
 - Language modeling
- How can we automatically align words within sentence pairs? We'll rely on:
 - probabilistic modeling
 - IBM1 and variants [Brown et al. 1990]
 - unsupervised learning
 - Expectation Maximization algorithm

MACHINE TRANSLATION AS A NOISY CHANNEL MODEL

कलियाँ वसन्त में खिलती हैं।

Sita came yesterday.

सीता कल आयी थी।

The gymnast makes springing up to the bar look easy.

कसरतबाज डंडे के ऊपर से कूदने के कार्य को आसान बना देता है।

It rained yesterday.

कल बारिश हुई थी।

School will commence tomorrow.

विद्यालय कल से आरम्भ होगा।

With a spring the cat reached the branch.

वह बिल्ली एक टहनी पर कूद गयी।

I will come tomorrow.

में कल आऊँगा।

कलियाँ वसन्त में खिलती हैं।

Sita came yesterday.

सीता कल आयी थी।

The gymnast makes springing up to the bar look easy.

कसरतबाज डंडे के ऊपर से कूदने के कार्य को आसान बना देता है।

It rained yesterday.

कल बारिश हुई थी।

School will commence tomorrow.

विद्यालय कल से आरम्भ होगा।

With a spring the cat reached the branch.

वह बिल्ली एक टहनी पर कूद गयी।

I will come tomorrow.

में कल आऊँगा।

कलियाँ वसन्त में खिलती हैं।

Sita came yesterday.

सीता कल आयी थी।

The gymnast makes springing up to the bar look easy.

कसरतबाज डंडे के ऊपर से कूदने के कार्य को आसान बना देता है।

It rained yesterday.

कल बारिश हुई थी।

School will commence tomorrow.

विद्यालय कल से आरम्भ होगा।

With a spring the cat reached the branch.

वह बिल्ली एक टहनी पर कूद गयी।

I will come tomorrow.

मैं(कल) आऊँगा।

कलियाँ वसन्त में खिलती हैं।

Sita came yesterday.

सीता कल आयी थी।

The gymnast makes springing up to the bar look easy.

कसरतबाज डंडे के ऊपर से कूदने के कार्य को आसान बना देता है।

It rained yesterday.

कल बारिश हुई थी।

School will commence tomorrow.

विद्यालय कल) से आरम्भ होगा।

With a spring the cat reached the branch.

वह बिल्ली एक टहनी पर कूद गयी।

I will come tomorrow.

मैं(कल) आऊँगा।

कियाँ वसन्त में खिलती हैं।

Sita came yesterday.

सीता कल आयी थी।

The gymnast makes springing up to the bar look easy.

कसरतबाज डंडे के ऊपर से कूदने के कार्य को आसान बना देता है।

It rained yesterday.

कल बारिश हुई थी।

School will commence tomorrow.

विद्यालय कल से आरम्भ होगा।

With a spring the cat reached the branch.

वह बिल्ली एक टहनी पर कूद गयी।

I will come tomorrow.

में कल आऊँगा।

कियाँ वसन्त में खिलती हैं।

Sita came yesterday.

सीता कल आयी थी।

The gymnast makes springing up to the bar look easy.

कसरतबाज डंडे के ऊपर से कूदने के कार्य को आसान बना देता है।

It rained yesterday.

कल बारिश हुई थी।

School will commence tomorrow.

विद्यालय कल से आरम्भ होगा।

With a spring the cat reached the branch.

वह बिल्ली एक टहनी पर कूद गयी।

I will come tomorrow.

में कल आॐगा।

कियाँ वसन्त में खिलती हैं।

Sita came yesterday.

सीता कल आयी थी।

The gymnast makes springing up to the bar look easy.

कसरतबाज डंडे के ऊपर से कूदने के कार्य को आसान बना देता है।

It rained yesterday.

कल बारिश हुई थी।

School will commence tomorrow.

विद्यालय कल से आरम्भ होगा।

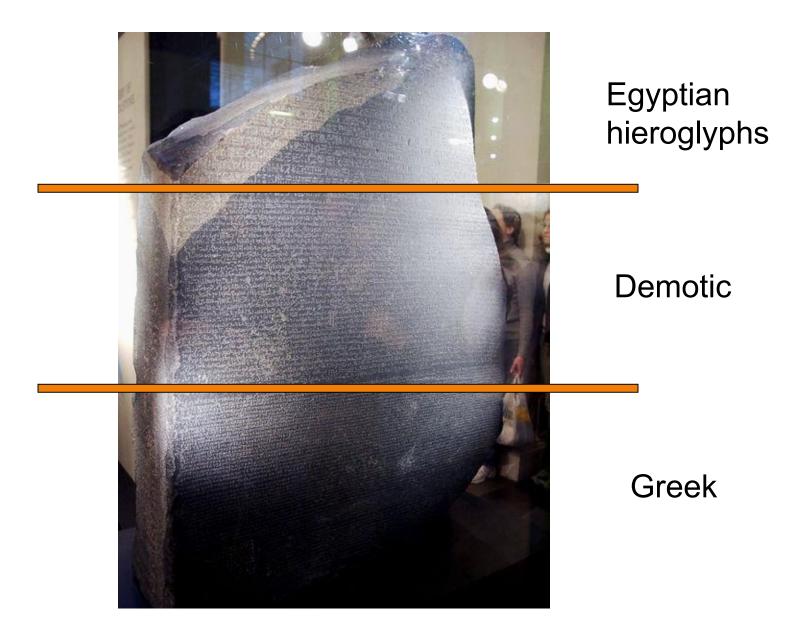
With a spring the cat reached the branch.

