
Empirical Methods in Natural Language Processing
Lecture 9

Part-of-speech tagging and HMMs

(based on slides by Sharon Goldwater and Philipp Koehn)

13 February 2019

Nathan Schneider ENLP Lecture 9 13 February 2019

What is part of speech tagging?

• Given a string:

This is a simple sentence

• Identify parts of speech (syntactic categories):

This/DET is/VB a/DET simple/ADJ sentence/NOUN

Nathan Schneider ENLP Lecture 9 1

Why do we care about POS tagging?

• POS tagging is a first step towards syntactic analysis (which in turn, is often
useful for semantic analysis).

– Simpler models and often faster than full parsing, but sometimes enough to
be useful.

– For example, POS tags can be useful features in text classification (see
previous lecture) or word sense disambiguation.

• Illustrates the use of hidden Markov models (HMMs), which are also used
for many other tagging (sequence labelling) tasks.

Nathan Schneider ENLP Lecture 9 2

Examples of other tagging tasks

• Named entity recognition: e.g., label words as belonging to persons,
organizations, locations, or none of the above:

Barack/PER Obama/PER spoke/NON from/NON the/NON White/LOC
House/LOC today/NON ./NON

• Information field segmentation: Given specific type of text (classified
advert, bibiography entry), identify which words belong to which “fields”
(price/size/location, author/title/year)

3BR/SIZE flat/TYPE in/NON Bruntsfield/LOC ,/NON near/LOC
main/LOC roads/LOC ./NON Bright/FEAT ,/NON well/FEAT maintained/FEAT
...

Nathan Schneider ENLP Lecture 9 3

Sequence labelling: key features

In all of these tasks, deciding the correct label depends on

• the word to be labeled

– NER: Smith is probably a person.
– POS tagging: chair is probably a noun.

• the labels of surrounding words

– NER: if following word is an organization (say Corp.), then this word is
more likely to be organization too.

– POS tagging: if preceding word is a modal verb (say will) then this word is
more likely to be a verb.

HMM combines these sources of information probabilistically.

Nathan Schneider ENLP Lecture 9 4

Parts of Speech: reminder

• Open class words (or content words)

– nouns, verbs, adjectives, adverbs
– mostly content-bearing: they refer to objects, actions, and features in the

world
– open class, since there is no limit to what these words are, new ones are

added all the time (email, website).

• Closed class words (or function words)

– pronouns, determiners, prepositions, connectives, ...
– there is a limited number of these
– mostly functional: to tie the concepts of a sentence together

Nathan Schneider ENLP Lecture 9 5

How many parts of speech?

• Both linguistic and practical considerations

• Corpus annotators decide. Distinguish between

– proper nouns (names) and common nouns?

– singular and plural nouns?

– past and present tense verbs?

– auxiliary and main verbs?

– etc

• Commonly used tagsets for English usually have 40-100 tags. For example,
the Penn Treebank has 45 tags.

Nathan Schneider ENLP Lecture 9 6

J&M Fig 5.6: Penn Treebank POS tags

POS tags in other languages

• Morphologically rich languages often have compound morphosyntactic tags

Noun+A3sg+P2sg+Nom (J&M, p.196)

• Hundreds or thousands of possible combinations

• Predicting these requires more complex methods than what we will discuss
(e.g., may combine an FST with a probabilistic disambiguation system)

Nathan Schneider ENLP Lecture 9 8

Why is POS tagging hard?

The usual reasons!

• Ambiguity:

glass of water/NOUN vs. water/VERB the plants
lie/VERB down vs. tell a lie/NOUN
wind/VERB down vs. a mighty wind/NOUN (homographs)

How about time flies like an arrow?

• Sparse data:

– Words we haven’t seen before (at all, or in this context)

– Word-Tag pairs we haven’t seen before (e.g., if we verb a noun)

Nathan Schneider ENLP Lecture 9 9

Relevant knowledge for POS tagging

Remember, we want a model that decides tags based on

• The word itself

– Some words may only be nouns, e.g. arrow
– Some words are ambiguous, e.g. like, flies
– Probabilities may help, if one tag is more likely than another

• Tags of surrounding words

– two determiners rarely follow each other
– two base form verbs rarely follow each other
– determiner is almost always followed by adjective or noun

Nathan Schneider ENLP Lecture 9 10

A probabilistic model for tagging

To incorporate these sources of information, we imagine that the sentences we
observe were generated probabilistically as follows.

