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Dependency Parse

saw
����

HHHH

kids birds

fish

with

saw

�����������

HHHHHHHHHHH

kids birds binoculars

with

Linguists have long observed that the meanings of words within
a sentence depend on one another, mostly in asymmetric, binary

relations.

• Though some constructions don’t cleanly fit this pattern: e.g.,
coordination, relative clauses.
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Dependency Parse
saw

����
HHHH

kids birds

fish

with

saw

�����������

HHHHHHHHHHH

kids birds binoculars

with

Equivalently, but showing word order (head ! modifier):

kids saw birds with fish

Because it is a tree, every word has exactly one parent.
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Content vs. Functional Heads

Some treebanks prefer content heads:

Little kids were always watching birds with fish

Others prefer functional heads:

Little kids were always watching birds with fish
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Edge Labels

It is often useful to distinguish di↵erent kinds of head ! modifier
relations, by labeling edges:

kids saw birds with fish

ROOT

SBJ DOBJ

POBJ

PREP

Important relations for English include subject, direct object,
determiner, adjective modifier, adverbial modifier, etc. (Di↵erent
treebanks use somewhat di↵erent label sets.)

• How would you identify the subject in a constituency parse?
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Dependency Paths

For information extraction tasks involving real-world relationships
between entities, chains of dependencies can provide good features:

British o�cials in Tehran have been meeting with their Iranian counterparts

amod

nsubj

prep pobj

aux

aux prep

pobj

poss

amod

(example from Brendan O’Connor)
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Projectivity

• A sentence’s dependency parse is said to be projective if every
subtree (node and all its descendants) occupies a contiguous span

of the sentence.

• = The dependency parse can be drawn on top of the sentence
without any crossing edges.

A hearing on the issue is scheduled today

ROOT

ATT ATT

SBJ

VC TMP

PC

ATT
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Nonprojectivity

• Other sentences are nonprojective:

A hearing is scheduled on the issue today

ROOT

ATT

ATT

SBJ VC

TMP

PC

ATT

• Nonprojectivity is rare in English, but quite common in many
languages.
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Dependency Parsing

Some of the algorithms you have seen for PCFGs can be adapted to
dependency parsing.

• CKY can be adapted, though e�ciency is a concern: obvious
approach is O(Gn5); Eisner algorithm brings it down to O(Gn3)

– N. Smith’s slides explaining the Eisner algorithm: http://

courses.cs.washington.edu/courses/cse517/16wi/slides/

an-dep-slides.pdf
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Transition-based Parsing

• Adapts shift-reduce methods: stack and bu↵er

• Remember: latent structure is just edges between words.
Train a classifier to predict next action (shift, reduce,
attach-left, or attach-right), and proceed left-to-right
through the sentence. O(n) time complexity!

• Only finds projective trees (without special extensions)

• Pioneering system: Nivre’s MaltParser

• See http://spark-public.s3.amazonaws.com/nlp/slides/

Parsing-Dependency.pdf (Jurafsky & Manning Coursera
slides) for details and examples
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A quick dependency parse:
The dog bit the boy



The dog bit the boy

root

nsubjdet

dobj

det



Why is this useful?



Why is this useful?
- Conveys some level of semantic meaning
- Good for languages with freer word order
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Transition Based Dependency Parsing
- High level idea

- Process words from left to right
- At each stage, decide if two words should be attached



Transition Based Dependency Parsing
- Similar to shift-reduce parsing for programming languages
- 3 components

- Input buffer (the words of the sentence)
- Stack (where the words are moved to and manipulated)
- Dependency relations (the list of relations between words that becomes the dependency 

parse)

- Configuration: some state of the 3 components
- Parsing consists of a sequence of transitions between configurations until all 

the words have been accounted for
- The available transitions define the type of approach



The Arc-Standard Approach

- LEFTARC: Assert a head-dependent relation between the word at the top of 
the stack and the word directly beneath it; remove the lower word from the 
stack

- RIGHTARC: Assert a head-dependent relation between the second word on 
the stack and the word at the top; remove the word at the top of the stack

- SHIFT: Remove the word from the front of the input buffer and push it onto 
the stack



Restrictions
- LEFTARC cannot be applied when the root is the second element of the stack 

(the root cannot be a dependent)
- LEFTARC & RIGHTARC can only be applied if there are 2 or more elements 

on the stack. 