वह बिल्ली एक टहनी पर कूद गयी।

I will come tomorrow.

में कल आऊँगा।

Rosetta Stone



Warren Weaver (1947)

When I look at an article in Russian, I say to myself: This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.

Weaver's intuition formalized as a Noisy Channel Model

- Translating a French sentence f is finding the English sentence e that maximizes P(elf)
- The noisy channel model breaks down P(elf) into two components

translation model language model
$$\hat{E} = \underset{E \in \text{English}}{\operatorname{argmax}} \widehat{P(F|E)} \widehat{P(E)}$$

Translation Model & Word Alignments

- How can we define the translation model p(f|e) between a French sentence f and an English sentence e?
- Problem: there are many possible sentences!
- Solution: break sentences into words
 - model mappings between word position to represent translation
 - Just like in the Centauri/Arcturian example

PROBABILISTIC MODELS OF WORD ALIGNMENT

Defining a probabilistic model for word alignment

Probability lets us

- 1) Formulate a model of pairs of sentences
- 2) Learn an instance of the model from data
- 3) Use it to infer alignments of new inputs

Recall language modeling

Probability lets us

1) Formulate a model of a sentence e.g, bi-grams

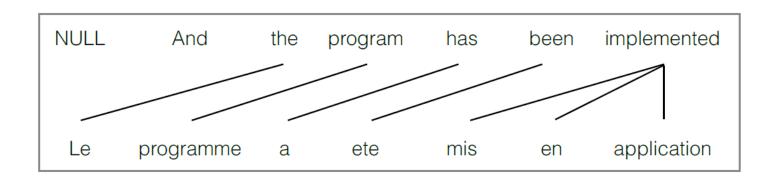
2) Learn an instance of the model from data

$$\hat{p}_{\mathrm{MLE}}(\mathtt{call} \mid \mathtt{friends}) = \frac{\mathrm{count}(\mathtt{friends} \ \mathtt{call})}{\mathrm{count}(\mathtt{friends})}$$

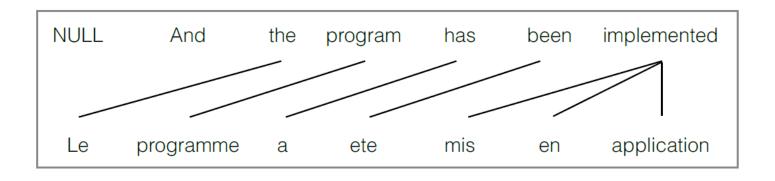
3) Use it to score new sentences

How can we model p(f|e)?

- We'll describe the word alignment models introduced in early 90s at IBM
- Assumption: each French word f is aligned to exactly one English word e
 - Including NULL

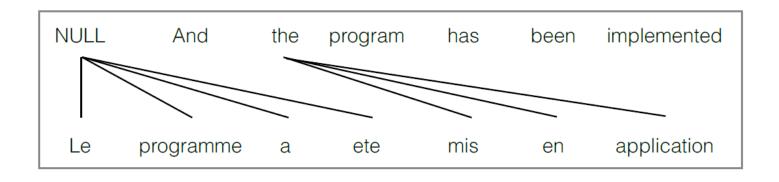


Word Alignment Vector Representation



- Alignment vector a = [2,3,4,5,6,6,6]
 - length of a = length of sentence f
 - ai = j if French position i is aligned to English position j

Word Alignment Vector Representation



• Alignment vector a = [0,0,0,0,2,2,2]

How many possible alignments?

- How many possible alignments for (f,e) where
 - f is French sentence with m words
 - e is an English sentence with I words
- For each of m French words, we choose an alignment link among (I+1) English words
- Answer: $(l+1)^m$

Formalizing the connection between word alignments & the translation model

$$p(f_1, f_2, \dots, f_m \mid e_1, e_2, \dots, e_l, m)$$

$$= \sum_{a \in A} p(f_1, \dots, f_m, a_1, \dots, a_m \mid e_1, \dots, e_l, m)$$

- We define a conditional model
 - Projecting word translations
 - Through alignment links

IBM Model 1: generative story

- Input
 - an English sentence of length I
 - a length m
- For each French position i in 1..m
 - Pick an English source index j $q(j \mid i, l, m) = \frac{1}{l+1}$
 - Choose a translation $t(f_i \mid e_{a_i})$

IBM Model 1: generative story

- Input
 - an English sentence of length I
 - a length m

Alignment is based on word positions, not word identities

Alignment probabilities are UNIFORM

- For each French position i in 1..m
 - Pick an English source index j $q(j \mid i, l, m) = \frac{1}{l+1}$
 - Choose a translation

$$t(f_i \mid e_{a_i})$$

Words are translated independently

IBM Model 1: Parameters

- t(f|e)
 - Word translation probability table
 - for all words in French& English vocab