• To generate sentence of length n:

Let t0 =<s>

For i = 1 to n
Choose a tag conditioned on previous tag: P (ti | ti−1)
Choose a word conditioned on its tag: P (wi | ti)

• So, the model assumes:

– Each tag depends only on previous tag: a bigram tag model.
– Words are independent given tags

Nathan Schneider ENLP Lecture 9 11

A probabilistic model for tagging

In math:

P (T,W) =

n∏
i=1

P (ti | ti−1)× P (wi | ti)

Nathan Schneider ENLP Lecture 9 12

A probabilistic model for tagging

In math:

P (T,W) =

n∏
i=1

P (ti | ti−1)× P (wi | ti)

× P (</s> | tn)

where w0 = <s> and |W | = |T | = n

Nathan Schneider ENLP Lecture 9 13

A probabilistic model for tagging

In math:

P (T,W) =

n∏
i=1

P (ti | ti−1)× P (wi | ti)

× P (</s> | tn)

where w0 = <s> and |W | = |T | = n

• This can be thought of as a language model over words + tags. (Kind of a
hybrid of a bigram language model and näıve Bayes.)

• But typically, we don’t know the tags—i.e. they’re hidden. It is therefore a
bigram hidden Markov model (HMM).

Nathan Schneider ENLP Lecture 9 14

Probabilistic finite-state machine

• One way to view the model: sentences are generated by walking through
states in a graph. Each state represents a tag.

• Prob of moving from state s to s′ (transition probability): P (ti = s′ | ti−1 =
s)

Nathan Schneider ENLP Lecture 9 15

Example transition probabilities

ti−1\ti NNP MD VB JJ NN . . .

<s> 0.2767 0.0006 0.0031 0.0453 0.0449 . . .
NNP 0.3777 0.0110 0.0009 0.0084 0.0584 . . .
MD 0.0008 0.0002 0.7968 0.0005 0.0008 . . .
VB 0.0322 0.0005 0.0050 0.0837 0.0615 . . .
JJ 0.0306 0.0004 0.0001 0.0733 0.4509 . . .

. .

• Probabilities estimated from tagged WSJ corpus, showing, e.g.:

– Proper nouns (NNP) often begin sentences: P (NNP|<s>) ≈ 0.28
– Modal verbs (MD) nearly always followed by bare verbs (VB).
– Adjectives (JJ) are often followed by nouns (NN).

Table excerpted from J&M draft 3rd edition, Fig 8.5

Nathan Schneider ENLP Lecture 9 16

Example transition probabilities

ti−1\ti NNP MD VB JJ NN . . .

<s> 0.2767 0.0006 0.0031 0.0453 0.0449 . . .
NNP 0.3777 0.0110 0.0009 0.0084 0.0584 . . .
MD 0.0008 0.0002 0.7968 0.0005 0.0008 . . .
VB 0.0322 0.0005 0.0050 0.0837 0.0615 . . .
JJ 0.0306 0.0004 0.0001 0.0733 0.4509 . . .

. .

• This table is incomplete!

• In the full table, every row must sum up to 1 because it is a distribution over
the next state (given previous).

Table excerpted from J&M draft 3rd edition, Fig 8.5

Nathan Schneider ENLP Lecture 9 17

Probabilistic finite-state machine: outputs

• When passing through each state, emit a word.

VB

like
flies

• Prob of emitting w from state s (emission or output probability):
P (wi = w | ti = s)

Nathan Schneider ENLP Lecture 9 18

Example output probabilities

ti\wi Janet will back the . . .

NNP 0.000032 0 0 0.000048 . . .
MD 0 0.308431 0 0 . . .
VB 0 0.000028 0.000672 0 . . .
DT 0 0 0 0.506099 . . .
.

• MLE probabilities from tagged WSJ corpus, showing, e.g.:

– 0.0032% of proper nouns are Janet: P (Janet|NNP) = 0.000032
– About half of determiners (DT) are the.
– the can also be a proper noun. (Annotation error?)

• Again, in full table, rows would sum to 1.
From J&M draft 3rd edition, Fig 8.6

Nathan Schneider ENLP Lecture 9 19

Graphical Model Diagram

In graphical model notation, circles = random variables, and each arrow = a
conditional probability factor in the joint likelihood:

→ = a lookup in the transition distribution,
↓ = a lookup in the emission distribution.

http://www.cs.virginia.edu/~hw5x/Course/CS6501-Text-Mining/_site/mps/mp3.html

Nathan Schneider ENLP Lecture 9 20

What can we do with this model?

• If we know the transition and output probabilities, we can compute the
probability of a tagged sentence.

• That is,

– suppose we have sentence W = w1 . . . wn

and its tags T = t1 . . . tn.
– what is the probability that our probabilistic FSM would generate exactly

that sequence of words and tags, if we stepped through at random?

Nathan Schneider ENLP Lecture 9 21

What can we do with this model?

• If we know the transition and output probabilities, we can compute the
probability of a tagged sentence.

– suppose we have sentence W = w1 . . . wn

and its tags T = t1 . . . tn.
– what is the probability that our probabilistic FSM would generate exactly

that sequence of words and tags, if we stepped through at random?

