
Neural sequence modeling
Jakob Prange

with graphics and inspirations by Taylor Arnold, Fei-Fei Li, Justin Johnson,

Serena Yeung, Dan Jurafsky, James Martin, Austin Blodgett

Review: Neural networks

Blodgett

● Simplest architecture: Feed-forward

● "Multilayer Perceptron"

● "Depth" = how many hidden layers

● One-to-one

Neural networks and text

● Number of cells per layer is fixed

○ Number of inputs is fixed

● Length of a sentence, word, sound signal, ...

○ Not fixed!

● Idea: Think of language data as streaming in over time.

○ For each new input, we update our prediction.

Today: Recurrent neural networks (RNNs)

Arnold

hidden layer

input layer

self-loop (recurrence) on

hidden layer computation

http://euler.stat.yale.edu/~tba3/stat665/lectures/lec21/lecture21.pdf

Agenda for today

● What is an RNN?

● What can it be used for?

● How is it trained? (some math, but not too much)

○ The problem of vanishing and exploding gradients

● The LSTM model and some variants

● Interpretability

What is an RNN?

hidden layer

input layer

self-loop (recurrence) on

hidden layer computation

unroll in time...

Arnold

http://euler.stat.yale.edu/~tba3/stat665/lectures/lec21/lecture21.pdf

What is an RNN?

=

ℎ𝑡 = 𝑓(𝑊𝑥𝑡 + 𝑏 + 𝑈ℎ𝑡−1)

𝑊

𝑈

Arnold

http://euler.stat.yale.edu/~tba3/stat665/lectures/lec21/lecture21.pdf

What is an RNN?

Some notes

• Weights are shared

between each time step

• We initialize a new RNN

for each sequence!

• “Deep” in the length of the

sequence

ℎ𝑡 = 𝑓(𝑊𝑥𝑡 + 𝑏 + 𝑈ℎ𝑡−1)

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

Arnold

http://euler.stat.yale.edu/~tba3/stat665/lectures/lec21/lecture21.pdf

RNNs as Deep Networks

D
e
p
th

Width

D
e
p
th

Width

RNNs as Deep Networks

W
id

th

Depth

M
u
lti-L

a
y
e
re

d

Depth

RNNs as input to other NNs

● Usually, we feed the hidden representation produced by an RNN into another

layer or multi-layered network to produce a prediction, which can be…

○ per-token (tagging) or for the whole sequence (classification)

○ non-probabilistic or probabilistic (using softmax)

● Or we are interested in learning embeddings of the input itself

Applications of RNNs

Li, Johnson, Yeung

Image captioning Text classification Translation Sequence tagging

will be covered in a later lecture

today

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

Text classification

● Let RNN read and process input text

● Use hidden representation of last input token

to make prediction for the whole sequence

● E.g., sentiment analysis

not very good

Language modeling

● Recall generative (n-gram) language models

○ Given the previous context, predict next word

● How can we implement this as an RNN?

Neural language modeling

http://torch.ch/blog/2016/07/25/nce.html

http://torch.ch/blog/2016/07/25/nce.html

POS tagging

● Recall generative (HMM) POS tagging

○ Given previous POS tag, predict tag that is most likely to generate current word

○ Find optimal sequence (Viterbi)

● By default, RNNs (as neural networks in general) are discriminative, not

generative!

○ Can model output directly, at each timestep

Neural POS tagging

Random variables

Latent vector representation

Matrix multiplication

HMM POS tagging

Issues with the vanilla RNN

Despite having no explicit independence assumptions, distant cells are unlikely

to influence each other.

1. At prediction time, because new inputs “overwrite” old memory

2. At training time, because of how backpropagation works

Interim summary

● RNNs can be used to __________________________________ sequences

of arbitrary length, thanks to a self-loop on the hidden layer

Interim summary

● RNNs can be used to _____________classify_______________ sequences

of arbitrary length, thanks to a self-loop on the hidden layer

2 for the

price of 1

Interim summary

● RNNs can be used to _________classify, generate___________ sequences

of arbitrary length, thanks to a self-loop on the hidden layer

Interim summary

● RNNs can be used to classify, generate, learn representations of sequences

of arbitrary length, thanks to a self-loop on the hidden layer

● Shared weights between time steps

● New initialization per sequence

● Can be “unrolled” and viewed as

deep FFNN

3 for the

price of 1

Batch learning

Instead of doing a pass over the

whole training set in each iteration

(epoch), training can be done in

“mini-batches” that contain only a

subset of the data.