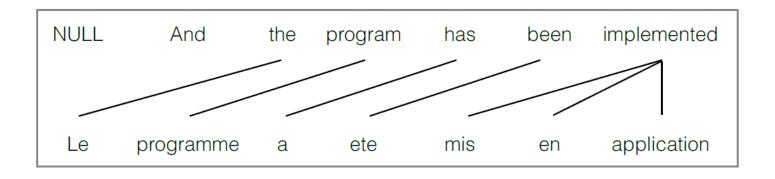
f	е	p(f e)		
le	the	0.42		
la	the	0.4		
programme	the	0.001		
а	has	0.78		

IBM Model 1: generative story

- Input
 - an English sentence of length I
 - a length m
- For each French position i in 1..m
 - Pick an English source index j $q(j \mid i, l, m) = \frac{1}{l+1}$
 - Choose a translation $t(f_i \mid e_{a_i})$

$$p(f_1 \dots f_m, a_1 \dots a_m | e_1 \dots e_l, m) = \prod_{i=1}^m q(a_i | i, l, m) t(f_i | e_{a_i})$$

IBM Model 1: Example



- Alignment vector a = [2,3,4,5,6,6,6]
- P(f,a|e)?

Improving on IBM Model 1: IBM Model 2

- Input
 - an English sentence of length I
 - a length m
- For each French position i in 1..m
 - Pick an English source index j $q(j \mid i, l, m)$
 - Choose a translation $t(f_i \mid e_{a_i})$

Remove assumption that q is uniform

IBM Model 2: Parameters

- q(j|i,l,m)
 - now a table
 - not uniform as in IBM1

How many parameters are there?

j	q(j 1, 6, 7)			
1	0.27			
2	0.14			
48	1E-75			

Defining a probabilistic model for word alignment

Probability lets us

- 1) Formulate a model of pairs of sentences => IBM models 1 & 2
- 2) Learn an instance of the model from data
- 3) Use it to infer alignments of new inputs

2 Remaining Tasks

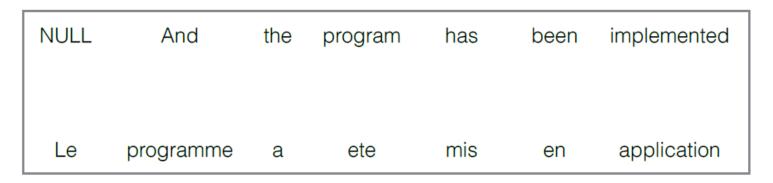
Inference

- Given
 - a sentence pair (e,f)
 - an alignment model with parameters t(e|f) and q(j|i,l,m)
- What is the most probable alignment a?

Parameter Estimation

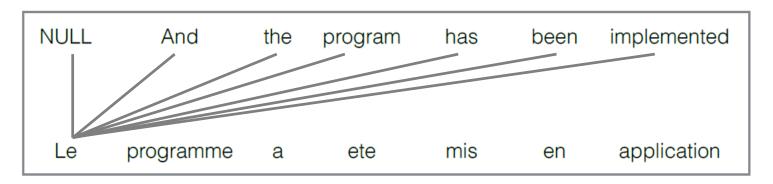
- Given
 - training data (lots of sentence pairs)
 - a model definition
- how do we learn the parameters t(e|f) and q(j|i,l,m)?

- Inputs
 - Model parameter tables for t and q
 - A sentence pair



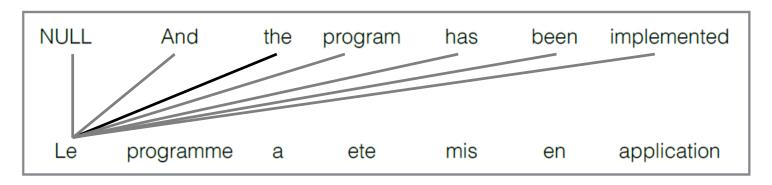
- How do we find the alignment a that maximizes P(e,a|f)?
 - Hint: recall independence assumptions!

- Inputs
 - Model parameter tables for t and q
 - A sentence pair



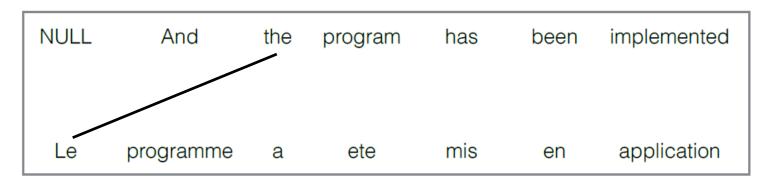
- How do we find the alignment a that maximizes P(e,a|f)?
 - Hint: recall independence assumptions!

- Inputs
 - Model parameter tables for t and q
 - A sentence pair



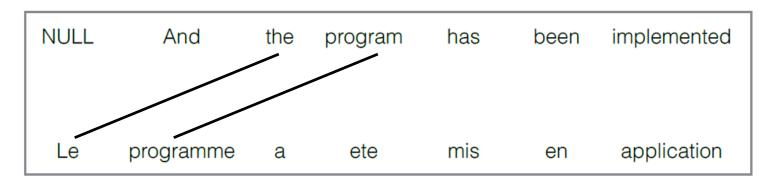
- How do we find the alignment a that maximizes P(e,a|f)?
 - Hint: recall independence assumptions!