She gave me the book



She gave me the book

root

nsubj

dobj

iobj
det



STACK
[root]

WORD LIST
[She, gave, me, the, book]

RELATIONS
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STACK
[root]

[root, She]
[root, She, gave]

[root, gave]

WORD LIST
[She, gave, me, the, book]
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STACK
[root]

[root, She]
[root, She, gave]

[root, gave]
[root]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]
[me, the, book]

RELATIONS

(She ← gave)
(root → gave)

Operation: RIGHTARC?



STACK
[root]

[root, She]
[root, She, gave]

[root, gave]
[root, gave, me]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]

[the, book]

RELATIONS

(She ← gave)

Operation: SHIFT!



STACK
[root]

[root, She]
[root, She, gave]

[root, gave]
[root, gave, me]

[root, gave]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]

[the, book]
[the, book]

RELATIONS

(She ← gave)

(gave → me)

Operation: RIGHTARC



STACK
[root]

[root, She]
[root, She, gave]

[root, gave]
[root, gave, me]

[root, gave]
[root, gave, the]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]

[the, book]
[the, book]

[book]

RELATIONS

(She ← gave)

(gave → me)

Operation: SHIFT



STACK
[root]

[root, She]
[root, She, gave]

[root, gave]
[root, gave, me]

[root, gave]
[root, gave, the]

[root, gave, the, book]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]

[the, book]
[the, book]

[book]
[]

RELATIONS

(She ← gave)

(gave → me)

Operation: SHIFT



STACK
[root]

[root, She]
[root, She, gave]

[root, gave]
[root, gave, me]

[root, gave]
[root, gave, the]

[root, gave, the, book]
[root, gave, book]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]

[the, book]
[the, book]

[book]
[]
[]

RELATIONS

(She ← gave)

(gave → me)

(the ← book)

Operation: LEFTARC



STACK
[root]

[root, She]
[root, She, gave]

[root, gave]
[root, gave, me]

[root, gave]
[root, gave, the]

[root, gave, the, book]
[root, gave, book]

[root, gave]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]

[the, book]
[the, book]

[book]
[]
[]
[]

RELATIONS

(She ← gave)

(gave → me)

(the ← book)
(gave → book)

Operation: RIGHTARC



STACK
[root]

[root, She]
[root, She, gave]

[root, gave]
[root, gave, me]

[root, gave]
[root, gave, the]

[root, gave, the, book]
[root, gave, book]

[root, gave]
[root]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]

[the, book]
[the, book]

[book]
[]
[]
[]
[]

RELATIONS

(She ← gave)

(gave → me)

(the ← book)
(gave → book)
(root → gave)

Operation: RIGHTARC
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Run time
- Linear in the size of the sentence



Run time
- Linear in the size of the sentence
- A head decision for each word uniquely defines a tree
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How to decide what to do at each step? 
- Build an oracle with machine learning!
- Need something that maps configurations to transitions
- Data comes from Treebanks

- Corpora annotated with gold trees
- http://universaldependencies.org/

- Best results have historically come from multinomial logistic regression and 
SVM models. 

- Recently, Neural Networks have been performing well.
- Naturally lend themselves to the task

- Forms analysis before reading in the whole sentence
- Neural networks model a sequence of decisions, which is exactly how the parsing 

operates

http://universaldependencies.org/
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Possible features?
- Some obvious ones, the word currently at the top of the stack, etc.
- POS tags are also very useful

- Usually a POS tagged is run and used as input to the dependency parser



Edge Labels
- The example only dealt with connections
- Can modify the oracle to learn and output the transition, as well as the arc 

label at each step (if RIGHTARC or LEFTARC is called)



Possible Weaknesses? 



Possible Weaknesses? 
- Can only produce projective parses



Weaknesses of Dependency Parses



Weakness of Dependency Parses
- Head-modifier relation doesn’t always work neatly
- Coordination

- “Cats and dogs ran.”

- Auxiliaries
- “Do you want coffee?”

- Relative clauses
- “I met the girl who started this year”

- Prepositional phrases: 
- “I saw a cow in the barn”



Advanced Methods
- Arc Eager transition system
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are for something to go awry

 



Advanced Methods
- Arc Eager transition system

- We couldn’t add the arc between root and gave because gave still needed to point to other 
words

- In general, the longer a word has to wait to get assigned its head the more opportunities there 
are for something to go awry

- Solution: Change the set of operators

 



New Operators
- LEFTARC: Assert a head-dependent relation between the word at the front of 

the input buffer and the word at the top of the stack; pop the stack.
- RIGHTARC: Assert a head-dependent relation between the word on the top 

of the stack and the word at the front of the input buffer; shift the word at the 
front of the input buffer to the stack.