This is called stochastic gradient

descent, because each update is

based only on a sample / an

estimate of the true data.

The most extreme case is a batch

size of 1 (one training example

per iteration).

Training a Deep Neural Network

● High-level: Tuning of hyperparameters and architecture

○ Dimensionality of hidden layers

○ Dropout rate

○ Learning rate

○ Batch size

○ Specific to RNNs: “Resolution” of input:

sentences, words, characters, …

Dropout

Per iteration, randomly choose a

set of neurons that are removed

from network at prediction time.

This reduces the degrees of

freedom and prevents overfitting

by forcing important information

to be stored redundantly.

Training a Deep Neural Network

● Low-level: Backpropagation

○ Error-driven (minimizing loss function)

○ Lots of matrix multiplications

○ Made possible through modern computing power, especially GPUs

(and more recently, TPUs)

Training a Deep Neural Network

Jurafsky & Martin

Gradient flow in a FFNN

Jurafsky & Martin

Gradient flow in an RNN

Gradient flow in an RNN

Computing gradient

of h0 involves many

factors of W.

Li, Johnson, Yeung

If gradients in deeper

layers are > 1, they

will get exponentially

bigger.

If gradients in deeper

layers are < 1, they

will get exponentially

smaller.

Exploding and vanishing gradients

Gradient clipping:

Scale gradient if its norm is too big

Goodfellow et al.Li, Johnson, Yeung

Dealing with vanishing gradients is more complicated.

Most popular solution: change cell architecture

https://www.deeplearningbook.org/

Long Short-Term Memory (LSTM)

Hochreiter and Schmidhuber, 1997, accessed through lecture slides by Arnold

http://euler.stat.yale.edu/~tba3/stat665/lectures/lec21/lecture21.pdf

Long Short-Term Memory (LSTM)

Arnold

Long Short-Term Memory (LSTM)

Arnold

Long Short-Term Memory (LSTM)

Cell state / context memory is separated from cell output, and is only changed

by two linear functions at each time step.

Arnold

Long Short-Term Memory (LSTM)

Forget gate determines if previous context should be taken into account.

Arnold

Long Short-Term Memory (LSTM)

Input gate determines if and how much of the current input should be taken into

account.

Arnold

Long Short-Term Memory (LSTM)

Cell state / context memory is now completely determined and can be

calculated directly.

Arnold

Long Short-Term Memory (LSTM)

Output gate determines if and how much of the cell state should be yielded as

output.

Arnold

Long Short-Term Memory (LSTM)

● Separates cell state and output

● Uninterrupted gradient flow

● Infinite memory is regulated via gates to better capture long-range

dependencies

Gated Recurrent Unit (GRU)

● Simpler: combines forget and input gates

● Equally powerful: gates still take care of vanishing/exploding gradients

Arnold

Stacked RNN

Jurafsky & Martin

Bidirectional RNN

Jurafsky & Martin

RNNs are powerful!

Li, Johnson, Yeung

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

RNNs are powerful!

Li, Johnson, Yeung

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

RNNs are powerful!

Li, Johnson, Yeung

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

RNNs are hard to interpret!

Pick a neuron in the hidden representation and trace when it “fires”.

Li, Johnson, Yeung

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

RNNs are hard to interpret!

Quote detection cell

Li, Johnson, Yeung

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

RNNs are hard to interpret!

Line length tracking cell

Li, Johnson, Yeung

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

RNNs are hard to interpret!

● Probing tasks to discern whether these models implicitly learn different

aspects of syntax, semantics

● E.g., Linzen et al. (2018), Linzen et al. (2016) , Ettinger et al. (2016), Ettinger

and Linzen (2016)

https://arxiv.org/abs/1805.04218
https://www.mitpressjournals.org/doi/abs/10.1162/tacl_a_00115
https://www.mitpressjournals.org/doi/abs/10.1162/tacl_a_00115
http://www.aclweb.org/anthology/W16-2524
http://www.aclweb.org/anthology/W16-2513

Summary

● Feed-forward NNs are extremely powerful, but not well-suited for language

data

● Recurrent NNs model variable-width data as streaming in over time

● Many different applications in NLP (and elsewhere, e.g., Bioinformatics)

● LSTMs and GRUs solve the problem of exploding and vanishing gradients

○ more parameters to train

● Drawbacks:

○ usually require large amounts of training data

○ tricky to interpret what exactly is learned