- Inputs
 - Model parameter tables for t and q
 - A sentence pair



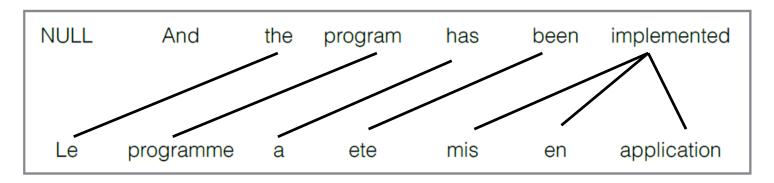
- How do we find the alignment a that maximizes P(e,a|f)?
 - Hint: recall independence assumptions!

- Inputs
 - Model parameter tables for t and q
 - A sentence pair



- How do we find the alignment a that maximizes P(e,a|f)?
 - Hint: recall independence assumptions!

- Inputs
 - Model parameter tables for t and q
 - A sentence pair

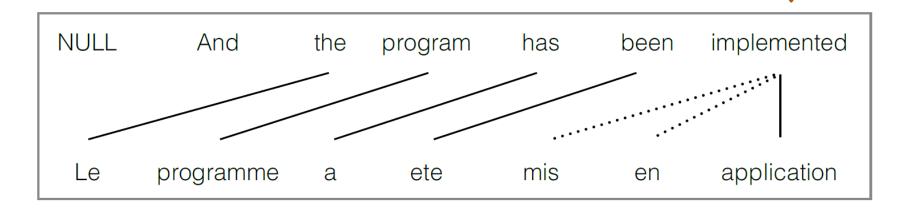


- How do we find the alignment a that maximizes P(e,a|f)?
 - Hint: recall independence assumptions!

Alignment Error Rates: How good is the prediction?

- Given: predicted alignments A, sure links S, and possible links P
- Precision: $\frac{|A \cap P|}{|A|}$ Recall: $\frac{|A \cap S|}{|S|}$
- AER(A|S,P) = 1 $\frac{|A \cap P| + |A \cap S|}{|A| + |S|}$

Reference alignments, with Possible links and Sure links



1 Remaining Task

Inference

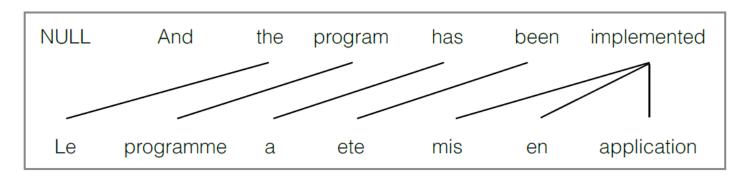
 Given a sentence pair (e,f), what is the most probable alignment a?

Parameter Estimation

 How do we learn the parameters t(e|f) and q(j|i,l,m) from data?

Parameter Estimation (warm-up)

- Inputs
 - Model definition (t and q)
 - A corpus of sentence pairs, with word alignment



- How do we build tables for t and q?
 - Use counts, just like for n-gram models!

Parameter Estimation (for real)

- Problem
 - Parallel corpus gives us (e,f) pairs only, a is hidden
- We know how to
 - estimate t and q, given (e,a,f)
 - compute **p(e,a|f)**, given t and q
- Solution: Expectation-Maximization algorithm (EM)
 - E-step: given hidden variable, estimate parameters
 - M-step: given parameters, update hidden variable

Parameter Estimation: hard EM

```
initialize parameters t and q to something
repeat until convergence
   for every sentence
       for every target position j
           for every source position i
               if aligned(i, j)
                   count(f_i \mid e_i) += 1
                   count(e_i) += 1
                   count(j, i, l, m) += 1
                   count(i, l, m) += 1
   t(f \mid e) = count(f, e) / count(e)
    q(j \mid i, l, m) = count(j, i, l, m) / count(i, l, m)
```

Parameter Estimation: soft FM

counts

```
Use "Soft" values
initialize parameters t and q to something
                                                         instead of binary
repeat until convergence
    for every sentence
        for every target position j
             for every source position i
                 count(f_{i}, e_{i}) += P(a_{i} = j | e_{i}, f_{i})
                 count(e_i) += P(a_i = j \mid e_i, f_i)
                 count(j, i, l, m) += P(a_i = j | e_i, f_i)
                 count(i, l, m) += P(a_i = j \mid e_i, f_i)
    t(f \mid e) = count(f, e) / count(e)
    q(j \mid i, l, m) = count(j, i, l, m) / count(i, l, m)
```

Parameter Estimation: soft EM

- Soft EM considers all possible alignment links
- Each alignment link now has a weight

$$P(a_i = j \mid e_i, f_j) = \frac{q(j \mid i, l, m) \cdot t(f_i \mid e_j)}{\sum_{j'=1}^{l} q(j' \mid i, l, m) \cdot t(f_i \mid e_{j'})}$$

Example: learning t table using EM for IBM1

das Haus	das Buch	ein Buch
	3	
the house	the book	a book

e	f	initial	1st it.	2nd it.	3rd it.	 final
the	das	0.25	0.5	0.6364	0.7479	 1
book	das	0.25	0.25	0.1818	0.1208	 0
house	das	0.25	0.25	0.1818	0.1313	 0
the	buch	0.25	0.25	0.1818	0.1208	 0
book	buch	0.25	0.5	0.6364	0.7479	 1
a	buch	0.25	0.25	0.1818	0.1313	 0
book	ein	0.25	0.5	0.4286	0.3466	 0
a	ein	0.25	0.5	0.5714	0.6534	 1
the	haus	0.25	0.5	0.4286	0.3466	 0
house	haus	0.25	0.5	0.5714	0.6534	 1

We have now fully specified our probabilistic alignment model!