- SHIFT: Remove the word from the front of the input buffer and push it onto 
the stack (stays the same). 

- REDUCE: Pop the stack.



Advanced Methods
- Arc Eager transition system

- We couldn’t add the arc between root and gave because gave still needed to point to other 
words

- In general, the longer a word has to wait to get assigned its head the more opportunities there 
are for something to go awry

- Graph based methods
- Can think of dependency parses as a directed graph with arc labels
- Other methods use graph based algorithms to find the best dependency parse

 



Graph-based Parsing
• Global algorithm: From the fully connected directed graph of all
possible edges, choose the best ones that form a tree.

• Edge-factored models: Classifier assigns a nonnegative score to
each possible edge; maximum spanning tree algorithm finds the
spanning tree with highest total score in O(n2) time.

– Edge-factored assumption can be relaxed (higher-order models
score larger units; more expensive).

– Unlabeled parse ! edge-labeling classifier (pipeline).

• Pioneering work: McDonald’s MSTParser

• Can be formulated as constraint-satisfaction with integer linear
programming (Martins’s TurboParser)
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Graph-based vs. Transition-based
vs. Conversion-based

• TB: Features in scoring function can look at any part of the stack;
no optimality guarantees for search; linear-time; (classically)
projective only

• GB: Features in scoring function limited by factorization;
optimal search within that model; quadratic-time; no projectivity
constraint

• CB: In terms of accuracy, sometimes best to first constituency-
parse, then convert to dependencies (e.g., Stanford Parser).
Slower than direct methods.
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Dependency Parsing Evaluation

For training and evaluation, we can automatically convert
constituency treebanks (like the Penn Treebank) to dependencies—
see below—or we can use dependency treebanks like
Universal Dependencies, available in many languages (http:
//universaldependencies.org).

Standard metrics for comparing against a gold standard are:

• UAS (unlabeled attachment score): % of words attached correctly
(correct head)

• LAS (labeled attachment score): % of words attached to the
correct head with the correct relation label
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Choosing a Parser: Criteria

• Target representation: constituency or dependency?

• E�ciency? In practice, both runtime and memory use.

• Incrementality: parse the whole sentence at once, or obtain partial
left-to-right analyses/expectations?

• Retrainable system?
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Advanced Topic: Relationship between
constituency and dependency parses

Constituency parses/grammars can be extended with a notion of
lexical head, which can

• improve constituency parsing, or

• help convert a constituency parse to a dependency parse
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Vanilla PCFGs: no lexical dependencies

Replacing one word with another with the same POS will never
result in a di↵erent parsing decision, even though it should!

• kids saw birds with fish vs.
kids saw birds with binoculars

• She stood by the door covered in tears vs.
She stood by the door covered in ivy

• stray cats and dogs vs.
Siamese cats and dogs
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A way to fix PCFGs: lexicalization
Create new categories, this time by adding the lexical head of the
phrase (note: N level under NPs not shown for brevity):

S-saw

�������������

HHHHHHHHHHHHH

NP-kids

kids

VP-saw

������������

HHHHHHHHHHHH

VP-saw

������

HHHHHH

V-saw

saw

NP-birds

birds

PP-binoculars

�������

HHHHHHH

P-with

with

NP-binoculars

binoculars
• Now consider:
VP-saw! VP-saw PP-fish vs. VP-saw! VP-saw PP-binoculars
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How to get lexical heads?
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Head Rules
The standard solution is to use head rules: for every non-unary
(P)CFG production, designate one RHS nonterminal as containing
the head. S! NP VP, VP! VP PP, PP! P NP (content head), etc.

S

���������

HHHHHHHHH

NP

kids

VP

��������

HHHHHHHH

VP
����

HHHH

V

saw

NP

birds

PP

�����

HHHHH

P

with

NP

binoculars
• Heuristics to scale this to large grammars: e.g., within an NP, last
immediate N child is the head.
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Head Rules
Then, propagate heads up the tree:

S

�������������

HHHHHHHHHHHHH

NP-kids

kids

VP

������������

HHHHHHHHHHHH

VP

������

HHHHHH

V-saw

saw

NP-birds

birds

PP

�������

HHHHHHH

P-with

with

NP-binoculars

binoculars
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Head Rules
Then, propagate heads up the tree:

