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Review: Neural networks

Blodgett

● Simplest architecture: Feed-forward

● "Multilayer Perceptron"

● "Depth" = how many hidden layers

● One-to-one



Neural networks and text

● Number of cells per layer is fixed

○ Number of inputs is fixed

● Length of a sentence, word, sound signal, ...

○ Not fixed!

● Idea: Think of language data as streaming in over time. 

○ For each new input, we update our prediction. 



Today: Recurrent neural networks (RNNs)

Arnold

hidden layer

input layer

self-loop (recurrence) on 

hidden layer computation

http://euler.stat.yale.edu/~tba3/stat665/lectures/lec21/lecture21.pdf


Agenda for today

● What is an RNN?

● What can it be used for?

● How is it trained? (some math, but not too much)

○ The problem of vanishing and exploding gradients

● The LSTM model and some variants

● Interpretability



What is an RNN?

hidden layer

input layer

self-loop (recurrence) on 

hidden layer computation

unroll in time...

Arnold

http://euler.stat.yale.edu/~tba3/stat665/lectures/lec21/lecture21.pdf


What is an RNN?

=
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Arnold

http://euler.stat.yale.edu/~tba3/stat665/lectures/lec21/lecture21.pdf


What is an RNN?

Some notes

• Weights are shared 

between each time step

• We initialize a new RNN 

for each sequence!

• “Deep” in the length of the 

sequence

ℎ𝑡 = 𝑓(𝑊𝑥𝑡 + 𝑏 + 𝑈ℎ𝑡−1)
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http://euler.stat.yale.edu/~tba3/stat665/lectures/lec21/lecture21.pdf


RNNs as Deep Networks
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RNNs as Deep Networks
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RNNs as input to other NNs

● Usually, we feed the hidden representation produced by an RNN into another 

layer or multi-layered network to produce a prediction, which can be…

○ per-token (tagging) or for the whole sequence (classification)

○ non-probabilistic or probabilistic (using softmax)

● Or we are interested in learning embeddings of the input itself



Applications of RNNs

Li, Johnson, Yeung

Image captioning Text classification Translation Sequence tagging

will be covered in a later lecture

today

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf


Text classification

● Let RNN read and process input text

● Use hidden representation of last input token 

to make prediction for the whole sequence

● E.g., sentiment analysis

not      very     good



Language modeling

● Recall generative (n-gram) language models

○ Given the previous context, predict next word

● How can we implement this as an RNN?



Neural language modeling

http://torch.ch/blog/2016/07/25/nce.html

http://torch.ch/blog/2016/07/25/nce.html


POS tagging

● Recall generative (HMM) POS tagging

○ Given previous POS tag, predict tag that is most likely to generate current word

○ Find optimal sequence (Viterbi)

● By default, RNNs (as neural networks in general) are discriminative, not 

generative!

○ Can model output directly, at each timestep



Neural POS tagging

Random variables

Latent vector representation

Matrix multiplication

HMM POS tagging



Issues with the vanilla RNN

Despite having no explicit independence assumptions, distant cells are unlikely 

to influence each other.

1. At prediction time, because new inputs “overwrite” old memory

2. At training time, because of how backpropagation works



Interim summary

● RNNs can be used to __________________________________ sequences 

of arbitrary length, thanks to a self-loop on the hidden layer



Interim summary

● RNNs can be used to _____________classify_______________ sequences 

of arbitrary length, thanks to a self-loop on the hidden layer



2 for the 

price of 1

Interim summary

● RNNs can be used to _________classify, generate___________ sequences 

of arbitrary length, thanks to a self-loop on the hidden layer



Interim summary

● RNNs can be used to classify, generate, learn representations of sequences 

of arbitrary length, thanks to a self-loop on the hidden layer

● Shared weights between time steps

● New initialization per sequence

● Can be “unrolled” and viewed as 

deep FFNN

3 for the 

price of 1



Batch learning

Instead of doing a pass over the 

whole training set in each iteration 

(epoch), training can be done in 

“mini-batches” that contain only a 

subset of the data.

This is called stochastic gradient 

descent, because each update is 

based only on a sample / an 

estimate of the true data.

The most extreme case is a batch 

size of 1 (one training example 

per iteration).