• This is the joint probability

P (W,T) =

n∏
i=1

P (ti | ti−1)P (wi | ti)

· P (</s> | tn)

Nathan Schneider ENLP Lecture 9 22

Example: computing joint prob. P (W,T)

What’s the probability of this tagged sentence?

This/DET is/VB a/DET simple/JJ sentence/NN

Nathan Schneider ENLP Lecture 9 23

Example: computing joint prob. P (W,T)

What’s the probability of this tagged sentence?

This/DET is/VB a/DET simple/JJ sentence/NN

• First, add begin- and end-of-sentence <s> and </s>. Then:

P (W,T) =

[
n∏

i=1

P (ti|ti−1)P (wi|ti)

]
P (</s>|tn)

= P (DET|<s>)P (VB|DET)P (DET|VB)P (JJ|DET)P (NN|JJ)P (</s>|NN)

·P (This|DET)P (is|VB)P (a|DET)P (simple|JJ)P (sentence|NN)

• Then, plug in the probabilities we estimated from our corpus.

Nathan Schneider ENLP Lecture 9 24

But... tagging?

Normally, we want to use the model to find the best tag sequence for an untagged
sentence.

• Thus, the name of the model: hidden Markov model

– Markov: because of Markov independence assumption (each tag/state only
depends on fixed number of previous tags/states—here, just one).

– hidden: because at test time we only see the words/emissions; the
tags/states are hidden (or latent) variables.

• FSM view: given a sequence of words, what is the most probable state path
that generated them?

Nathan Schneider ENLP Lecture 9 25

Hidden Markov Model (HMM)

HMM is actually a very general model for sequences. Elements of an HMM:

• a set of states (here: the tags)

• an output alphabet (here: words)

• intitial state (here: beginning of sentence)

• state transition probabilities (here: P (ti | ti−1))

• symbol emission probabilities (here: P (wi | ti))

Nathan Schneider ENLP Lecture 9 26

Relationship to previous models

• N-gram model: a model for sequences that also makes a Markov assumption,
but has no hidden variables.

• Näıve Bayes: a model with hidden variables (the classes) but no sequential
dependencies.

• HMM: a model for sequences with hidden variables.

Like many other models with hidden variables, we will use Bayes’ Rule to help us
infer the values of those variables.

(In NLP, we usually assume hidden variables are observed during training—though
there are unsupervised methods that do not.)

Nathan Schneider ENLP Lecture 9 27

Relationship to other models

Side note for those interested:

• Näıve Bayes: a generative model (use Bayes’ Rule, strong independence
assumptions) for classification.

• MaxEnt: a discriminative model (model P (y | x) directly, use arbitrary
features) for classification.

• HMM: a generative model for sequences with hidden variables.

• MEMM: a discriminative model for sequences with hidden variables. Other
sequence models can also use more features than HMM: e.g., Conditional
Random Field (CRF) or structured perceptron.

Nathan Schneider ENLP Lecture 9 28

Formalizing the tagging problem

Find the best tag sequence T for an untagged sentence W :

arg max
T

P (T |W)

Nathan Schneider ENLP Lecture 9 29

Formalizing the tagging problem

Find the best tag sequence T for an untagged sentence W :

arg max
T

P (T |W)

• Bayes’ rule gives us:

P (T |W) =
P (W | T) P (T)

P (W)

• We can drop P (W) if we are only interested in arg maxT :

arg max
T

P (T |W) = arg max
T

P (W | T) P (T)

Nathan Schneider ENLP Lecture 9 30

Decomposing the model

Now we need to compute P (W | T) and P (T) (actually, their product P (W |
T)P (T) = P (W,T)).

• We already defined how!

• P (T) is the state transition sequence:

P (T) =
∏
i

P (ti | ti−1)

• P (W | T) are the emission probabilities:

P (W | T) =
∏
i

P (wi | ti)

Nathan Schneider ENLP Lecture 9 31

Search for the best tag sequence

• We have defined a model, but how do we use it?

– given: word sequence W
– wanted: best tag sequence T ∗

• For any specific tag sequence T , it is easy to compute
P (W,T) = P (W | T)P (T).

P (W | T) P (T) =
∏
i

P (wi | ti) P (ti | ti−1)

• So, can’t we just enumerate all possible T , compute their probabilites, and
choose the best one?

Nathan Schneider ENLP Lecture 9 32

Enumeration won’t work

• Suppose we have c possible tags for each of the n words in the sentence.

• How many possible tag sequences?

Nathan Schneider ENLP Lecture 9 33

Enumeration won’t work

• Suppose we have c possible tags for each of the n words in the sentence.

• How many possible tag sequences?

• There are cn possible tag sequences: the number grows exponentially in the
length n.