Probability lets us

- 1) Formulate a model of pairs of sentences
 - => IBM models 1 & 2
- 2) Learn an instance of the model from data
 - => using EM
- 3) Use it to infer alignments of new inputs
 - => based on independent translation decisions

Summary: Noisy Channel Model for Machine Translation

- The noisy channel model decomposes machine translation into two independent subproblems
 - Word alignment
 - Language modeling

translation model language model
$$\widehat{E} = \underset{E \in \text{English}}{\operatorname{argmax}} \widehat{P(F|E)} \qquad \widehat{P(E)}$$

Summary: Word Alignment with IBM Models 1, 2

- Probabilistic models with strong independence assumptions
 - Results in linguistically naïve models
 - asymmetric, 1-to-many alignments
 - But allows efficient parameter estimation and inference
- Alignments are hidden variables
 - unlike words which are observed
 - require unsupervised learning (EM algorithm)

Today

Walk through an example of EM

- Phrase-based Models
 - A slightly more recent translation model

Decoding

EM FOR IBM1

IBM Model 1: generative story

- Input
 - an English sentence of length I
 - a length m
- For each French position i in 1..m
 - Pick an English source index j $q(j \mid i, l, m) = \frac{1}{l+1}$
 - Choose a translation $t(f_i \mid e_{a_i})$

$$p(f_1 \dots f_m, a_1 \dots a_m | e_1 \dots e_l, m) = \prod_{i=1}^m q(a_i | i, l, m) t(f_i | e_{a_i})$$

EM for IBM Model 1

• Expectation (E)-step:

Compute expected counts for parameters (t) based on summing over hidden variable

Maximization (M)-step:

 Compute the maximum likelihood estimate of t from the expected counts

EM example: initialization

green house

the house

casa verde

la casa

```
t(casa|green) = \frac{1}{3} t(verde|green) = \frac{1}{3} t(la|green) = \frac{1}{3}

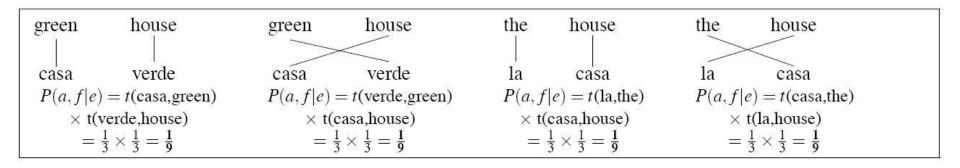
t(casa|house) = \frac{1}{3} t(verde|house) = \frac{1}{3} t(la|house) = \frac{1}{3}

t(casa|the) = \frac{1}{3} t(verde|the) = \frac{1}{3} t(la|the) = \frac{1}{3}
```

For the rest of this talk, French = Spanish

EM example: E-step

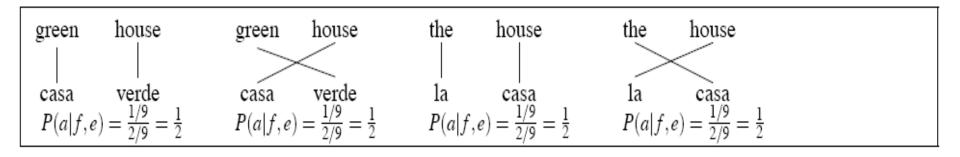
(a) compute probability of each alignment p(a|f,e)



Note: we're making many simplification assumptions in this example!!

- No NULL word
- We only consider alignments were each French and English word is aligned to something
- We ignore q

EM example: E-step (b) normalize to get p(a|f,e)



EM example: E-step (c) compute expected counts

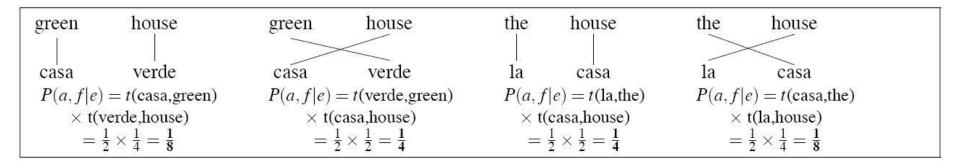
(weighting each count by p(a|e,f)

$tcount(casa green) = \frac{1}{2}$	$tcount(verde green) = \frac{1}{2}$	tcount(la green) = 0	total(green) = 1
tcount(casa house) = $\frac{1}{2} + \frac{1}{2}$	$tcount(verde house) = \frac{1}{2}$	$ tcount(la house) = \frac{1}{2}$	total(house) = 2
$tcount(casa the) = \frac{1}{2}$	tcount(verde the) = 0	$tcount(la the) = \frac{1}{2}$	total(the) = 1