Training a Deep Neural Network

● High-level: Tuning of hyperparameters and architecture

○ Dimensionality of hidden layers

○ Dropout rate

○ Learning rate

○ Batch size

○ Specific to RNNs: “Resolution” of input: 

sentences, words, characters, …

Dropout

Per iteration, randomly choose a 

set of neurons that are removed 

from network at prediction time.

This reduces the degrees of 

freedom and prevents overfitting 

by forcing important information 

to be stored redundantly.



Training a Deep Neural Network

● Low-level: Backpropagation

○ Error-driven (minimizing loss function)

○ Lots of matrix multiplications

○ Made possible through modern computing power, especially GPUs 

(and more recently, TPUs)



Training a Deep Neural Network



Jurafsky & Martin

Gradient flow in a FFNN



Jurafsky & Martin

Gradient flow in an RNN



Gradient flow in an RNN

Computing gradient

of h0 involves many

factors of W.

Li, Johnson, Yeung

If gradients in deeper 

layers are > 1, they 

will get exponentially 

bigger.

If gradients in deeper 

layers are < 1, they 

will get exponentially 

smaller.



Exploding and vanishing gradients

Gradient clipping:

Scale gradient if its norm is too big

Goodfellow et al.Li, Johnson, Yeung

Dealing with vanishing gradients is more complicated.

Most popular solution: change cell architecture

https://www.deeplearningbook.org/


Long Short-Term Memory (LSTM)

Hochreiter and Schmidhuber, 1997, accessed through lecture slides by Arnold

http://euler.stat.yale.edu/~tba3/stat665/lectures/lec21/lecture21.pdf


Long Short-Term Memory (LSTM)

Arnold



Long Short-Term Memory (LSTM)

Arnold



Long Short-Term Memory (LSTM)

Cell state / context memory is separated from cell output, and is only changed 

by two linear functions at each time step.

Arnold



Long Short-Term Memory (LSTM)

Forget gate determines if previous context should be taken into account.

Arnold



Long Short-Term Memory (LSTM)

Input gate determines if and how much of the current input should be taken into 

account.

Arnold



Long Short-Term Memory (LSTM)

Cell state / context memory is now completely determined and can be 

calculated directly.

Arnold



Long Short-Term Memory (LSTM)

Output gate determines if and how much of the cell state should be yielded as 

output.

Arnold



Long Short-Term Memory (LSTM)

● Separates cell state and output

● Uninterrupted gradient flow

● Infinite memory is regulated via gates to better capture long-range 

dependencies



Gated Recurrent Unit (GRU)

● Simpler: combines forget and input gates

● Equally powerful: gates still take care of vanishing/exploding gradients

Arnold



Stacked RNN

Jurafsky & Martin



Bidirectional RNN

Jurafsky & Martin



RNNs are powerful!

Li, Johnson, Yeung

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf


RNNs are powerful!

Li, Johnson, Yeung

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf


RNNs are powerful!

Li, Johnson, Yeung

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf


RNNs are hard to interpret!

Pick a neuron in the hidden representation and trace when it “fires”.

Li, Johnson, Yeung

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf


RNNs are hard to interpret!

Quote detection cell

Li, Johnson, Yeung

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf


RNNs are hard to interpret!

Line length tracking cell

Li, Johnson, Yeung

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf


RNNs are hard to interpret!

● Probing tasks to discern whether these models implicitly learn different 

aspects of syntax, semantics

● E.g., Linzen et al. (2018), Linzen et al. (2016) , Ettinger et al. (2016), Ettinger 

and Linzen (2016)

https://arxiv.org/abs/1805.04218
https://www.mitpressjournals.org/doi/abs/10.1162/tacl_a_00115
https://www.mitpressjournals.org/doi/abs/10.1162/tacl_a_00115
http://www.aclweb.org/anthology/W16-2524
http://www.aclweb.org/anthology/W16-2513


Summary

● Feed-forward NNs are extremely powerful, but not well-suited for language 

data

● Recurrent NNs model variable-width data as streaming in over time

● Many different applications in NLP (and elsewhere, e.g., Bioinformatics)

● LSTMs and GRUs solve the problem of exploding and vanishing gradients

○ more parameters to train

● Drawbacks:

○ usually require large amounts of training data 

○ tricky to interpret what exactly is learned