• For all but small n, too many sequences to efficiently enumerate.

Nathan Schneider ENLP Lecture 9 34

The Viterbi algorithm

• We’ll use a dynamic programming algorithm to solve the problem.

• Dynamic programming algorithms order the computation efficiently so partial
values can be computed once and reused.

• The Viterbi algorithm finds the best tag sequence without explicitly
enumerating all sequences.

• Partial results are stored in a chart to avoid recomputing them.

• Details next time.

Nathan Schneider ENLP Lecture 9 35

Viterbi as a decoder

The problem of finding the best tag sequence for a sentence is sometimes called
decoding.

• Because, like spelling correction etc., HMM can also be viewed as a noisy
channel model.

– Someone wants to send us a sequence of tags: P (T)
– During encoding, “noise” converts each tag to a word: P (W |T)
– We try to decode the observed words back to the original tags.

• In fact, decoding is a general term in NLP for inferring the hidden variables
in a test instance (so, finding correct spelling of a misspelled word is also
decoding).

Nathan Schneider ENLP Lecture 9 36

Computing marginal prob. P (W)

Recall that the HMM can be thought of as a language model over words AND
tags. What about estimating probabilities of JUST the words of a sentence?

Nathan Schneider ENLP Lecture 9 37

Computing marginal prob. P (W)

Recall that the HMM can be thought of as a language model over words AND
tags. What about estimating probabilities of JUST the words of a sentence?

P (W) =
∑
T

P (W,T)

Nathan Schneider ENLP Lecture 9 38

Computing marginal prob. P (W)

Recall that the HMM can be thought of as a language model over words AND
tags. What about estimating probabilities of JUST the words of a sentence?

P (W) =
∑
T

P (W,T)

Again, cannot enumerate all possible taggings T . Instead, use the forward
algorithm (dynamic programming algorithm closely related to Viterbi—see
textbook if interested).

Could be used to measure perplexity of held-out data.

Nathan Schneider ENLP Lecture 9 39

Supervised learning

The HMM consists of

• transition probabilities

• emission probabilities

How can these be learned?

Nathan Schneider ENLP Lecture 9 40

Supervised learning

The HMM consists of

• transition probabilities

• emission probabilities

How can these be estimated? From counts in a treebank such as the Penn
Treebank!

Nathan Schneider ENLP Lecture 9 41

Supervised learning

The HMM consists of

• transition probabilities: given tag t, what is the probability that t′ follows?

• emission probabilities: given tag t, what is the probability that the word is w?

How can these be estimated? From counts in a treebank such as the Penn
Treebank!

Nathan Schneider ENLP Lecture 9 42

Do transition & emission probs. need smoothing?

Nathan Schneider ENLP Lecture 9 43

Do transition & emission probs. need smoothing?

• Emissions: yes, because if there is any word w in the test data such that
P (wi = w | ti = t) = 0 for all tags t, the whole joint probability will go to 0.

• Transitions: not necessarily, but if any transition probabilities are estimated
as 0, that tag bigram will never be predicted.

– What are some transitions that should NEVER occur in a bigram HMM?

Nathan Schneider ENLP Lecture 9 44

Do transition & emission probs. need smoothing?

• Emissions: yes, because if there is any word w in the test data such that
P (wi = w | ti = t) = 0 for all tags t, the whole joint probability will go to 0.

• Transitions: not necessarily, but if any transition probabilities are estimated
as 0, that tag bigram will never be predicted.

– What are some transitions that should NEVER occur in a bigram HMM?
• → <s>

</s>→ •
<s>→ </s>

Nathan Schneider ENLP Lecture 9 45

Unsupervised learning

• With the number of hidden tags specified but no tagged training data, the
learning is unsupervised.

• The Forward-Backward algorithm, a.k.a. Baum-Welch EM, clusters the data
into “tags” that will give the training data high probability under the HMM.
This is used in speech recognition.

• See the textbook for details if interested.

Nathan Schneider ENLP Lecture 9 46

Higher-order HMMs

• The “Markov” part means we ignore history of more than a fixed number of
words.

• Equations thus far have been for bigram HMM: i.e., transitions are P (ti | ti−1).

• But as with language models, we can increase the N in the N-gram: trigram
HMM transition probabilities are P (ti | ti−2, ti−1), etc.

• As usual, smoothing the transition distributions becomes more important with
higher-order models.

Nathan Schneider ENLP Lecture 9 47

Summary

• Part-of-speech tagging is a sequence labelling task.

• HMM uses two sources of information to help resolve ambiguity in a word’s
POS tag:

– The words itself
– The tags assigned to surrounding words

• Can be viewed as a probabilistic FSM.

• Given a tagged sentence, easy to compute its probability. But finding the best
tag sequence will need a clever algorithm.

Nathan Schneider ENLP Lecture 9 48