EM example: M-step Compute probability estimate by normalizing expected counts

$$\begin{array}{llll} t(casa|green) &=& \frac{1/2}{1} = \frac{1}{2} \\ t(casa|house) &=& \frac{1}{2} = \frac{1}{2} \\ t(casa|house) &=& \frac{1}{2} = \frac{1}{2} \\ t(casa|the) &=& \frac{1/2}{1} = \frac{1}{2} \\ \end{array} \begin{array}{lll} t(verde|green) &=& \frac{1/2}{1} = \frac{1}{2} \\ t(verde|house) &=& \frac{1/2}{2} = \frac{1}{4} \\ t(verde|the) &=& \frac{0}{1} = 0 \\ \end{array} \begin{array}{ll} t(la|green) &=& \frac{0}{1} = 0 \\ t(la|the) &=& \frac{1/2}{1} = \frac{1}{2} \\ \end{array}$$

EM example: next iteration



EM for IBM 1 in practice

The previous example aims to illustrate the intuition of EM algorithm

- But it is a little naïve
 - we had to enumerate all possible alignments
 - very inefficient!!
 - In practice, we don't need to sum overall all possible alignments explicitly for IBM1

http://www.cs.columbia.edu/~mcollins/courses/nlp2011 /notes/ibm12.pdf

EM

- Procedure for optimizing generative models without supervision
 - Randomly initialize parameters, then
 - E: predict hidden structure y (hard or soft)

M: estimate new parameters $\hat{P}(y \mid x)$ by MLE

 Likelihood function is non-convex. Consider trying several random initializations to avoid getting stuck in local optima.

PHRASE-BASED MODELS

Phrase-based models

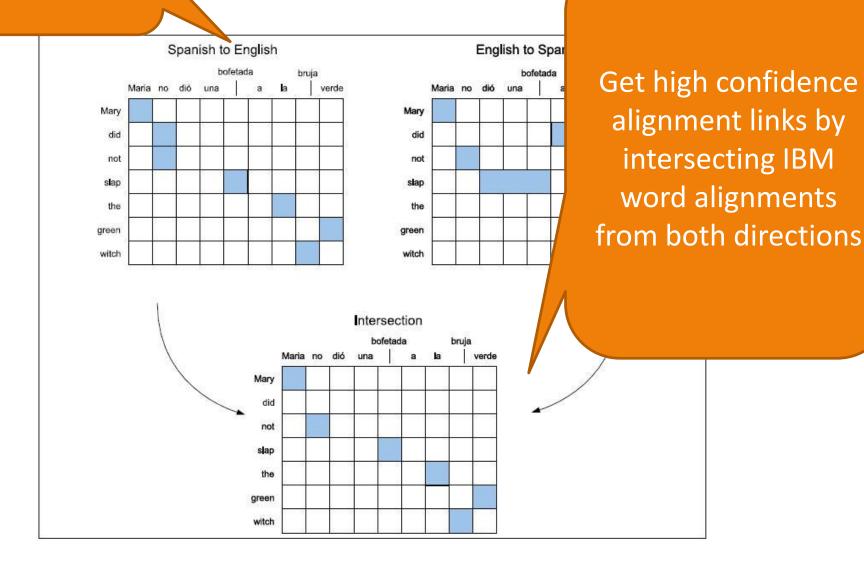
 Most common way to model P(F|E) nowadays (instead of IBM models)

$$P(F|E) = \prod_{i=1}^{I} \phi(\bar{f}_i, \bar{e}_i) d(a_i - b_{i-1})$$
 End position of f_(i-1)

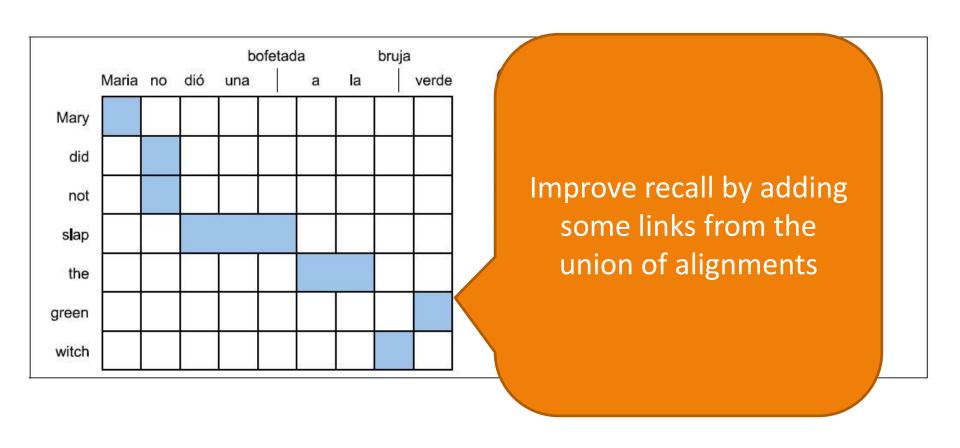
Start position of

Probability of two consecutive English phrases being separated by a particular span in French Phrase alignments are derived and the property of the led represents of the led represen