S

�������������

HHHHHHHHHHHHH

NP-kids

kids

VP

������������

HHHHHHHHHHHH

VP-saw

������

HHHHHH

V-saw

saw

NP-birds

birds

PP

�������

HHHHHHH

P-with

with

NP-binoculars

binoculars
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Head Rules
Then, propagate heads up the tree:

S

�������������

HHHHHHHHHHHHH

NP-kids

kids

VP

������������

HHHHHHHHHHHH

VP-saw

������

HHHHHH

V-saw

saw

NP-birds

birds

PP-binoculars

�������

HHHHHHH

P-with

with

NP-binoculars

binoculars
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Head Rules
Then, propagate heads up the tree:

S

�������������

HHHHHHHHHHHHH

NP-kids

kids

VP-saw

������������

HHHHHHHHHHHH

VP-saw

������

HHHHHH

V-saw

saw

NP-birds

birds

PP-binoculars

�������

HHHHHHH

P-with

with

NP-binoculars

binoculars
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Head Rules
Then, propagate heads up the tree:

S-saw

�������������

HHHHHHHHHHHHH

NP-kids

kids

VP-saw

������������

HHHHHHHHHHHH

VP-saw

������

HHHHHH

V-saw

saw

NP-birds

birds

PP-binoculars

�������

HHHHHHH

P-with

with

NP-binoculars

binoculars
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Lexicalized Constituency Parse (reading 1)

S-saw

�������������

HHHHHHHHHHHHH

NP-kids

kids

VP-saw

������������

HHHHHHHHHHHH

VP-saw

������

HHHHHH

V-saw

saw

NP-birds

birds

PP-binoculars

�������

HHHHHHH

P-with

with

NP-binoculars

binoculars
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Lexicalized Constituency Parse (reading 2)

S-saw

����������

HHHHHHHHHH

NP-kids

kids

VP-saw

���������

HHHHHHHHH

V-saw

saw

NP-birds

��������

HHHHHHHH

NP-birds

birds

PP-fish

�����

HHHHH

P-with

with

NP-fish

fish
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Constituency Tree ! Dependency Tree

The lexical heads can then be used to collapse down to an unlabeled
dependency tree.
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Lexicalized Constituency Parse

S-saw

����������

HHHHHHHHHH

NP-kids

kids

VP-saw

���������

HHHHHHHHH

V-saw

saw

NP-birds

��������

HHHHHHHH

NP-birds

birds

PP-fish

�����

HHHHH

P-with

with

NP-fish

fish
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. . . remove the phrasal categories. . .

saw

�������

HHHHHHH

kids

kids

saw

������

HHHHHH

saw

saw

birds

������

HHHHHH

birds

birds

fish
����

HHHH

with

with

fish

fish
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. . . remove the (duplicated) terminals. . .

saw

�������

HHHHHHH

kids saw

������

HHHHHH

saw birds

������

HHHHHH

birds fish
����

HHHH

with fish
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. . . and collapse chains of duplicates. . .

saw

�������

HHHHHHH

kids saw

������

HHHHHH

saw birds

������

HHHHHH

birds fish
����

HHHH

with fish
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. . . and collapse chains of duplicates. . .

saw

������

HHHHHH

kids saw

������

HHHHHH

saw birds
����

HHHH

birds fish

with
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. . . and collapse chains of duplicates. . .

saw

������

HHHHHH

kids saw

������

HHHHHH
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����

HHHH
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. . . and collapse chains of duplicates. . .

saw

�����

HHHHH

kids saw
����

HHHH

saw birds

fish

with
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. . . and collapse chains of duplicates. . .

saw

�����

HHHHH

kids saw
����

HHHH

saw birds

fish

with
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. . . and collapse chains of duplicates. . .

saw
����

HHHH

kids birds

fish

with
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Practicalities of Lexicalized CFG
Constituency Parsing

• Leads to huge grammar blowup and very sparse data (bad!)

– There are fancy techniques to address these issues. . . and they
can work pretty well.

– But: Do we really need phrase structures in the first place?
Not always!

• Hence: Sometimes we want to parse directly to dependencies, as
with transition-based or graph-based algorithms.
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Summary

• While constituency parses give hierarchically nested phrases,
dependency parses represent syntax with trees whose edges
connect words in the sentence. (No abstract phrase categories
like NP.) Edges often labeled with relations like subject.

• Head rules govern how a lexicalized constituency grammar can be
extracted from a treebank, and how a constituency parse can be
coverted to a dependency parse.

• For English, it is often fastest and most convenient to parse
directly to dependencies. Two main paradigms, graph-based
and transition-based, with di↵erent kinds of models and search
algorithms.
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