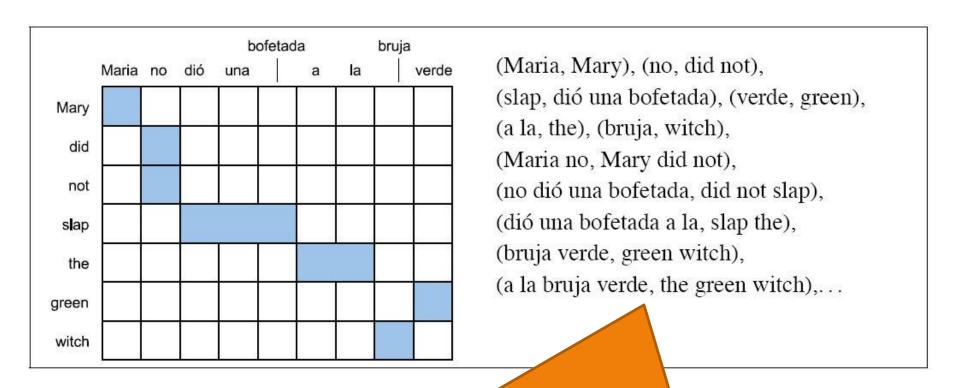
This means that the IBM model represents P(Spanish|English)



Phrase alignments are derived from word alignments



Phrase alignments are derived from word alignments



Extract phrases that are **consistent** with word alignment

Phrase Translation Probabilities

 Given such phrases we can get the required statistics for the model from

$$\phi(\bar{f},\bar{e}) = \frac{\mathrm{count}(\bar{f},\bar{e})}{\sum_{\bar{f}} \mathrm{count}(\bar{f},\bar{e})}$$

Phrase-based Machine Translation

translation model language model $\hat{E} = \operatorname{argmax} P(F|E)$

$$\hat{E} = \underset{E \in \text{English}}{\operatorname{argmax}} \widehat{P(F|E)}$$

$$\widehat{P(E)}$$

$$\prod_{i \in S} \phi(\bar{f}_i, \bar{e}_i) d(a_i - b_{i-1})$$

DECODING

Decoding for phrase-based MT

- Basic idea
 - search the space of possible English translations in an efficient manner.
 - According to our model

translation model language model

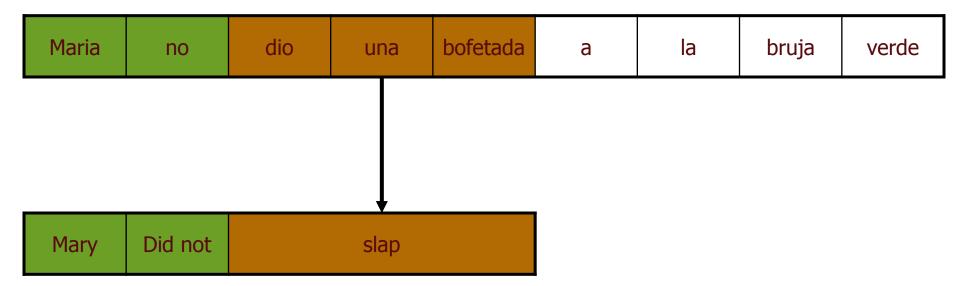
$$\hat{E} = \underset{E \in \text{English}}{\operatorname{argmax}} \qquad \overbrace{P(F|E)} \qquad \qquad \widehat{P(E)}$$

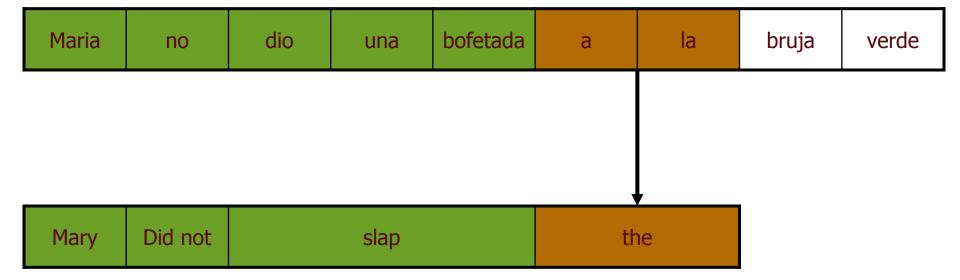
$$cost(E,F) = \prod_{i \in S} \phi(\bar{f}_i, \bar{e}_i) d(a_i - b_{i-1}) P(E)$$

Decoding as Search

- Starting point: null state. No French content covered, no English included.
- We'll drive the search by
 - Choosing French word/phrases to "cover",
 - Choosing a way to cover them
- Subsequent choices are pasted left-toright to previous choices.
- Stop: when all input words are covered.

	Ī	Maria	no	dio	una	bofetada	а	la	bruja	verde
--	---	-------	----	-----	-----	----------	---	----	-------	-------



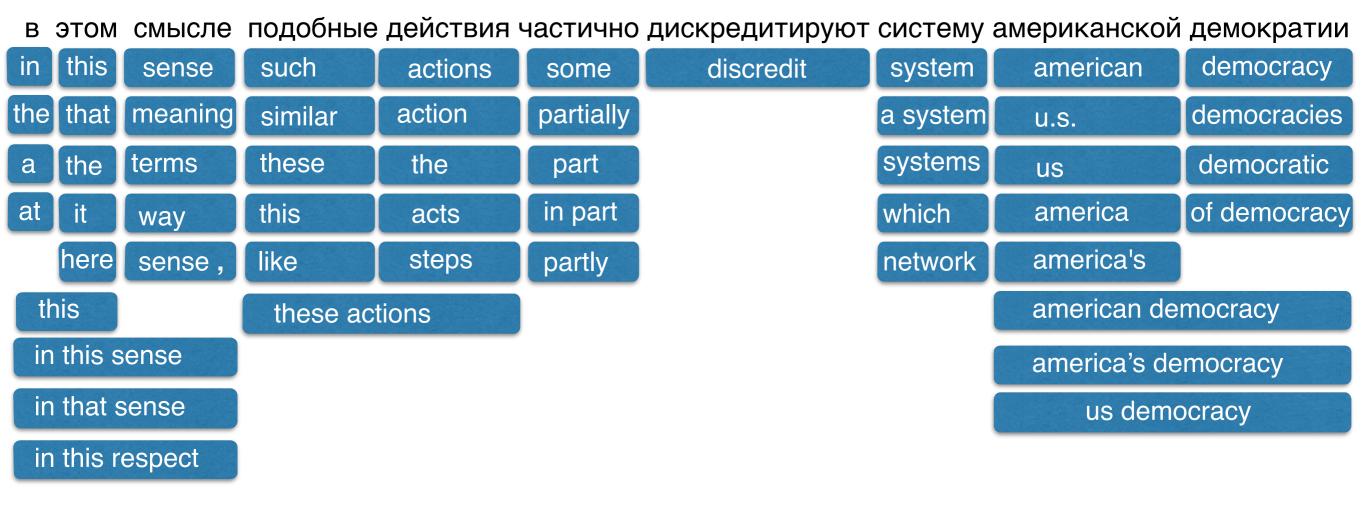


Maria	no	dio	una	bofetada	a	la	bruja	verde

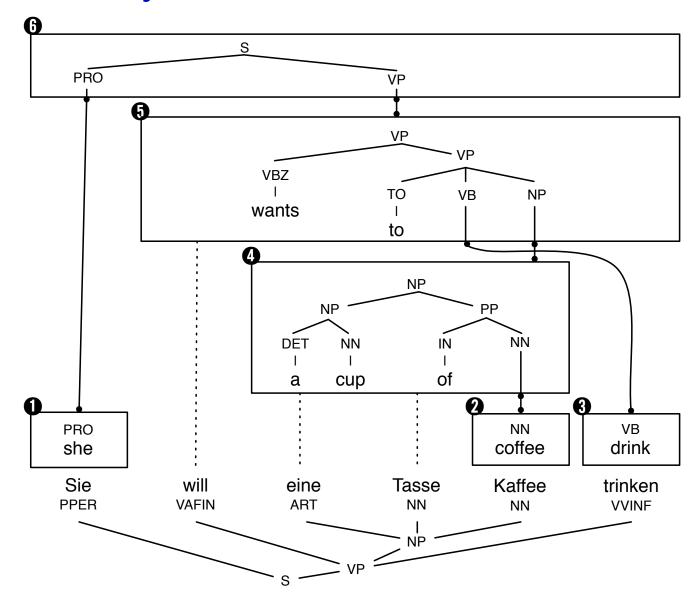
Mary	did not slap	the	green witch
------	--------------	-----	-------------

Phrase-based Machine Translation: the full picture

translation model language model $\hat{E} = \underset{E \in \text{English}}{\operatorname{argmax}} \underbrace{\widehat{P(F|E)}} \underbrace{\widehat{P(E)}}$ $\underbrace{\prod_{i \in S} \phi(\bar{f}_i, \bar{e}_i) d(a_i - b_{i-1})}$



Syntax-Based Translation



Semantic Translation

• Abstract meaning representation [Knight et al., ongoing]

- Generalizes over equivalent syntactic constructs (e.g., active and passive)
- Defines semantic relationships
 - semantic roles
 - co-reference
 - discourse relations
- In a very preliminary stage

Neural MT

- Current research on neural network architectures,
 with state-of-the-art scores for some language pairs
 - seq2seq paradigm: next lecture!

MT: Summary

- Human-quality machine translation is an **Al-complete** problem.
 - All the challenges of NL: ambiguity, flexibility (difficult to evaluate!), vocabulary & grammar divergences between languages, context
 - State-of-the-art now good enough to be useful/commercially successful for some language pairs and purposes.
- Tension: simplistic models + huge data, or linguistically savvy models + less data? MT systems can be word-level, phrase-based, syntax-based, semanticsbased/interlingua (Vauquois triangle)
- Statistical methods, enabled by large parallel corpora and automatic evaluations (such as BLEU), are essential for broad coverage
 - Automatic word alignment on parallel data via EM (IBM models)
 - Noisy channel model: n-gram language model for target language + translation model that uses probabilities from word alignments
 - Open-source toolkits like Moses make it relatively easy to build your own MT system from data